/** * @file sys_matrix.c * @brief: Matrix system that mostly uses a matrix stack, and concerns affine transformations. * * @note The RSP matrix format (and hence the `MtxF` format) is column-major: vectors are presumed to be row vectors, * and matrices as a column of row vectors. This means that, for example, a translation matrix * \f[ * \begin{pmatrix} * 1 & 0 & 0 & x \\ * 0 & 1 & 0 & y \\ * 0 & 0 & 1 & z \\ * 0 & 0 & 0 & 1 * \end{pmatrix} * \f] * will be stored as * * { { 1, 0, 0, 0 }, * { 0, 1, 0, 0 }, * { 0, 0, 1, 0 }, * { x, y, z, 1 }, } * * @note As such, we label the elements in column-major order so we can follow the same conventions for multiplying * matrices as the rest of the world, i.e. that \f$ [AB]_{ij} = \sum_k A_{ik} B_{kj} \f$. * * This file is primarily concerned with matrices representing affine transformations, implemented using an augmented * matrix formalism, * * \f[ * \begin{pmatrix} * A & b \\ * 0 & 1 * \end{pmatrix} * \f] * * where \f$ A \f$ is a \f$ 3 \times 3 \f$ matrix (the *linear part*) and \f$ b \f$ a \f$ 3 \times 1 \f$ matrix, i.e. a * 3D vector (the *translation part*), and most of the functions assume that the matrices have this form. * * Throughout this file, `mode` indicates whether to multiply the matrix on top of the stack by the new construction * (APPLY), or to just overwrite it (NEW). */ #include "prevent_bss_reordering.h" #include "global.h" /* data */ // clang-format off Mtx gIdentityMtx = gdSPDefMtx( 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f ); // clang-format on MtxF gIdentityMtxF = { { { 1.0f, 0.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 0.0f, 1.0f }, } }; /* bss */ MtxF* sMatrixStack; //!< original name: "Matrix_stack" MtxF* sCurrentMatrix; //!< original name: "Matrix_now" #define MATRIX_STACK_SIZE 20 /* Stack operations */ /** * @brief Create the matrix stack and set the pointer to the top of it. * * @remark original name: "new_Matrix" */ void Matrix_Init(GameState* gameState) { sMatrixStack = THA_AllocTailAlign16(&gameState->heap, MATRIX_STACK_SIZE * sizeof(MtxF)); sCurrentMatrix = sMatrixStack; } /** * @brief Place a new matrix on the top of the stack and move the stack pointer up. * * @remark original name: "Matrix_push" */ void Matrix_Push(void) { MtxF* prev = sCurrentMatrix; sCurrentMatrix++; Matrix_MtxFCopy(sCurrentMatrix, prev); } /** * @brief Discard the top matrix on the stack and move stack pointer to the next one down. * * @remark original name: "Matrix_pull" */ void Matrix_Pop(void) { sCurrentMatrix--; } /** * @brief Copy the top matrix from the stack. * * @param[out] dest Matrix into which to copy. * * @remark original name: "Matrix_get" */ void Matrix_Get(MtxF* dest) { Matrix_MtxFCopy(dest, sCurrentMatrix); } /** * @brief Overwrite the top matrix on the stack. * * @param[in] src Matrix from which to copy. * * @remark original name: "Matrix_put" */ void Matrix_Put(MtxF* src) { Matrix_MtxFCopy(sCurrentMatrix, src); } /** * @brief Return pointer to the top of the matrix stack. * * @return pointer to top matrix on the stack. * * @remark original name: get_Matrix_now */ MtxF* Matrix_GetCurrent(void) { return sCurrentMatrix; } /* General transformation matrix functions */ /** * @brief General multiplication of current by a matrix. * - APPLY: current * mf -> current * - NEW: mf -> current * * @param mf Matrix to multiply by. * @param mode APPLY or NEW. * * @remark original name: "Matrix_mult" */ void Matrix_Mult(MtxF* mf, MatrixMode mode) { MtxF* cmf = Matrix_GetCurrent(); if (mode == MTXMODE_APPLY) { SkinMatrix_MtxFMtxFMult(cmf, mf, cmf); } else { Matrix_MtxFCopy(sCurrentMatrix, mf); } } /** * @brief Right-multiply current by a translation matrix T. * - APPLY: current * T -> current * - NEW: T -> current * * T is given by * * \f[ * \begin{pmatrix} * 1 & 0 & 0 & x \\ * 0 & 1 & 0 & y \\ * 0 & 0 & 1 & z \\ * 0 & 0 & 0 & 1 * \end{pmatrix} . * \f] * * @param x translation distance in the x direction. * @param y translation distance in the y direction. * @param z translation distance in the z direction. * @param mode APPLY or NEW. * * @remark original name: "Matrix_translate" */ void Matrix_Translate(f32 x, f32 y, f32 z, MatrixMode mode) { MtxF* cmf = sCurrentMatrix; f32 tempX; f32 tempY; if (mode == MTXMODE_APPLY) { tempX = cmf->xx; tempY = cmf->xy; cmf->xw += tempX * x + tempY * y + cmf->xz * z; tempX = cmf->yx; tempY = cmf->yy; cmf->yw += tempX * x + tempY * y + cmf->yz * z; tempX = cmf->zx; tempY = cmf->zy; cmf->zw += tempX * x + tempY * y + cmf->zz * z; tempX = cmf->wx; tempY = cmf->wy; cmf->ww += tempX * x + tempY * y + cmf->wz * z; } else { SkinMatrix_SetTranslate(cmf, x, y, z); } } /** * @brief Right-multiply by the diagonal scale matrix S = diag(x,y,z,1). * - APPLY: current * S -> current * - NEW: S -> current * * S is given by * * \f[ * \begin{pmatrix} * x & 0 & 0 & 0 \\ * 0 & y & 0 & 0 \\ * 0 & 0 & z & 0 \\ * 0 & 0 & 0 & 1 * \end{pmatrix} . * \f] * * @param x scale in x direction. * @param y scale in y direction. * @param z scale in z direction. * @param mode APPLY or NEW. * * @remark original name: "Matrix_scale" */ void Matrix_Scale(f32 x, f32 y, f32 z, MatrixMode mode) { MtxF* cmf = sCurrentMatrix; if (mode == MTXMODE_APPLY) { cmf->xx *= x; cmf->yx *= x; cmf->zx *= x; cmf->xy *= y; cmf->yy *= y; cmf->zy *= y; cmf->xz *= z; cmf->yz *= z; cmf->zz *= z; cmf->wx *= x; cmf->wy *= y; cmf->wz *= z; } else { SkinMatrix_SetScale(cmf, x, y, z); } } /** * @brief Right-multiply by a rotation about the x axis * - APPLY: current * R -> current * - NEW: R -> current * * R is given by * * \f[ * \begin{pmatrix} * 1 & 0 & 0 & 0 \\ * 0 & c & -s & 0 \\ * 0 & s & c & 0 \\ * 0 & 0 & 0 & 1 * \end{pmatrix} * \f] * * where \f$ c = \cos x, s = \sin x \f$. * * @note The same as Matrix_RotateXF(), but uses a binary angle. * * @param x rotation angle (binary). * @param mode APPLY or NEW. * * @remark original name: "Matrix_RotateX" */ void Matrix_RotateXS(s16 x, MatrixMode mode) { MtxF* cmf; f32 sin; f32 cos; f32 tempY; f32 tempZ; if (mode == MTXMODE_APPLY) { if (x != 0) { cmf = sCurrentMatrix; sin = Math_SinS(x); cos = Math_CosS(x); tempY = cmf->xy; tempZ = cmf->xz; cmf->xy = tempY * cos + tempZ * sin; cmf->xz = tempZ * cos - tempY * sin; tempY = cmf->yy; tempZ = cmf->yz; cmf->yy = tempY * cos + tempZ * sin; cmf->yz = tempZ * cos - tempY * sin; tempY = cmf->zy; tempZ = cmf->zz; cmf->zy = tempY * cos + tempZ * sin; cmf->zz = tempZ * cos - tempY * sin; tempY = cmf->wy; tempZ = cmf->wz; cmf->wy = tempY * cos + tempZ * sin; cmf->wz = tempZ * cos - tempY * sin; } } else { cmf = sCurrentMatrix; if (x != 0) { sin = Math_SinS(x); cos = Math_CosS(x); } else { sin = 0.0f; cos = 1.0f; } cmf->yx = 0.0f; cmf->zx = 0.0f; cmf->wx = 0.0f; cmf->xy = 0.0f; cmf->wy = 0.0f; cmf->xz = 0.0f; cmf->wz = 0.0f; cmf->xw = 0.0f; cmf->yw = 0.0f; cmf->zw = 0.0f; cmf->xx = 1.0f; cmf->ww = 1.0f; cmf->yy = cos; cmf->zz = cos; cmf->zy = sin; cmf->yz = -sin; } } // Unused /** * @brief Right-multiply by a rotation about the x axis. * - APPLY: current * R -> current * - NEW: R -> current * * R is given by * * \f[ * \begin{pmatrix} * 1 & 0 & 0 & 0 \\ * 0 & c & -s & 0 \\ * 0 & s & c & 0 \\ * 0 & 0 & 0 & 1 * \end{pmatrix} * \f] * * where \f$ c = \cos x, s = \sin x \f$. * * @note The same as Matrix_RotateXS(), but uses a float angle in radians. * * @param x rotation angle (radians). * @param mode APPLY or NEW. * * @remark original name may have been "Matrix_RotateX", but clashed with the previous function. */ void Matrix_RotateXF(f32 x, MatrixMode mode) { MtxF* cmf; f32 sin; f32 cos; f32 tempY; f32 tempZ; f32 zero = 0.0; f32 one = 1.0; if (mode == MTXMODE_APPLY) { if (x != 0) { cmf = sCurrentMatrix; sin = sinf(x); cos = cosf(x); tempY = cmf->xy; tempZ = cmf->xz; cmf->xy = tempY * cos + tempZ * sin; cmf->xz = tempZ * cos - tempY * sin; tempY = cmf->yy; tempZ = cmf->yz; cmf->yy = tempY * cos + tempZ * sin; cmf->yz = tempZ * cos - tempY * sin; tempY = cmf->zy; tempZ = cmf->zz; cmf->zy = tempY * cos + tempZ * sin; cmf->zz = tempZ * cos - tempY * sin; tempY = cmf->wy; tempZ = cmf->wz; cmf->wy = tempY * cos + tempZ * sin; cmf->wz = tempZ * cos - tempY * sin; } } else { cmf = sCurrentMatrix; if (x != 0) { sin = sinf(x); cos = cosf(x); } else { sin = zero; cos = one; } cmf->xx = one; cmf->yx = zero; cmf->zx = zero; cmf->wx = zero; cmf->xy = zero; cmf->yy = cos; cmf->zy = sin; cmf->wy = zero; cmf->xz = zero; cmf->yz = -sin; cmf->zz = cos; cmf->wz = zero; cmf->xw = zero; cmf->yw = zero; cmf->zw = zero; cmf->ww = one; } } /** * @brief Right-multiply by a rotation about the x axis. * current * R -> current * * @note Matrix_RotateXF() with mode APPLY. * * @param x rotation angle (radians). */ void Matrix_RotateXFApply(f32 x) { MtxF* cmf; f32 sin; f32 cos; f32 tempY; f32 tempZ; s32 pad; if (x != 0.0f) { cmf = sCurrentMatrix; sin = sins(RAD_TO_BINANG(x)) * SHT_MINV; cos = coss(RAD_TO_BINANG(x)) * SHT_MINV; tempY = cmf->xy; tempZ = cmf->xz; cmf->xy = (tempY * cos) + (tempZ * sin); cmf->xz = (tempZ * cos) - (tempY * sin); tempY = cmf->yy; tempZ = cmf->yz; cmf->yy = (tempY * cos) + (tempZ * sin); cmf->yz = (tempZ * cos) - (tempY * sin); tempY = cmf->zy; tempZ = cmf->zz; cmf->zy = (tempY * cos) + (tempZ * sin); cmf->zz = (tempZ * cos) - (tempY * sin); tempY = cmf->wy; tempZ = cmf->wz; cmf->wy = (tempY * cos) + (tempZ * sin); cmf->wz = (tempZ * cos) - (tempY * sin); } } /** * @brief Replace current by a rotation about the x axis. * R -> current * * @note Matrix_RotateXF() with mode NEW. * * @param x rotation angle (radians). */ void Matrix_RotateXFNew(f32 x) { MtxF* cmf = sCurrentMatrix; s32 pad[2]; f32 sin; f32 cos; cmf->xx = 1.0f; cmf->yx = 0.0f; cmf->zx = 0.0f; cmf->wx = 0.0f; cmf->xy = 0.0f; cmf->wy = 0.0f; cmf->xz = 0.0f; cmf->wz = 0.0f; cmf->xw = 0.0f; cmf->yw = 0.0f; cmf->zw = 0.0f; cmf->ww = 1.0f; if (x != 0.0f) { sin = sinf(x); cos = cosf(x); cmf->yy = cos; cmf->zz = cos; cmf->yz = -sin; cmf->zy = sin; } else { cmf->yy = 1.0f; cmf->zy = 0.0f; cmf->yz = 0.0f; cmf->zz = 1.0f; } } /** * @brief Right-multiply by a rotation about the y axis * - APPLY: current * R -> current * - NEW: R -> current * * R is given by * * \f[ * \begin{pmatrix} * c & 0 & s & 0 \\ * 0 & 1 & 0 & 0 \\ * -s & 0 & c & 0 \\ * 0 & 0 & 0 & 1 * \end{pmatrix} * \f] * * where \f$ c = \cos y, s = \sin y \f$. * * @note The same as Matrix_RotateYF(), but uses a binary angle. * * @param y rotation angle (binary). * @param mode APPLY or NEW. * * @remark original name: "Matrix_RotateY" */ void Matrix_RotateYS(s16 y, MatrixMode mode) { MtxF* cmf; f32 sin; f32 cos; f32 tempX; f32 tempZ; if (mode == MTXMODE_APPLY) { if (y != 0) { cmf = sCurrentMatrix; sin = Math_SinS(y); cos = Math_CosS(y); tempX = cmf->xx; tempZ = cmf->xz; cmf->xx = tempX * cos - tempZ * sin; cmf->xz = tempX * sin + tempZ * cos; tempX = cmf->yx; tempZ = cmf->yz; cmf->yx = tempX * cos - tempZ * sin; cmf->yz = tempX * sin + tempZ * cos; tempX = cmf->zx; tempZ = cmf->zz; cmf->zx = tempX * cos - tempZ * sin; cmf->zz = tempX * sin + tempZ * cos; tempX = cmf->wx; tempZ = cmf->wz; cmf->wx = tempX * cos - tempZ * sin; cmf->wz = tempX * sin + tempZ * cos; } } else { cmf = sCurrentMatrix; if (y != 0) { sin = Math_SinS(y); cos = Math_CosS(y); } else { sin = 0.0f; cos = 1.0f; } cmf->yx = 0.0f; cmf->wx = 0.0f; cmf->xy = 0.0f; cmf->zy = 0.0f; cmf->wy = 0.0f; cmf->yz = 0.0f; cmf->wz = 0.0f; cmf->xw = 0.0f; cmf->yw = 0.0f; cmf->zw = 0.0f; cmf->yy = 1.0f; cmf->ww = 1.0f; cmf->xx = cos; cmf->zz = cos; cmf->zx = -sin; cmf->xz = sin; } } /** * @brief Right-multiply by a rotation about the y axis. * - APPLY: current * R -> current * - NEW: R -> current * * R is given by * * \f[ * \begin{pmatrix} * c & 0 & s & 0 \\ * 0 & 1 & 0 & 0 \\ * -s & 0 & c & 0 \\ * 0 & 0 & 0 & 1 * \end{pmatrix} * \f] * * where \f$ c = \cos y, s = \sin y \f$. * * @note The same as Matrix_RotateYS(), but uses a float angle in radians. * * @param y rotation angle (radians). * @param mode APPLY or NEW. * * @remark original name may have been "Matrix_RotateY", but clashed with the previous function. */ void Matrix_RotateYF(f32 y, MatrixMode mode) { MtxF* cmf; f32 sin; f32 cos; f32 tempX; f32 tempZ; f32 zero = 0.0; f32 one = 1.0; if (mode == MTXMODE_APPLY) { if (y != 0.0f) { cmf = sCurrentMatrix; sin = sinf(y); cos = cosf(y); tempX = cmf->xx; tempZ = cmf->xz; cmf->xx = tempX * cos - tempZ * sin; cmf->xz = tempX * sin + tempZ * cos; tempX = cmf->yx; tempZ = cmf->yz; cmf->yx = tempX * cos - tempZ * sin; cmf->yz = tempX * sin + tempZ * cos; tempX = cmf->zx; tempZ = cmf->zz; cmf->zx = tempX * cos - tempZ * sin; cmf->zz = tempX * sin + tempZ * cos; tempX = cmf->wx; tempZ = cmf->wz; cmf->wx = tempX * cos - tempZ * sin; cmf->wz = tempX * sin + tempZ * cos; } } else { cmf = sCurrentMatrix; if (y != 0.0f) { sin = sinf(y); cos = cosf(y); } else { cos = one; sin = zero; } cmf->yx = zero; cmf->wx = zero; cmf->xy = zero; cmf->zy = zero; cmf->wy = zero; cmf->yz = zero; cmf->wz = zero; cmf->xw = zero; cmf->yw = zero; cmf->zw = zero; cmf->yy = one; cmf->ww = one; cmf->xx = cos; cmf->zz = cos; cmf->zx = -sin; cmf->xz = sin; } } /** * @brief Right-multiply by a rotation about the z axis. * - APPLY: current * R -> current * - NEW: R -> current * * R is given by * * \f[ * \begin{pmatrix} * c & -s & 0 & 0 \\ * s & c & 0 & 0 \\ * 0 & 0 & 1 & 0 \\ * 0 & 0 & 0 & 1 * \end{pmatrix} * \f] * * where \f$ c = \cos z, s = \sin z \f$. * * @note The same as Matrix_RotateZF, but uses a binary angle. * * @param z rotation angle (binary). * @param mode APPLY or NEW. * * @remark original name: "Matrix_RotateZ" */ void Matrix_RotateZS(s16 z, MatrixMode mode) { MtxF* cmf; f32 sin; f32 cos; f32 tempX; f32 tempY; f32 zero = 0.0; f32 one = 1.0; if (mode == MTXMODE_APPLY) { if (z != 0) { cmf = sCurrentMatrix; sin = Math_SinS(z); cos = Math_CosS(z); tempX = cmf->xx; tempY = cmf->xy; cmf->xx = tempX * cos + tempY * sin; cmf->xy = tempY * cos - tempX * sin; tempX = cmf->yx; tempY = cmf->yy; cmf->yx = tempX * cos + tempY * sin; cmf->yy = tempY * cos - tempX * sin; tempX = cmf->zx; tempY = cmf->zy; cmf->zx = tempX * cos + tempY * sin; cmf->zy = tempY * cos - tempX * sin; tempX = cmf->wx; tempY = cmf->wy; cmf->wx = tempX * cos + tempY * sin; cmf->wy = tempY * cos - tempX * sin; } } else { cmf = sCurrentMatrix; if (z != 0) { sin = Math_SinS(z); cos = Math_CosS(z); } else { sin = zero; cos = one; } cmf->zx = zero; cmf->wx = zero; cmf->zy = zero; cmf->wy = zero; cmf->xz = zero; cmf->yz = zero; cmf->wz = zero; cmf->xw = zero; cmf->yw = zero; cmf->zw = zero; cmf->zz = one; cmf->ww = one; cmf->xx = cos; cmf->yy = cos; cmf->yx = sin; cmf->xy = -sin; } } /** * @brief Right-multiply by a rotation about the z axis. * - APPLY: current * R -> current * - NEW: R -> current * * R is given by * * \f[ * \begin{pmatrix} * c & -s & 0 & 0 \\ * s & c & 0 & 0 \\ * 0 & 0 & 1 & 0 \\ * 0 & 0 & 0 & 1 * \end{pmatrix} * \f] * * where \f$ c = \cos z, s = \sin z \f$. * * @note The same as Matrix_RotateYS(), but uses a float angle in radians. * * @param z rotation angle (radians). * @param mode APPLY or NEW. * * @remark original name may have been "Matrix_RotateZ", but clashed with the previous function. */ void Matrix_RotateZF(f32 z, MatrixMode mode) { MtxF* cmf; f32 sin; f32 cos; f32 tempX; f32 tempY; if (mode == MTXMODE_APPLY) { if (z != 0) { cmf = sCurrentMatrix; sin = sinf(z); cos = cosf(z); tempX = cmf->xx; tempY = cmf->xy; cmf->xx = tempX * cos + tempY * sin; cmf->xy = tempY * cos - tempX * sin; tempX = cmf->yx; tempY = cmf->yy; cmf->yx = tempX * cos + tempY * sin; cmf->yy = tempY * cos - tempX * sin; tempX = cmf->zx; tempY = cmf->zy; cmf->zx = tempX * cos + tempY * sin; cmf->zy = tempY * cos - tempX * sin; tempX = cmf->wx; tempY = cmf->wy; cmf->wx = tempX * cos + tempY * sin; cmf->wy = tempY * cos - tempX * sin; } } else { cmf = sCurrentMatrix; if (z != 0) { sin = sinf(z); cos = cosf(z); } else { sin = 0.0f; cos = 1.0f; } cmf->zx = 0.0f; cmf->wx = 0.0f; cmf->zy = 0.0f; cmf->wy = 0.0f; cmf->xz = 0.0f; cmf->yz = 0.0f; cmf->wz = 0.0f; cmf->xw = 0.0f; cmf->yw = 0.0f; cmf->zw = 0.0f; cmf->zz = 1.0f; cmf->ww = 1.0f; cmf->xx = cos; cmf->yy = cos; cmf->yx = sin; cmf->xy = -sin; } } /** * @brief Rotate using ZYX Tait-Bryan angles. * - APPLY: current Rz Ry Rx -> current * - NEW: Rz Ry Rx -> current * * This means a (column) vector is first rotated around X, then around Y, then around Z, then (if `mode` is APPLY) gets * transformed by what the matrix was before adding the ZYX rotation. * * See previous functions for the forms of Rz, Ry, Rx * * @param x binary angle to rotate about x axis * @param y binary angle to rotate about y axis * @param z binary angle to rotate about z axis * @param mode APPLY or NEW * * @remark original name: "Matrix_RotateXYZ", changed to reflect rotation order. */ void Matrix_RotateZYX(s16 x, s16 y, s16 z, MatrixMode mode) { MtxF* cmf = sCurrentMatrix; f32 temp1; f32 temp2; f32 sin; f32 cos; if (mode == MTXMODE_APPLY) { if (z != 0) { // Added in MM, OoT always follows the nonzero path sin = Math_SinS(z); cos = Math_CosS(z); temp1 = cmf->xx; temp2 = cmf->xy; cmf->xx = temp1 * cos + temp2 * sin; cmf->xy = temp2 * cos - temp1 * sin; temp1 = cmf->yx; temp2 = cmf->yy; cmf->yx = temp1 * cos + temp2 * sin; cmf->yy = temp2 * cos - temp1 * sin; temp1 = cmf->zx; temp2 = cmf->zy; cmf->zx = temp1 * cos + temp2 * sin; cmf->zy = temp2 * cos - temp1 * sin; temp1 = cmf->wx; temp2 = cmf->wy; cmf->wx = temp1 * cos + temp2 * sin; cmf->wy = temp2 * cos - temp1 * sin; } if (y != 0) { sin = Math_SinS(y); cos = Math_CosS(y); temp1 = cmf->xx; temp2 = cmf->xz; cmf->xx = temp1 * cos - temp2 * sin; cmf->xz = temp1 * sin + temp2 * cos; temp1 = cmf->yx; temp2 = cmf->yz; cmf->yx = temp1 * cos - temp2 * sin; cmf->yz = temp1 * sin + temp2 * cos; temp1 = cmf->zx; temp2 = cmf->zz; cmf->zx = temp1 * cos - temp2 * sin; cmf->zz = temp1 * sin + temp2 * cos; temp1 = cmf->wx; temp2 = cmf->wz; cmf->wx = temp1 * cos - temp2 * sin; cmf->wz = temp1 * sin + temp2 * cos; } if (x != 0) { sin = Math_SinS(x); cos = Math_CosS(x); temp1 = cmf->xy; temp2 = cmf->xz; cmf->xy = temp1 * cos + temp2 * sin; cmf->xz = temp2 * cos - temp1 * sin; temp1 = cmf->yy; temp2 = cmf->yz; cmf->yy = temp1 * cos + temp2 * sin; cmf->yz = temp2 * cos - temp1 * sin; temp1 = cmf->zy; temp2 = cmf->zz; cmf->zy = temp1 * cos + temp2 * sin; cmf->zz = temp2 * cos - temp1 * sin; temp1 = cmf->wy; temp2 = cmf->wz; cmf->wy = temp1 * cos + temp2 * sin; cmf->wz = temp2 * cos - temp1 * sin; } } else { SkinMatrix_SetRotateRPY(cmf, x, y, z); } } /** * @brief Translate and rotate using ZYX Tait-Bryan angles. * current T Rz Ry Rx -> current * * This means a (column) vector is first rotated around X, then around Y, then around Z, then translated, then gets * transformed by whatever the matrix was previously. * * @param translation vector by which to translate. * @param rot vector of rotation angles. * * @remark original name appears to be "Matrix_softcv3_mult" */ void Matrix_TranslateRotateZYX(Vec3f* translation, Vec3s* rot) { MtxF* cmf = sCurrentMatrix; f32 sin = Math_SinS(rot->z); f32 cos = Math_CosS(rot->z); f32 temp1; f32 temp2; // No check for z != 0, presumably since translation is interleaved. temp1 = cmf->xx; temp2 = cmf->xy; cmf->xw += temp1 * translation->x + temp2 * translation->y + cmf->xz * translation->z; cmf->xx = temp1 * cos + temp2 * sin; cmf->xy = temp2 * cos - temp1 * sin; temp1 = cmf->yx; temp2 = cmf->yy; cmf->yw += temp1 * translation->x + temp2 * translation->y + cmf->yz * translation->z; cmf->yx = temp1 * cos + temp2 * sin; cmf->yy = temp2 * cos - temp1 * sin; temp1 = cmf->zx; temp2 = cmf->zy; cmf->zw += temp1 * translation->x + temp2 * translation->y + cmf->zz * translation->z; cmf->zx = temp1 * cos + temp2 * sin; cmf->zy = temp2 * cos - temp1 * sin; temp1 = cmf->wx; temp2 = cmf->wy; cmf->ww += temp1 * translation->x + temp2 * translation->y + cmf->wz * translation->z; cmf->wx = temp1 * cos + temp2 * sin; cmf->wy = temp2 * cos - temp1 * sin; if (rot->y != 0) { sin = Math_SinS(rot->y); cos = Math_CosS(rot->y); temp1 = cmf->xx; temp2 = cmf->xz; cmf->xx = temp1 * cos - temp2 * sin; cmf->xz = temp1 * sin + temp2 * cos; temp1 = cmf->yx; temp2 = cmf->yz; cmf->yx = temp1 * cos - temp2 * sin; cmf->yz = temp1 * sin + temp2 * cos; temp1 = cmf->zx; temp2 = cmf->zz; cmf->zx = temp1 * cos - temp2 * sin; cmf->zz = temp1 * sin + temp2 * cos; temp1 = cmf->wx; temp2 = cmf->wz; cmf->wx = temp1 * cos - temp2 * sin; cmf->wz = temp1 * sin + temp2 * cos; } if (rot->x != 0) { sin = Math_SinS(rot->x); cos = Math_CosS(rot->x); temp1 = cmf->xy; temp2 = cmf->xz; cmf->xy = temp1 * cos + temp2 * sin; cmf->xz = temp2 * cos - temp1 * sin; temp1 = cmf->yy; temp2 = cmf->yz; cmf->yy = temp1 * cos + temp2 * sin; cmf->yz = temp2 * cos - temp1 * sin; temp1 = cmf->zy; temp2 = cmf->zz; cmf->zy = temp1 * cos + temp2 * sin; cmf->zz = temp2 * cos - temp1 * sin; temp1 = cmf->wy; temp2 = cmf->wz; cmf->wy = temp1 * cos + temp2 * sin; cmf->wz = temp2 * cos - temp1 * sin; } } /** * @brief Set current to a general translation and rotation using YXZ Tait-Bryan angles: T Ry Rx Rz -> current * * This means a (column) vector is first rotated around Y, then around X, then around Z, then translated, then gets * transformed by whatever the matrix was previously. * * @param x amount to translate in X direction. * @param y amount to translate in Y direction. * @param z amount to translate in Z direction. * @param rot vector of rotation angles. * * @remark original name appears to be "Matrix_softcv3_load" */ void Matrix_SetTranslateRotateYXZ(f32 x, f32 y, f32 z, Vec3s* rot) { MtxF* cmf = sCurrentMatrix; f32 sinY = Math_SinS(rot->y); f32 cosY = Math_CosS(rot->y); f32 cosTemp; f32 sinTemp; cmf->xx = cosY; cmf->zx = -sinY; cmf->xw = x; cmf->yw = y; cmf->zw = z; cmf->wx = 0.0f; cmf->wy = 0.0f; cmf->wz = 0.0f; cmf->ww = 1.0f; if (rot->x != 0) { sinTemp = Math_SinS(rot->x); cosTemp = Math_CosS(rot->x); cmf->zz = cosY * cosTemp; cmf->zy = cosY * sinTemp; cmf->xz = sinY * cosTemp; cmf->xy = sinY * sinTemp; cmf->yz = -sinTemp; cmf->yy = cosTemp; } else { cmf->zz = cosY; cmf->xz = sinY; cmf->yz = 0.0f; cmf->zy = 0.0f; cmf->xy = 0.0f; cmf->yy = 1.0f; } if (rot->z != 0) { sinTemp = Math_SinS(rot->z); cosTemp = Math_CosS(rot->z); sinY = cmf->xx; cosY = cmf->xy; cmf->xx = sinY * cosTemp + cosY * sinTemp; cmf->xy = cosY * cosTemp - sinY * sinTemp; sinY = cmf->zx; cosY = cmf->zy; cmf->zx = sinY * cosTemp + cosY * sinTemp; cmf->zy = cosY * cosTemp - sinY * sinTemp; cosY = cmf->yy; cmf->yx = cosY * sinTemp; cmf->yy = cosY * cosTemp; } else { cmf->yx = 0.0f; } } /** * @brief Converts a floating-point MtxF to a fixed-point RSP-compatible matrix. * * @param[in] src MtxF to convert. * @param[out] dest mtx to output to. * * @return dest * * @remark original name: "_MtxF_to_Mtx" */ Mtx* Matrix_MtxFToMtx(MtxF* src, Mtx* dest) { s32 temp; u16* intPart = (u16*)&dest->m[0][0]; u16* fracPart = (u16*)&dest->m[2][0]; // For some reason the first 9 elements use the intPart temp for the fractional part. temp = src->xx * 0x10000; intPart[0] = (temp >> 0x10); intPart[16 + 0] = temp; temp = src->yx * 0x10000; intPart[1] = (temp >> 0x10); intPart[16 + 1] = temp; temp = src->zx * 0x10000; intPart[2] = (temp >> 0x10); intPart[16 + 2] = temp; temp = src->wx * 0x10000; intPart[3] = (temp >> 0x10); intPart[16 + 3] = temp; temp = src->xy * 0x10000; intPart[4] = (temp >> 0x10); intPart[16 + 4] = temp; temp = src->yy * 0x10000; intPart[5] = (temp >> 0x10); intPart[16 + 5] = temp; temp = src->zy * 0x10000; intPart[6] = (temp >> 0x10); intPart[16 + 6] = temp; temp = src->wy * 0x10000; intPart[7] = (temp >> 0x10); intPart[16 + 7] = temp; temp = src->xz * 0x10000; intPart[8] = (temp >> 0x10); intPart[16 + 8] = temp; temp = src->yz * 0x10000; intPart[9] = (temp >> 0x10); fracPart[9] = temp; temp = src->zz * 0x10000; intPart[10] = (temp >> 0x10); fracPart[10] = temp; temp = src->wz * 0x10000; intPart[11] = (temp >> 0x10); fracPart[11] = temp; temp = src->xw * 0x10000; intPart[12] = (temp >> 0x10); fracPart[12] = temp; temp = src->yw * 0x10000; intPart[13] = (temp >> 0x10); fracPart[13] = temp; temp = src->zw * 0x10000; intPart[14] = (temp >> 0x10); fracPart[14] = temp; temp = src->ww * 0x10000; intPart[15] = (temp >> 0x10); fracPart[15] = temp; return dest; } /** * @brief Converts current to a fixed-point RSP-compatible matrix. * * @note Debug uses Matrix_CheckFloats to test current first. * * @param[out] dest mtx to output to. * * @return dest * * @remark original name: "_Matrix_to_Mtx" */ Mtx* Matrix_ToMtx(Mtx* dest) { return Matrix_MtxFToMtx(sCurrentMatrix, dest); } /** * @brief Converts current to a RSP-compatible matrix and saves it to allocated space in the OPA buffer. * * @param[in,out] gfxCtx Graphics context. * * @return allocated mtx. * * @remark original name: "_Matrix_to_Mtx_new" */ Mtx* Matrix_NewMtx(GraphicsContext* gfxCtx) { return Matrix_ToMtx(GRAPH_ALLOC(gfxCtx, sizeof(Mtx))); } // Unused /** * @brief Converts src to a RSP-compatible matrix and saves it to allocated space in the OPA buffer. * * @param[in] src MtxF to convert. * @param[in,out] gfxCtx Graphics context. * * @return allocated mtx. * * @remark original name unknown, likely close to "_Matrix_MtxF_to_Mtx_new" */ Mtx* Matrix_MtxFToNewMtx(MtxF* src, GraphicsContext* gfxCtx) { return Matrix_MtxFToMtx(src, GRAPH_ALLOC(gfxCtx, sizeof(Mtx))); } /** * @brief Calculates current * (src,1) and writes its components to dest. * * This assumes that current has the form * * \f[ * M = * \begin{pmatrix} * A & b \\ * 0 & 1 * \end{pmatrix} * \f] * * where A is \f$ 3 \times 3 \f$ and b \f$ 3 \times 1 \f$, and so calculates * * \f[ * MX = * \begin{pmatrix} * A & b \\ * 0 & 1 * \end{pmatrix} * \begin{pmatrix} * x \\ * 1 * \end{pmatrix} * = * \begin{pmatrix} * Ax + b \\ * 1 * \end{pmatrix} * \f] * * and discards the extra w component (1). * * @param[in] src input vector * @param[out] dest output vector * * @remark original name: "Matrix_Position" */ void Matrix_MultVec3f(Vec3f* src, Vec3f* dest) { MtxF* cmf = sCurrentMatrix; dest->x = cmf->xw + (cmf->xx * src->x + cmf->xy * src->y + cmf->xz * src->z); dest->y = cmf->yw + (cmf->yx * src->x + cmf->yy * src->y + cmf->yz * src->z); dest->z = cmf->zw + (cmf->zx * src->x + cmf->zy * src->y + cmf->zz * src->z); } /** * @brief Multiply the vector `(0, 0, 0, 1)` by current. * * Can also see it as obtaining the translation vector part of current, but the former interpretation is consistent with * the other functions nearby. * * @note Special case of Matrix_MultVec3f() with `src = { 0, 0, 0 }`; the same assumptions apply. * * @param[out] dest output vector. * * @remark original name: "Matrix_Position_Zero" */ void Matrix_MultZero(Vec3f* dest) { MtxF* cmf = sCurrentMatrix; dest->x = cmf->xw; dest->y = cmf->yw; dest->z = cmf->zw; } /** * @brief Multiply the vector `(x, 0, 0, 1)` by current. * * I.e. calculate \f$ A(x, 0, 0) + b \f$. * * @note Special case of Matrix_MultVec3f() with `src = { x, 0, 0 }`; the same assumptions apply. * * @param[in] x multiplier of unit vector in x direction. * @param[out] dest output vector. * * @remark original name: "Matrix_Position_VecX" */ void Matrix_MultVecX(f32 x, Vec3f* dest) { MtxF* cmf = sCurrentMatrix; dest->x = cmf->xw + cmf->xx * x; dest->y = cmf->yw + cmf->yx * x; dest->z = cmf->zw + cmf->zx * x; } /** * @brief Multiply the vector `(0, y, 0, 1)` by current. * * I.e. calculate \f$ A(0, y, 0) + b \f$. * * @note Special case of Matrix_MultVec3f() with `src = { 0, y, 0 }`; the same assumptions apply. * * @param[in] y multiplier of unit vector in y direction. * @param[out] dest output vector. * * @remark original name is most likely "Matrix_Position_VecY" by analogy with the other two. */ void Matrix_MultVecY(f32 y, Vec3f* dest) { MtxF* cmf = sCurrentMatrix; dest->x = cmf->xw + cmf->xy * y; dest->y = cmf->yw + cmf->yy * y; dest->z = cmf->zw + cmf->zy * y; } /** * @brief Multiply the vector `(0, 0, z, 1)` by current. * * I.e. calculate \f$ A(0, 0, z) + b \f$. * * @note Special case of Matrix_MultVec3f() with `src = { 0, 0, z }`; the same assumptions apply. * * @param[in] z multiplier of unit vector in z direction. * @param[out] dest output vector. * * @remark original name: "Matrix_Position_VecZ" */ void Matrix_MultVecZ(f32 z, Vec3f* dest) { MtxF* cmf = sCurrentMatrix; dest->x = cmf->xw + cmf->xz * z; dest->y = cmf->yw + cmf->yz * z; dest->z = cmf->zw + cmf->zz * z; } /** * @brief Calculates current * (src,1) and writes its x and z components to dest. * * The same as Matrix_MultVec3f(), but only applies to the x and z components; the same assumptions apply. * * @note Unlike the previous functions, does *not* just multiply (x, 0, z, 1) and save the x,y,z components. * * @param[in] src input vector. * @param[out] dest output vector. */ void Matrix_MultVec3fXZ(Vec3f* src, Vec3f* dest) { MtxF* cmf = sCurrentMatrix; dest->x = cmf->xw + (cmf->xx * src->x + cmf->xy * src->y + cmf->xz * src->z); dest->z = cmf->zw + (cmf->zx * src->x + cmf->zy * src->y + cmf->zz * src->z); } /** * @brief Copies the matrix src into dest. * * @param[out] dest matrix to copy to. * @param[in] src matrix to copy from. * * @remark original name: "Matrix_copy_MtxF" */ void Matrix_MtxFCopy(MtxF* dest, MtxF* src) { f32 fv0; f32 fv1; // This ought to be a loop, but all attempts to match it as one have so far failed. if (1) { fv0 = src->mf[0][0]; fv1 = src->mf[0][1]; dest->mf[0][0] = fv0; dest->mf[0][1] = fv1; fv0 = src->mf[0][2]; fv1 = src->mf[0][3]; dest->mf[0][2] = fv0; dest->mf[0][3] = fv1; } if (1) { fv0 = src->mf[1][0]; fv1 = src->mf[1][1]; dest->mf[1][0] = fv0; dest->mf[1][1] = fv1; fv0 = src->mf[1][2]; fv1 = src->mf[1][3]; dest->mf[1][2] = fv0; dest->mf[1][3] = fv1; } if (1) { fv0 = src->mf[2][0]; fv1 = src->mf[2][1]; dest->mf[2][0] = fv0; dest->mf[2][1] = fv1; fv0 = src->mf[2][2]; fv1 = src->mf[2][3]; dest->mf[2][2] = fv0; dest->mf[2][3] = fv1; } if (1) { fv0 = src->mf[3][0]; fv1 = src->mf[3][1]; dest->mf[3][0] = fv0; dest->mf[3][1] = fv1; fv0 = src->mf[3][2]; fv1 = src->mf[3][3]; dest->mf[3][2] = fv0; dest->mf[3][3] = fv1; } } /** * @brief Converts fixed-point RSP-compatible matrix to an MtxF. * * @param[in] src mtx to convert * @param[out] dest MtxF to output to * * @remark original name: "Matrix_MtxtoMtxF" */ void Matrix_MtxToMtxF(Mtx* src, MtxF* dest) { u16* intPart = (u16*)&src->m[0][0]; u16* fracPart = (u16*)&src->m[2][0]; dest->xx = ((intPart[0] << 0x10) | fracPart[0]) * (1 / (f32)0x10000); dest->yx = ((intPart[1] << 0x10) | fracPart[1]) * (1 / (f32)0x10000); dest->zx = ((intPart[2] << 0x10) | fracPart[2]) * (1 / (f32)0x10000); dest->wx = ((intPart[3] << 0x10) | fracPart[3]) * (1 / (f32)0x10000); dest->xy = ((intPart[4] << 0x10) | fracPart[4]) * (1 / (f32)0x10000); dest->yy = ((intPart[5] << 0x10) | fracPart[5]) * (1 / (f32)0x10000); dest->zy = ((intPart[6] << 0x10) | fracPart[6]) * (1 / (f32)0x10000); dest->wy = ((intPart[7] << 0x10) | fracPart[7]) * (1 / (f32)0x10000); dest->xz = ((intPart[8] << 0x10) | fracPart[8]) * (1 / (f32)0x10000); dest->yz = ((intPart[9] << 0x10) | fracPart[9]) * (1 / (f32)0x10000); dest->zz = ((intPart[10] << 0x10) | fracPart[10]) * (1 / (f32)0x10000); dest->wz = ((intPart[11] << 0x10) | fracPart[11]) * (1 / (f32)0x10000); dest->xw = ((intPart[12] << 0x10) | fracPart[12]) * (1 / (f32)0x10000); dest->yw = ((intPart[13] << 0x10) | fracPart[13]) * (1 / (f32)0x10000); dest->zw = ((intPart[14] << 0x10) | fracPart[14]) * (1 / (f32)0x10000); dest->ww = ((intPart[15] << 0x10) | fracPart[15]) * (1 / (f32)0x10000); } // Unused /** * @brief Calculates mf * (src,1) and writes its components to dest. * * This is the same as Matrix_MultVec3f() but using a specified matrix rather than the current one; the same * assumptions apply. * * @param[in] src input vector * @param[out] dest output vector * @param[in] mf matrix to multiply by */ void Matrix_MultVec3fExt(Vec3f* src, Vec3f* dest, MtxF* mf) { dest->x = mf->xw + (mf->xx * src->x + mf->xy * src->y + mf->xz * src->z); dest->y = mf->yw + (mf->yx * src->x + mf->yy * src->y + mf->yz * src->z); dest->z = mf->zw + (mf->zx * src->x + mf->zy * src->y + mf->zz * src->z); } /** * @brief Overwrite the linear part of mf with its transpose (ignores the translational part). * * Viz., * * \f[ * \begin{pmatrix} * A & b \\ * 0 & 1 * \end{pmatrix} * \longrightarrow * \begin{pmatrix} * A^T & b \\ * 0 & 1 * \end{pmatrix} * \f] * * @param[in,out] mf matrix to transpose * * @remark original name: "Matrix_reverse" */ void Matrix_Transpose(MtxF* mf) { f32 temp; temp = mf->yx; mf->yx = mf->xy; mf->xy = temp; temp = mf->zx; mf->zx = mf->xz; mf->xz = temp; temp = mf->zy; mf->zy = mf->yz; mf->yz = temp; } /** * @brief Decompose the linear part A of current into B * S, where B has normalised columns and S is diagonal, and * replace B by `mf`. * * Since B is typically a rotation matrix, and the linear part R * S to `mf` * S, this operation can be * seen as replacing the B rotation with `mf`, hence the function name. * * @param[in] mf matrix whose linear part will replace the normalised part of A. */ void Matrix_ReplaceRotation(MtxF* mf) { MtxF* cmf = sCurrentMatrix; f32 acc; f32 component; f32 curColNorm; // compute the Euclidean norm of the first column of the current matrix acc = cmf->xx; acc *= acc; component = cmf->yx; acc += SQ(component); component = cmf->zx; acc += SQ(component); curColNorm = sqrtf(acc); cmf->xx = mf->xx * curColNorm; cmf->yx = mf->yx * curColNorm; cmf->zx = mf->zx * curColNorm; // second column acc = cmf->xy; acc *= acc; component = cmf->yy; acc += SQ(component); component = cmf->zy; acc += SQ(component); curColNorm = sqrtf(acc); cmf->xy = mf->xy * curColNorm; cmf->yy = mf->yy * curColNorm; cmf->zy = mf->zy * curColNorm; // third column acc = cmf->xz; acc *= acc; component = cmf->yz; acc += SQ(component); component = cmf->zz; acc += SQ(component); curColNorm = sqrtf(acc); cmf->xz = mf->xz * curColNorm; cmf->yz = mf->yz * curColNorm; cmf->zz = mf->zz * curColNorm; } /** * @brief Extract the YXZ Tait-Bryan rotation angles from the linear part \f$ A \f$ of a matrix. * * \f$ A \f$ should have orthogonal columns; the most general matrix of this form can be written as \f$ RS \f$ * with \f$ S \f$ a scale matrix. * * If A has columns with the same norm (such as if it is just a rotation matrix), it is sufficient (and faster) to use * `nonUniformScale` off: `nonUniformScale` being set enables extraction of the angles from a matrix with columns that * are orthogonal but have different scales, at the cost of requiring extra calculation. * * @param[in] src Matrix to extract angles from. * @param[out] dest vector to write angles to. * @param[in] nonUniformScale boolean: true enables handling matrices with differently-scaled columns. * * @remark original name: "Matrix_to_rotate_new"? */ void Matrix_MtxFToYXZRot(MtxF* src, Vec3s* dest, s32 nonUniformScale) { f32 temp; f32 temp2; f32 temp3; f32 temp4; temp = src->xz; temp *= temp; temp += SQ(src->zz); dest->x = Math_Atan2S(-src->yz, sqrtf(temp)); if ((dest->x == 0x4000) || (dest->x == -0x4000)) { // cos(x) = 0 if either of these is true, and we get gimbal locking // (https://en.wikipedia.org/wiki/Gimbal_lock#Loss_of_a_degree_of_freedom_with_Euler_angles); fix z to make y // well-defined. dest->z = 0; dest->y = Math_Atan2S(-src->zx, src->xx); } else { dest->y = Math_Atan2S(src->xz, src->zz); if (!nonUniformScale) { // assume the columns have the same normalisation dest->z = Math_Atan2S(src->yx, src->yy); } else { temp = src->xx; temp2 = src->zx; temp3 = src->zy; // find norm of the first column temp *= temp; temp += SQ(temp2); temp2 = src->yx; temp += SQ(temp2); // temp = xx^2+zx^2+yx^2 == 1 for a rotation matrix temp = sqrtf(temp); temp = temp2 / temp; // yx in normalised column // find norm of the second column temp2 = src->xy; temp2 *= temp2; temp2 += SQ(temp3); temp3 = src->yy; temp2 += SQ(temp3); // temp2 = xy^2+zy^2+yy^2 == 1 for a rotation matrix temp2 = sqrtf(temp2); temp2 = temp3 / temp2; // yy in normalised column // for a rotation matrix, temp == yx and temp2 == yy which is the same as in the !nonUniformScale branch dest->z = Math_Atan2S(temp, temp2); } } } /** * @brief Extract the ZYX Tait-Bryan rotation angles from the linear part \f$ A \f$ of a matrix. * * \f$ A \f$ should have orthogonal columns; the most general matrix of this form can be written as \f$ RS \f$ * with \f$ S \f$ a scale matrix. * * If A has columns with the same norm (such as if it is just a rotation matrix), it is sufficient (and faster) to use * `nonUniformScale` off: `nonUniformScale` being set enables extraction of the angles from a matrix with columns that * are orthogonal but have different scales, at the cost of requiring extra calculation. * * @param[in] src Matrix to extract angles from. * @param[out] dest vector to write angles to. * @param[in] nonUniformScale boolean: true enables handling matrices with unnormalised columns. * * @remark original name: "Matrix_to_rotate2_new"? * * See Matrix_MtxFToYXZRot() for full inline documentation. */ void Matrix_MtxFToZYXRot(MtxF* src, Vec3s* dest, s32 nonUniformScale) { f32 temp; f32 temp2; f32 temp3; f32 temp4; temp = src->xx; temp *= temp; temp += SQ(src->yx); dest->y = Math_Atan2S(-src->zx, sqrtf(temp)); if ((dest->y == 0x4000) || (dest->y == -0x4000)) { dest->x = 0; dest->z = Math_Atan2S(-src->xy, src->yy); } else { dest->z = Math_Atan2S(src->yx, src->xx); if (!nonUniformScale) { dest->x = Math_Atan2S(src->zy, src->zz); } else { temp = src->xy; temp2 = src->yy; temp3 = src->yz; temp *= temp; temp += SQ(temp2); temp2 = src->zy; temp += SQ(temp2); temp = sqrtf(temp); temp = temp2 / temp; temp2 = src->xz; temp2 *= temp2; temp2 += SQ(temp3); temp3 = src->zz; temp2 += SQ(temp3); temp2 = sqrtf(temp2); temp2 = temp3 / temp2; dest->x = Math_Atan2S(temp, temp2); } } } /** * @brief Rotate by `angle` radians about `axis`, which is assumed to be a unit vector. * * @param angle rotation angle (radians). * @param axis axis about which to rotate, must be a unit vector. * @param mode APPLY or NEW. * * @remark original name may have been "Matrix_RotateVector", but clashed with the next function. */ void Matrix_RotateAxisF(f32 angle, Vec3f* axis, MatrixMode mode) { MtxF* cmf; f32 sin; f32 cos; f32 versin; f32 temp1; f32 temp2; f32 temp3; f32 temp4; f32 temp5; if (mode == MTXMODE_APPLY) { if (angle != 0) { cmf = sCurrentMatrix; sin = sinf(angle); cos = cosf(angle); temp1 = cmf->xx; temp2 = cmf->xy; temp3 = cmf->xz; temp4 = (axis->x * temp1 + axis->y * temp2 + axis->z * temp3) * (1.0f - cos); cmf->xx = temp1 * cos + axis->x * temp4 + sin * (temp2 * axis->z - temp3 * axis->y); cmf->xy = temp2 * cos + axis->y * temp4 + sin * (temp3 * axis->x - temp1 * axis->z); cmf->xz = temp3 * cos + axis->z * temp4 + sin * (temp1 * axis->y - temp2 * axis->x); temp1 = cmf->yx; temp2 = cmf->yy; temp3 = cmf->yz; temp4 = (axis->x * temp1 + axis->y * temp2 + axis->z * temp3) * (1.0f - cos); cmf->yx = temp1 * cos + axis->x * temp4 + sin * (temp2 * axis->z - temp3 * axis->y); cmf->yy = temp2 * cos + axis->y * temp4 + sin * (temp3 * axis->x - temp1 * axis->z); cmf->yz = temp3 * cos + axis->z * temp4 + sin * (temp1 * axis->y - temp2 * axis->x); temp1 = cmf->zx; temp2 = cmf->zy; temp3 = cmf->zz; temp4 = (axis->x * temp1 + axis->y * temp2 + axis->z * temp3) * (1.0f - cos); cmf->zx = temp1 * cos + axis->x * temp4 + sin * (temp2 * axis->z - temp3 * axis->y); cmf->zy = temp2 * cos + axis->y * temp4 + sin * (temp3 * axis->x - temp1 * axis->z); cmf->zz = temp3 * cos + axis->z * temp4 + sin * (temp1 * axis->y - temp2 * axis->x); } } else { cmf = sCurrentMatrix; if (angle != 0) { sin = sinf(angle); cos = cosf(angle); versin = 1.0f - cos; cmf->xx = axis->x * axis->x * versin + cos; cmf->yy = axis->y * axis->y * versin + cos; cmf->zz = axis->z * axis->z * versin + cos; if (0) {} temp2 = axis->x * versin * axis->y; temp3 = axis->z * sin; cmf->yx = temp2 + temp3; cmf->xy = temp2 - temp3; temp2 = axis->x * versin * axis->z; temp3 = axis->y * sin; cmf->zx = temp2 - temp3; cmf->xz = temp2 + temp3; temp2 = axis->y * versin * axis->z; temp3 = axis->x * sin; cmf->zy = temp2 + temp3; cmf->yz = temp2 - temp3; cmf->wx = cmf->wy = cmf->wz = cmf->xw = cmf->yw = cmf->zw = 0.0f; cmf->ww = 1.0f; } else { cmf->xx = 1.0f; cmf->yx = 0.0f; cmf->zx = 0.0f; cmf->wx = 0.0f; cmf->xy = 0.0f; cmf->yy = 1.0f; cmf->zy = 0.0f; cmf->wy = 0.0f; cmf->xz = 0.0f; cmf->yz = 0.0f; cmf->zz = 1.0f; cmf->wz = 0.0f; cmf->xw = 0.0f; cmf->yw = 0.0f; cmf->zw = 0.0f; cmf->ww = 1.0f; } } } /** * @brief Rotate by binary angle `angle` about `axis`, which is assumed to be a unit vector. * * @param angle rotation angle (binary). * @param axis axis about which to rotate, must be a unit vector. * @param mode APPLY or NEW. * * @remark original name: "Matrix_RotateVector" */ void Matrix_RotateAxisS(s16 angle, Vec3f* axis, MatrixMode mode) { MtxF* cmf; f32 cos; f32 sin; f32 versin; f32 temp1; f32 temp2; f32 temp3; f32 temp4; if (mode == MTXMODE_APPLY) { if (angle != 0) { cmf = sCurrentMatrix; sin = Math_SinS(angle); cos = Math_CosS(angle); temp1 = cmf->xx; temp2 = cmf->xy; temp3 = cmf->xz; temp4 = (axis->x * temp1 + axis->y * temp2 + axis->z * temp3) * (1.0f - cos); cmf->xx = temp1 * cos + axis->x * temp4 + sin * (temp2 * axis->z - temp3 * axis->y); cmf->xy = temp2 * cos + axis->y * temp4 + sin * (temp3 * axis->x - temp1 * axis->z); cmf->xz = temp3 * cos + axis->z * temp4 + sin * (temp1 * axis->y - temp2 * axis->x); temp1 = cmf->yx; temp2 = cmf->yy; temp3 = cmf->yz; temp4 = (axis->x * temp1 + axis->y * temp2 + axis->z * temp3) * (1.0f - cos); cmf->yx = temp1 * cos + axis->x * temp4 + sin * (temp2 * axis->z - temp3 * axis->y); cmf->yy = temp2 * cos + axis->y * temp4 + sin * (temp3 * axis->x - temp1 * axis->z); cmf->yz = temp3 * cos + axis->z * temp4 + sin * (temp1 * axis->y - temp2 * axis->x); temp1 = cmf->zx; temp2 = cmf->zy; temp3 = cmf->zz; temp4 = (axis->x * temp1 + axis->y * temp2 + axis->z * temp3) * (1.0f - cos); cmf->zx = temp1 * cos + axis->x * temp4 + sin * (temp2 * axis->z - temp3 * axis->y); cmf->zy = temp2 * cos + axis->y * temp4 + sin * (temp3 * axis->x - temp1 * axis->z); cmf->zz = temp3 * cos + axis->z * temp4 + sin * (temp1 * axis->y - temp2 * axis->x); } } else { cmf = sCurrentMatrix; if (angle != 0) { sin = Math_SinS(angle); cos = Math_CosS(angle); versin = 1.0f - cos; cmf->xx = axis->x * axis->x * versin + cos; cmf->yy = axis->y * axis->y * versin + cos; cmf->zz = axis->z * axis->z * versin + cos; if (0) {} temp2 = axis->x * versin * axis->y; temp3 = axis->z * sin; cmf->yx = temp2 + temp3; cmf->xy = temp2 - temp3; temp2 = axis->x * versin * axis->z; temp3 = axis->y * sin; cmf->zx = temp2 - temp3; cmf->xz = temp2 + temp3; temp2 = axis->y * versin * axis->z; temp3 = axis->x * sin; cmf->zy = temp2 + temp3; cmf->yz = temp2 - temp3; cmf->wx = cmf->wy = cmf->wz = cmf->xw = cmf->yw = cmf->zw = 0.0f; cmf->ww = 1.0f; } else { cmf->xx = 1.0f; cmf->yx = 0.0f; cmf->zx = 0.0f; cmf->wx = 0.0f; cmf->xy = 0.0f; cmf->yy = 1.0f; cmf->zy = 0.0f; cmf->wy = 0.0f; cmf->xz = 0.0f; cmf->yz = 0.0f; cmf->zz = 1.0f; cmf->wz = 0.0f; cmf->xw = 0.0f; cmf->yw = 0.0f; cmf->zw = 0.0f; cmf->ww = 1.0f; } } }