329 lines
11 KiB
C
329 lines
11 KiB
C
/*
|
|
* CDE - Common Desktop Environment
|
|
*
|
|
* Copyright (c) 1993-2012, The Open Group. All rights reserved.
|
|
*
|
|
* These libraries and programs are free software; you can
|
|
* redistribute them and/or modify them under the terms of the GNU
|
|
* Lesser General Public License as published by the Free Software
|
|
* Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* These libraries and programs are distributed in the hope that
|
|
* they will be useful, but WITHOUT ANY WARRANTY; without even the
|
|
* implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
* PURPOSE. See the GNU Lesser General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with these librararies and programs; if not, write
|
|
* to the Free Software Foundation, Inc., 51 Franklin Street, Fifth
|
|
* Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
/* $XConsortium: servermd.h /main/2 1996/04/08 15:58:29 cde-fuj $ */
|
|
/***********************************************************
|
|
Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts,
|
|
and the Massachusetts Institute of Technology, Cambridge, Massachusetts.
|
|
|
|
All Rights Reserved
|
|
|
|
Permission to use, copy, modify, and distribute this software and its
|
|
documentation for any purpose and without fee is hereby granted,
|
|
provided that the above copyright notice appear in all copies and that
|
|
both that copyright notice and this permission notice appear in
|
|
supporting documentation, and that the names of Digital or MIT not be
|
|
used in advertising or publicity pertaining to distribution of the
|
|
software without specific, written prior permission.
|
|
|
|
DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
|
|
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
|
|
DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
|
|
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
|
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
|
|
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
|
|
SOFTWARE.
|
|
|
|
(c) Copyright 1995 FUJITSU LIMITED
|
|
This is source code modified by FUJITSU LIMITED under the Joint
|
|
Development Agreement for the CDEnext PST.
|
|
This is unpublished proprietary source code of FUJITSU LIMITED
|
|
|
|
******************************************************************/
|
|
#ifndef SERVERMD_H
|
|
#define SERVERMD_H 1
|
|
|
|
/*
|
|
* The vendor string identifies the vendor responsible for the
|
|
* server executable.
|
|
*/
|
|
#ifndef VENDOR_STRING
|
|
#define VENDOR_STRING "MIT X Consortium"
|
|
#endif
|
|
|
|
/*
|
|
* The vendor release number identifies, for the purpose of submitting
|
|
* traceable bug reports, the release number of software produced
|
|
* by the vendor.
|
|
*/
|
|
#ifndef VENDOR_RELEASE
|
|
#define VENDOR_RELEASE 4
|
|
#endif
|
|
|
|
/*
|
|
* Machine dependent values:
|
|
* GLYPHPADBYTES should be chosen with consideration for the space-time
|
|
* trade-off. Padding to 0 bytes means that there is no wasted space
|
|
* in the font bitmaps (both on disk and in memory), but that access of
|
|
* the bitmaps will cause odd-address memory references. Padding to
|
|
* 2 bytes would ensure even address memory references and would
|
|
* be suitable for a 68010-class machine, but at the expense of wasted
|
|
* space in the font bitmaps. Padding to 4 bytes would be good
|
|
* for real 32 bit machines, etc. Be sure that you tell the font
|
|
* compiler what kind of padding you want because its defines are
|
|
* kept separate from this. See server/include/font.h for how
|
|
* GLYPHPADBYTES is used.
|
|
*
|
|
* Along with this, you should choose an appropriate value for
|
|
* GETLEFTBITS_ALIGNMENT, which is used in ddx/mfb/maskbits.h. This
|
|
* constant choses what kind of memory references are guarenteed during
|
|
* font access; either 1, 2 or 4, for byte, word or longword access,
|
|
* respectively. For instance, if you have decided to to have
|
|
* GLYPHPADBYTES == 4, then it is pointless for you to have a
|
|
* GETLEFTBITS_ALIGNMENT > 1, because the padding of the fonts has already
|
|
* guarenteed you that your fonts are longword aligned. On the other
|
|
* hand, even if you have chosen GLYPHPADBYTES == 1 to save space, you may
|
|
* also decide that the computing involved in aligning the pointer is more
|
|
* costly than an odd-address access; you choose GETLEFTBITS_ALIGNMENT == 1.
|
|
*
|
|
* Next, choose the tuning parameters which are appropriate for your
|
|
* hardware; these modify the behaviour of the raw frame buffer code
|
|
* in ddx/mfb and ddx/cfb. Defining these incorrectly will not cause
|
|
* the server to run incorrectly, but defining these correctly will
|
|
* cause some noticeable speed improvements:
|
|
*
|
|
* AVOID_MEMORY_READ - (8-bit cfb only)
|
|
* When stippling pixels on the screen (polytext and pushpixels),
|
|
* don't read long words from the display and mask in the
|
|
* appropriate values. Rather, perform multiple byte/short/long
|
|
* writes as appropriate. This option uses many more instructions
|
|
* but runs much faster when the destination is much slower than
|
|
* the CPU and at least 1 level of write buffer is availible (2
|
|
* is much better). Defined currently for SPARC and MIPS.
|
|
*
|
|
* FAST_CONSTANT_OFFSET_MODE - (cfb and mfb)
|
|
* This define is used on machines which have no auto-increment
|
|
* addressing mode, but do have an effectively free constant-offset
|
|
* addressing mode. Currently defined for MIPS and SPARC, even though
|
|
* I remember the cg6 as performing better without it (cg3 definitely
|
|
* performs better with it).
|
|
*
|
|
* LARGE_INSTRUCTION_CACHE -
|
|
* This define increases the number of times some loops are
|
|
* unrolled. On 68020 machines (with 256 bytes of i-cache),
|
|
* this define will slow execution down as instructions miss
|
|
* the cache frequently. On machines with real i-caches, this
|
|
* reduces loop overhead, causing a slight performance improvement.
|
|
* Currently defined for MIPS and SPARC
|
|
*
|
|
* FAST_UNALIGNED_READS -
|
|
* For machines with more memory bandwidth than CPU, this
|
|
* define uses unaligned reads for 8-bit BitBLT instead of doing
|
|
* aligned reads and combining the results with shifts and
|
|
* logical-ors. Currently defined for 68020 and vax.
|
|
* PLENTIFUL_REGISTERS -
|
|
* For machines with > 20 registers. Currently used for
|
|
* unrolling the text painting code a bit more. Currently
|
|
* defined for MIPS.
|
|
*/
|
|
|
|
#ifdef vax
|
|
|
|
#define IMAGE_BYTE_ORDER LSBFirst /* Values for the VAX only */
|
|
#define BITMAP_BIT_ORDER LSBFirst
|
|
#define GLYPHPADBYTES 1
|
|
#define GETLEFTBITS_ALIGNMENT 4
|
|
#define FAST_UNALIGNED_READS
|
|
|
|
#endif /* vax */
|
|
|
|
#ifdef __uxp__
|
|
|
|
#define IMAGE_BYTE_ORDER MSBFirst
|
|
#define BITMAP_BIT_ORDER MSBFirst
|
|
|
|
#define AVOID_MEMORY_READ
|
|
#define LARGE_INSTRUCTION_CACHE
|
|
#define FAST_CONSTANT_OFFSET_MODE
|
|
|
|
#define GLYPHPADBYTES 4
|
|
#define GETLEFTBITS_ALIGNMENT 1
|
|
|
|
#endif /* __uxp__ */
|
|
|
|
#ifdef sun
|
|
|
|
#if defined(sun386) || defined(sun5)
|
|
# define IMAGE_BYTE_ORDER LSBFirst /* Values for the SUN only */
|
|
# define BITMAP_BIT_ORDER LSBFirst
|
|
#else
|
|
# define IMAGE_BYTE_ORDER MSBFirst /* Values for the SUN only */
|
|
# define BITMAP_BIT_ORDER MSBFirst
|
|
#endif
|
|
|
|
#ifdef sparc
|
|
# define AVOID_MEMORY_READ
|
|
# define LARGE_INSTRUCTION_CACHE
|
|
# define FAST_CONSTANT_OFFSET_MODE
|
|
#endif
|
|
|
|
#ifdef mc68020
|
|
#define FAST_UNALIGNED_READS
|
|
#endif
|
|
|
|
#define GLYPHPADBYTES 4
|
|
#define GETLEFTBITS_ALIGNMENT 1
|
|
|
|
#endif /* sun */
|
|
|
|
#ifdef apollo
|
|
|
|
#define IMAGE_BYTE_ORDER MSBFirst /* Values for the Apollo only*/
|
|
#define BITMAP_BIT_ORDER MSBFirst
|
|
#define GLYPHPADBYTES 2
|
|
#define GETLEFTBITS_ALIGNMENT 4
|
|
|
|
#endif /* apollo */
|
|
|
|
#if defined(ibm032) || defined (ibm)
|
|
|
|
#ifdef i386
|
|
# define IMAGE_BYTE_ORDER LSBFirst /* Value for PS/2 only */
|
|
#else
|
|
# define IMAGE_BYTE_ORDER MSBFirst /* Values for the RT only*/
|
|
#endif
|
|
#define BITMAP_BIT_ORDER MSBFirst
|
|
#define GLYPHPADBYTES 1
|
|
#define GETLEFTBITS_ALIGNMENT 4
|
|
/* ibm pcc doesn't understand pragmas. */
|
|
|
|
#endif /* ibm */
|
|
|
|
#ifdef hpux
|
|
|
|
#define IMAGE_BYTE_ORDER MSBFirst /* Values for the HP only */
|
|
#define BITMAP_BIT_ORDER MSBFirst
|
|
#define GLYPHPADBYTES 2 /* to match product server */
|
|
#define GETLEFTBITS_ALIGNMENT 1
|
|
|
|
#endif /* hpux */
|
|
|
|
#if defined(M4315) || defined(M4317) || defined(M4319) || defined(M4330)
|
|
|
|
#define IMAGE_BYTE_ORDER MSBFirst /* Values for Pegasus only */
|
|
#define BITMAP_BIT_ORDER MSBFirst
|
|
#define GLYPHPADBYTES 4
|
|
#define GETLEFTBITS_ALIGNMENT 1
|
|
|
|
#define FAST_UNALIGNED_READS
|
|
|
|
#endif /* tektronix */
|
|
|
|
#ifdef macII
|
|
|
|
#define IMAGE_BYTE_ORDER MSBFirst /* Values for the MacII only */
|
|
#define BITMAP_BIT_ORDER MSBFirst
|
|
#define GLYPHPADBYTES 4
|
|
#define GETLEFTBITS_ALIGNMENT 1
|
|
|
|
/* might want FAST_UNALIGNED_READS for frame buffers with < 1us latency */
|
|
|
|
#endif /* macII */
|
|
|
|
#ifdef mips
|
|
|
|
#ifdef MIPSEL
|
|
# define IMAGE_BYTE_ORDER LSBFirst /* Values for the PMAX only */
|
|
# define BITMAP_BIT_ORDER LSBFirst
|
|
# define GLYPHPADBYTES 4
|
|
# define GETLEFTBITS_ALIGNMENT 1
|
|
#else
|
|
# define IMAGE_BYTE_ORDER MSBFirst /* Values for the MIPS only */
|
|
# define BITMAP_BIT_ORDER MSBFirst
|
|
# define GLYPHPADBYTES 4
|
|
# define GETLEFTBITS_ALIGNMENT 1
|
|
#endif
|
|
|
|
#define AVOID_MEMORY_READ
|
|
#define FAST_CONSTANT_OFFSET_MODE
|
|
#define LARGE_INSTRUCTION_CACHE
|
|
#define PLENTIFUL_REGISTERS
|
|
|
|
#endif /* mips */
|
|
|
|
#ifdef stellar
|
|
|
|
#define IMAGE_BYTE_ORDER MSBFirst /* Values for the stellar only*/
|
|
#define BITMAP_BIT_ORDER MSBFirst
|
|
#define GLYPHPADBYTES 4
|
|
#define GETLEFTBITS_ALIGNMENT 4
|
|
/*
|
|
* Use SysV random number generator.
|
|
*/
|
|
#define random rand
|
|
|
|
#endif /* stellar */
|
|
|
|
/* size of buffer to use with GetImage, measured in bytes. There's obviously
|
|
* a trade-off between the amount of stack (or whatever ALLOCATE_LOCAL gives
|
|
* you) used and the number of times the ddx routine has to be called.
|
|
*
|
|
* for a 1024 x 864 bit monochrome screen with a 32 bit word we get
|
|
* 8192/4 words per buffer
|
|
* (1024/32) = 32 words per scanline
|
|
* 2048 words per buffer / 32 words per scanline = 64 scanlines per buffer
|
|
* 864 scanlines / 64 scanlines = 14 buffers to draw a full screen
|
|
*/
|
|
#if defined(stellar)
|
|
#define IMAGE_BUFSIZE (64*1024)
|
|
#else
|
|
#define IMAGE_BUFSIZE 8192
|
|
#endif
|
|
|
|
/* pad scanline to a longword */
|
|
#if defined(ibm) && defined(i386)
|
|
#define BITMAP_SCANLINE_UNIT 8
|
|
#else
|
|
#define BITMAP_SCANLINE_UNIT 32
|
|
#endif
|
|
#define BITMAP_SCANLINE_PAD 32
|
|
|
|
#define LOG2_BITMAP_PAD 5
|
|
#define LOG2_BYTES_PER_SCANLINE_PAD 2
|
|
|
|
/*
|
|
* This returns the number of padding units, for depth d and width w.
|
|
* For bitmaps this can be calculated with the macros above.
|
|
* Other depths require either grovelling over the formats field of the
|
|
* screenInfo or hardwired constants.
|
|
*/
|
|
|
|
typedef struct _PaddingInfo {
|
|
int padRoundUp; /* pixels per pad unit - 1 */
|
|
int padPixelsLog2; /* log 2 (pixels per pad unit) */
|
|
int padBytesLog2; /* log 2 (bytes per pad unit) */
|
|
} PaddingInfo;
|
|
extern PaddingInfo PixmapWidthPaddingInfo[];
|
|
|
|
#define PixmapWidthInPadUnits(w, d) \
|
|
(((w) + PixmapWidthPaddingInfo[d].padRoundUp) >> \
|
|
PixmapWidthPaddingInfo[d].padPixelsLog2)
|
|
|
|
/*
|
|
* Return the number of bytes to which a scanline of the given
|
|
* depth and width will be padded.
|
|
*/
|
|
#define PixmapBytePad(w, d) \
|
|
(PixmapWidthInPadUnits(w, d) << PixmapWidthPaddingInfo[d].padBytesLog2)
|
|
|
|
#endif /* SERVERMD_H */
|