#ifndef Z64MATH_H #define Z64MATH_H #include "ultra64.h" #define VEC_SET(V,X,Y,Z) V.x=X;V.y=Y;V.z=Z typedef struct { /* 0x0 */ s16 x; /* 0x2 */ s16 z; } Vec2s; // size = 0x4 typedef struct { /* 0x0 */ f32 x; /* 0x4 */ f32 z; } Vec2f; // size = 0x8 typedef struct { /* 0x0 */ f32 x; /* 0x4 */ f32 y; /* 0x8 */ f32 z; } Vec3f; // size = 0xC typedef struct { /* 0x0 */ u16 x; /* 0x2 */ u16 y; /* 0x4 */ u16 z; } Vec3us; // size = 0x6 typedef struct { /* 0x0 */ s16 x; /* 0x2 */ s16 y; /* 0x4 */ s16 z; } Vec3s; // size = 0x6 typedef struct { /* 0x0 */ s32 x; /* 0x4 */ s32 y; /* 0x8 */ s32 z; } Vec3i; // size = 0xC typedef struct { /* 0x0 */ f32 distance; /* 0x4 */ s16 angle; } VecPolar; // size = 0x8 typedef struct { /* 0x0 */ Vec3s center; /* 0x6 */ s16 radius; } Sphere16; // size = 0x8 typedef struct { /* 0x0 */ Vec3f center; /* 0xC */ f32 radius; } Spheref; // size = 0x10 /* The plane paramaters are of form `ax + by + cz + d = 0` where `(a,b,c)` is the plane's normal vector and d is the originDist */ typedef struct { /* 0x00 */ Vec3f normal; /* 0x0C */ f32 originDist; } Plane; // size = 0x10 typedef struct { /* 0x00 */ Vec3f vtx[3]; /* 0x24 */ Plane plane; } TriNorm; // size = 0x34 typedef struct { /* 0x0 */ s16 radius; /* 0x2 */ s16 height; /* 0x4 */ s16 yShift; /* 0x6 */ Vec3s pos; } Cylinder16; // size = 0xC typedef struct { /* 0x00 */ f32 radius; /* 0x04 */ f32 height; /* 0x08 */ f32 yShift; /* 0x0C */ Vec3f pos; } Cylinderf; // size = 0x18 typedef struct { /* 0x00 */ Vec3f point; /* 0x0C */ Vec3f dir; } InfiniteLine; // size = 0x18 typedef struct { /* 0x00 */ Vec3f a; /* 0x0C */ Vec3f b; } LineSegment; // size = 0x18 typedef struct { /* 0x0 */ f32 r; // radius /* 0x4 */ s16 pitch; // depends on coordinate system. See below. /* 0x6 */ s16 yaw; // azimuthal angle } VecSphGeo; // size = 0x8 // Defines a point in the spherical coordinate system. // Pitch is 0 along the positive y-axis (up) typedef VecSphGeo VecSph; // Defines a point in the geographic coordinate system. // Pitch is 0 along the xz-plane (horizon) typedef VecSphGeo VecGeo; // To be used with OLib_Vec3fAdd() typedef enum { /* 0 */ OLIB_ADD_COPY, // Copy `b` to dest /* 1 */ OLIB_ADD_OFFSET, // Add `a` and `b` to dest, and also add the yaw of `a` to the dest /* 2 */ OLIB_ADD // Add `a` and `b` to dest } OlibVec3fAdd; typedef enum { /* 0 */ OLIB_DIFF_COPY, // Copy `b` to dest /* 1 */ OLIB_DIFF_OFFSET, // Sub `a` and `b` to dest, and also subs the yaw of `a` to the dest /* 2 */ OLIB_DIFF // Sub `a` and `b` to dest } OlibVec3fDiff; typedef float MtxF_t[4][4]; typedef union { MtxF_t mf; struct { float xx, yx, zx, wx, xy, yy, zy, wy, xz, yz, zz, wz, xw, yw, zw, ww; }; } MtxF; // size = 0x40 #define LERPIMP(v0, v1, t) ((v0) + (((v1) - (v0)) * (t))) #define F32_LERP(v0, v1, t) ((1.0f - (t)) * (f32)(v0) + (t) * (f32)(v1)) #define F32_LERPIMP(v0, v1, t) ((f32)(v0) + (((f32)(v1) - (f32)(v0)) * (t))) #define F32_LERPIMPINV(v0, v1, t) ((f32)(v0) + (((f32)(v1) - (f32)(v0)) / (t))) #define BINANG_LERPIMP(v0, v1, t) ((v0) + (s16)(BINANG_SUB((v1), (v0)) * (t))) #define BINANG_LERPIMPINV(v0, v1, t) ((v0) + BINANG_SUB((v1), (v0)) / (t)) #define LERPWEIGHT(val, prev, next) (((val) - (prev)) / ((next) - (prev))) #define F32_LERPWEIGHT(val, prev, next) (((f32)(val) - (f32)(prev)) / ((f32)(next) - (f32)(prev))) #define VEC3F_LERPIMPDST(dst, v0, v1, t) \ { \ (dst)->x = (v0)->x + (((v1)->x - (v0)->x) * t); \ (dst)->y = (v0)->y + (((v1)->y - (v0)->y) * t); \ (dst)->z = (v0)->z + (((v1)->z - (v0)->z) * t); \ } \ (void)0 #define IS_ZERO(f) (fabsf(f) < 0.008f) // Casting a float to an integer, when the float value is larger than what the integer type can hold, // leads to undefined behavior. For example (f32)0x8000 doesn't fit in a s16, so it cannot be cast to s16. // This isn't an issue with IDO, but is one with for example GCC. // A partial workaround is to cast to s32 then s16, hoping all binang values used will fit a s32. #define TRUNCF_BINANG(f) (s16)(s32)(f) // Angle conversion macros #define DEG_TO_RAD(degrees) ((degrees) * (M_PI / 180.0f)) #define DEG_TO_BINANG(degrees) TRUNCF_BINANG((degrees) * (0x8000 / 180.0f)) #define DEG_TO_BINANG_ALT(degrees) TRUNCF_BINANG(((degrees) / 180.0f) * 0x8000) #define DEG_TO_BINANG_ALT2(degrees) TRUNCF_BINANG(((degrees) * 0x10000) / 360.0f) #define DEG_TO_BINANG_ALT3(degrees) ((degrees) * (0x8000 / 180.0f)) #define RAD_TO_DEG(radians) ((radians) * (180.0f / M_PI)) #define RAD_TO_BINANG(radians) TRUNCF_BINANG((radians) * (0x8000 / M_PI)) #define RAD_TO_BINANG_ALT(radians) TRUNCF_BINANG(((radians) / M_PI) * 0x8000) #define RAD_TO_BINANG_ALT2(radians) TRUNCF_BINANG(((radians) * 0x8000) / M_PI) #define BINANG_TO_DEG(binang) ((f32)(binang) * (180.0f / 0x8000)) #define BINANG_TO_RAD(binang) ((f32)(binang) * (M_PI / 0x8000)) #define BINANG_TO_RAD_ALT(binang) (((f32)(binang) / 0x8000) * M_PI) #define BINANG_TO_RAD_ALT2(binang) (((f32)(binang) * M_PI) / 0x8000) // Angle arithmetic macros #define BINANG_ROT180(angle) ((s16)(angle + 0x8000)) #define BINANG_SUB(a, b) ((s16)(a - b)) #define BINANG_ADD(a, b) ((s16)(a + b)) // Vector macros #define SQXZ(vec) ((vec.x) * (vec.x) + (vec.z) * (vec.z)) #define DOTXZ(vec1, vec2) ((vec1.x) * (vec2.x) + (vec1.z) * (vec2.z)) #define SQXYZ(vec) ((vec.x) * (vec.x) + (vec.y) * (vec.y) + (vec.z) * (vec.z)) #define DOTXYZ(vec1, vec2) ((vec1.x) * (vec2.x) + (vec1.y) * (vec2.y) + (vec1.z) * (vec2.z)) f32 Math_CosS(s16 angle); f32 Math_SinS(s16 angle); s32 Math_StepToIImpl(s32 start, s32 target, s32 step); void Math_StepToIGet(s32* pValue, s32 target, s32 step); s32 Math_StepToI(s32* pValue, s32 target, s32 step); s32 Math_ScaledStepToS(s16* pValue, s16 target, s16 step); s32 Math_StepToS(s16* pValue, s16 target, s16 step); s32 Math_StepToC(s8* pValue, s8 target, s8 step); s32 Math_StepToF(f32* pValue, f32 target, f32 step); s32 Math_StepUntilAngleS(s16* pValue, s16 target, s16 step); s32 Math_StepToAngleS(s16* pValue, s16 target, s16 step); s32 Math_AsymStepToS(s16* pValue, s16 target, s16 incrStep, s16 decrStep); s32 Math_StepUntilF(f32* pValue, f32 limit, f32 step); s32 Math_AsymStepToF(f32* pValue, f32 target, f32 incrStep, f32 decrStep); s16 Rand_S16Offset(s16 base, s16 range); s16 Rand_S16OffsetStride(s16 base, s16 stride, s16 range); void Math_Vec3f_Copy(Vec3f* dest, Vec3f* src); void Math_Vec3s_Copy(Vec3s* dest, Vec3s* src); void Math_Vec3s_ToVec3f(Vec3f* dest, Vec3s* src); void Math_Vec3f_ToVec3s(Vec3s* dest, Vec3f* src); void Math_Vec3f_Sum(Vec3f* l, Vec3f* r, Vec3f* dest); void Math_Vec3f_Diff(Vec3f* l, Vec3f* r, Vec3f* dest); void Math_Vec3s_DiffToVec3f(Vec3f* dest, Vec3s* l, Vec3s* r); void Math_Vec3f_Scale(Vec3f* vec, f32 scale); void Math_Vec3f_ScaleAndStore(Vec3f* vec, f32 scale, Vec3f* dest); void Math_Vec3f_Lerp(Vec3f* a, Vec3f* b, f32 t, Vec3f* dest); void Math_Vec3f_SumScaled(Vec3f* a, Vec3f* b, f32 scale, Vec3f* dest); void Math_Vec3f_AddRand(Vec3f* orig, f32 scale, Vec3f* dest); void Math_Vec3f_DistXYZAndStoreNormDiff(Vec3f* a, Vec3f* b, f32 scale, Vec3f* dest); f32 Math_Vec3f_DistXYZ(Vec3f* a, Vec3f* b); f32 Math_Vec3f_DistXYZAndStoreDiff(Vec3f* a, Vec3f* b, Vec3f* dest); f32 Math_Vec3f_DistXZ(Vec3f* a, Vec3f* b); f32 Math_Vec3f_DistXZAndStore(Vec3f* a, Vec3f* b, f32* dx, f32* dz); f32 Math_Vec3f_StepToXZ(Vec3f* start, Vec3f* target, f32 speed); f32 Math_Vec3f_DiffY(Vec3f* a, Vec3f* b); s16 Math_Vec3f_Yaw(Vec3f* a, Vec3f* b); s16 Math_Vec3f_Pitch(Vec3f* a, Vec3f* b); f32 Math_SmoothStepToF(f32* pValue, f32 target, f32 fraction, f32 step, f32 minStep); void Math_ApproachF(f32* pValue, f32 target, f32 scale, f32 maxStep); void Math_ApproachZeroF(f32* pValue, f32 scale, f32 maxStep); s16 Math_SmoothStepToS(s16* pValue, s16 target, s16 scale, s16 step, s16 minStep); void Math_ApproachS(s16* pValue, s16 target, s16 scale, s16 maxStep); f32 Math_Vec3f_StepTo(Vec3f* start, Vec3f* target, f32 speed); f32 Math_FactorialF(f32 n); f32 Math_Factorial(s32 n); f32 Math_PowF(f32 base, s32 exp); f32 Math_SinF(f32 rad); f32 Math_CosF(f32 rad); f32 Rand_ZeroFloat(f32 scale); f32 Rand_CenteredFloat(f32 scale); f32 Math_FTanF(f32 x); f32 Math_FFloorF(f32 x); f32 Math_FCeilF(f32 x); f32 Math_FRoundF(f32 x); f32 Math_FTruncF(f32 x); f32 Math_FNearbyIntF(f32 x); f32 Math_FAtanTaylorQF(f32 x); f32 Math_FAtanTaylorF(f32 x); f32 Math_FAtanContFracF(f32 x); f32 Math_FAtanF(f32 x); f32 Math_FAtan2F(f32 y, f32 x); f32 Math_FAsinF(f32 x); f32 Math_FAcosF(f32 x); s16 Math_Atan2S(f32 y, f32 x); f32 Math_Atan2F(f32 y, f32 x); s16 Math_Atan2S_XY(f32 x, f32 y); f32 Math_Atan2F_XY(f32 x, f32 y); #endif