/** * MathF library * Contains tangent function, wrappers for a number of the handwritten functions in fp, and a suite of arctangents */ #include "global.h" #include "fixed_point.h" extern f32 func_80086C70(f32 x); extern f32 func_80086CA8(f32 x); extern f32 func_80086D50(f32 x); extern f32 func_80086CE0(f32 x); extern f32 func_80086D18(f32 x); s32 gUseAtanContFrac; /** * Tangent function computed using libultra sinf and cosf */ // Math_FTanF f32 func_80086760(f32 x) { return sinf(x) / cosf(x); } // Unused // Math_FFloorF f32 func_80086794(f32 x) { return func_80086C70(x); } // Unused // Math_FCeilF f32 func_800867B4(f32 x) { return func_80086CA8(x); } // Unused // Math_FRoundF f32 func_800867D4(f32 x) { return func_80086D50(x); } // Unused // Math_FTruncF f32 func_800867F4(f32 x) { return func_80086CE0(x); } // Math_FNearbyIntF f32 func_80086814(f32 x) { return func_80086D18(x); } /** * Arctangent approximation using a Maclaurin series [https://mathworld.wolfram.com/MaclaurinSeries.html] * (one quadrant, i.e. |x| < 1) */ // Math_FAtanTaylorQF f32 func_80086834(f32 x) { // Coefficients of Maclaurin series of arctangent static const f32 coeffs[] = { -1.0f / 3, +1.0f / 5, -1.0f / 7, +1.0f / 9, -1.0f / 11, +1.0f / 13, -1.0f / 15, +1.0f / 17, 0.0f, }; f32 poly = x; f32 sq = SQ(x); f32 exp = x * sq; const f32* c = coeffs; f32 term; // Calculate the series until adding more terms does not change the float while (true) { term = *c++ * exp; if (poly + term == poly) { break; } poly += term; exp *= sq; } return poly; } /** * Extends previous arctangent function to the rest of the real numbers. * Uses the formulae arctan(x) = pi/2 - arctan(1/x) * and arctan(x) = pi/4 - arctan( (1-x)/(1+x) ) * to extend the range in which the series computed by func_80086834 is a good approximation */ // Math_FAtanTaylorF f32 func_80086880(f32 x) { f32 t; f32 q; if (x > 0.0f) { t = x; } else if (x < 0.0f) { t = -x; } else if (x == 0.0f) { return 0.0f; } else { return qNaN0x10000; } if (t <= M_SQRT2 - 1.0f) { return func_80086834(x); } if (t >= M_SQRT2 + 1.0f) { q = M_PI / 2 - func_80086834(1.0f / t); } else { // in the interval (\sqrt{2} - 1, \sqrt{2} + 1) q = M_PI / 4 - func_80086834((1.0f - t) / (1.0f + t)); } if (x > 0.0f) { return q; } else { return -q; } } /** * Arctangent approximation using a continued fraction * Cf. https://en.wikipedia.org/wiki/Gauss%27s_continued_fraction#The_series_2F1_2 , * https://dlmf.nist.gov/4.25#E4 */ // Math_FAtanContFracF f32 func_800869A4(f32 x) { s32 sector; f32 z; f32 conv; f32 sq; s32 i; if (x >= -1.0f && x <= 1.0f) { sector = 0; } else if (x > 1.0f) { sector = 1; x = 1.0f / x; } else if (x < -1.0f) { sector = -1; x = 1.0f / x; } else { return qNaN0x10000; } // Builds the continued fraction from the innermost fraction out sq = SQ(x); conv = 0.0f; z = 8.0f; for (i = 8; i != 0; i--) { conv = SQ(z) * sq / (2.0f * z + 1.0f + conv); z -= 1.0f; } conv = x / (1.0f + conv); if (sector == 0) { return conv; } else if (sector > 0) { return M_PI / 2 - conv; } else { return -M_PI / 2 - conv; } } // Math_FAtanF /** * Single-argument arctangent, only used by the two-argument function. * Nothing else sets the bss variable gUseAtanContFrac, so the Maclaurin series is always used */ f32 func_80086AF0(f32 x) { if (!gUseAtanContFrac) { return func_80086880(x); } else { return func_800869A4(x); } } // Math_FAtan2F /** * Main two-argument arctangent function */ f32 func_80086B30(f32 y, f32 x) { if (x == 0.0f) { if (y == 0.0f) { return 0.0f; } else if (y > 0.0f) { return M_PI / 2; } else if (y < 0.0f) { return -M_PI / 2; } else { return qNaN0x10000; } } else if (x >= 0.0f) { return func_80086AF0(y / x); } else if (y < 0.0f) { return func_80086AF0(y / x) - M_PI; } else { return M_PI - func_80086AF0(-(y / x)); } } // Math_FAsinF f32 func_80086C18(f32 x) { return func_80086B30(x, sqrtf(1.0f - SQ(x))); } // Math_FAcosF f32 func_80086C48(f32 x) { return M_PI / 2 - func_80086C18(x); }