botw/src/KingSystem/Utils/BitField.h

240 lines
9.4 KiB
C++

// Copyright 2014 Tony Wasserka
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the owner nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
#include <cstddef>
#include <limits>
#include <type_traits>
namespace ksys::util {
/*
* Abstract bitfield class
*
* Allows endianness-independent access to individual bitfields within some raw
* integer value. The assembly generated by this class is identical to the
* usage of raw bitfields, so it's a perfectly fine replacement.
*
* For BitField<X,Y,Z>, X is the distance of the bitfield to the LSB of the
* raw value, Y is the length in bits of the bitfield. Z is an integer type
* which determines the sign of the bitfield. Z must have the same size as the
* raw integer.
*
*
* General usage:
*
* Create a new union with the raw integer value as a member.
* Then for each bitfield you want to expose, add a BitField member
* in the union. The template parameters are the bit offset and the number
* of desired bits.
*
* Changes in the bitfield members will then get reflected in the raw integer
* value and vice-versa.
*
*
* Sample usage:
*
* union SomeRegister
* {
* u32 hex;
*
* BitField<0,7,u32> first_seven_bits; // unsigned
* BitField<7,8,u32> next_eight_bits; // unsigned
* BitField<3,15,s32> some_signed_fields; // signed
* };
*
* This is equivalent to the little-endian specific code:
*
* union SomeRegister
* {
* u32 hex;
*
* struct
* {
* u32 first_seven_bits : 7;
* u32 next_eight_bits : 8;
* };
* struct
* {
* u32 : 3; // padding
* s32 some_signed_fields : 15;
* };
* };
*
*
* Caveats:
*
* 1)
* BitField provides automatic casting from and to the storage type where
* appropriate. However, when using non-typesafe functions like printf, an
* explicit cast must be performed on the BitField object to make sure it gets
* passed correctly, e.g.:
* printf("Value: %d", (s32)some_register.some_signed_fields);
*
* 2)
* Not really a caveat, but potentially irritating: This class is used in some
* packed structures that do not guarantee proper alignment. Therefore we have
* to use #pragma pack here not to pack the members of the class, but instead
* to break GCC's assumption that the members of the class are aligned on
* sizeof(StorageType).
*/
#pragma pack(1)
template <std::size_t position, std::size_t bits, typename T,
// StorageType is T for non-enum types and the underlying type of T if
// T is an enumeration. Note that T is wrapped within an enable_if in the
// former case to workaround compile errors which arise when using
// std::underlying_type<T>::type directly.
typename StorageType = typename std::conditional_t<
std::is_enum<T>::value, std::underlying_type<T>, std::enable_if<true, T>>::type>
struct BitField {
// Force default constructor to be created
// so that we can use this within unions
constexpr BitField() = default;
// We declare a user-defined copy assignment operator, so the default copy constructor
// must be defaulted explicitly to avoid a deprecation warning.
constexpr BitField(const BitField&) = default;
// This constructor might be considered ambiguous:
// Would it initialize the storage or just the bitfield?
// Hence, delete it. Use the assignment operator to set bitfield values!
BitField(T val) = delete;
inline constexpr void Set(T val) {
storage =
(storage & ~GetMask()) | ((static_cast<StorageType>(val) << position) & GetMask());
}
template <auto bits_ = bits, typename = std::enable_if_t<bits_ == 1>>
inline constexpr void SetBit(bool set) {
storage = (storage & ~GetMask()) | (set ? GetMask() : 0);
}
/// @warning This does *not* check whether the value fits within the mask,
/// so this might overwrite unrelated fields! Using Set() is preferred.
inline constexpr void SetUnsafe(T val) {
storage = (storage & ~GetMask()) | (static_cast<StorageType>(val) << position);
}
/// @warning Same as SetUnsafe, but assumes this bitfield's bits are zero.
/// This is intended to be called only once to efficiently initialise a bitfield,
/// and will break very badly if called more than once. Using Set() is preferred.
inline constexpr void Init(T val) { storage |= static_cast<StorageType>(val) << position; }
inline constexpr BitField& operator=(const BitField& other) {
Set(other.Value());
return *this;
}
inline constexpr BitField& operator=(T val) {
Set(val);
return *this;
}
#define BITFIELD_DEFINE_OP_(OP, OP_EQUAL) \
inline constexpr BitField& operator OP_EQUAL(T val) { \
*this = Value() OP val; \
return *this; \
}
BITFIELD_DEFINE_OP_(|, |=)
BITFIELD_DEFINE_OP_(^, ^=)
BITFIELD_DEFINE_OP_(&, &=)
BITFIELD_DEFINE_OP_(+, +=)
BITFIELD_DEFINE_OP_(-, -=)
BITFIELD_DEFINE_OP_(*, *=)
BITFIELD_DEFINE_OP_(/, /=)
#undef BITFIELD_DEFINE_OP_
constexpr T Value() const {
if constexpr (IsSigned()) {
const size_t shift_amount = 8 * sizeof(StorageType) - bits;
return static_cast<T>((storage << (shift_amount - position)) >> shift_amount);
} else {
return static_cast<T>((storage & GetMask()) >> position);
}
}
constexpr operator T() const { return Value(); } // NOLINT(google-explicit-constructor)
static constexpr bool IsSigned() { return std::is_signed<T>(); }
static constexpr std::size_t StartBit() { return position; }
static constexpr std::size_t NumBits() { return bits; }
static constexpr StorageType GetMask() {
return (std::numeric_limits<StorageTypeU>::max() >> (8 * sizeof(StorageType) - bits))
<< position;
}
private:
// Unsigned version of StorageType
using StorageTypeU = std::make_unsigned_t<StorageType>;
StorageType storage;
static_assert(bits + position <= 8 * sizeof(StorageType), "Bitfield out of range");
static_assert(sizeof(T) <= sizeof(StorageType), "T must fit in StorageType");
// And, you know, just in case people specify something stupid like bits=position=0x80000000
static_assert(position < 8 * sizeof(StorageType), "Invalid position");
static_assert(bits <= 8 * sizeof(T), "Invalid number of bits");
static_assert(bits > 0, "Invalid number of bits");
};
#pragma pack()
/// Return the combined mask for all specified BitFields.
template <typename Storage, typename... BitFields>
constexpr Storage getMaskForBitFields() {
Storage mask{};
((mask |= BitFields::GetMask()), ...);
return mask;
}
/// Clear several BitFields at once.
///
/// This can sometimes produce better codegen compared to setting each BitField to zero.
/// (This function builds a mask for all the BitFields and clears those bits in one pass.)
template <typename Storage, typename... BitFields>
constexpr void clearBitFields(Storage* storage, const BitFields&... fields) {
constexpr Storage mask = getMaskForBitFields<Storage, BitFields...>();
*storage &= ~mask;
}
/// Set several BitFields at once.
///
/// This can sometimes produce better codegen compared to setting each BitField individually.
/// (This function builds a mask for all the BitFields and clears those bits in one pass,
/// then ORs in the new values all at once.)
template <typename Storage, typename... BitFieldAndValuePairs>
constexpr void setBitFields(Storage* storage, const BitFieldAndValuePairs&... pairs) {
constexpr Storage mask =
getMaskForBitFields<Storage, typename BitFieldAndValuePairs::first_type...>();
*storage =
((static_cast<Storage>(pairs.second) << pairs.first.StartBit()) | ...) | (*storage & ~mask);
}
} // namespace ksys::util