mm/src/code/z_lib.c

637 lines
13 KiB
C

#include <ultra64.h>
#include <global.h>
#pragma intrinsic (sqrtf)
extern float fabsf(float);
#pragma intrinsic (fabsf)
void* Lib_bcopy(void* dest, void* src, size_t n) {
_bcopy(src, dest, n);
return dest;
}
#ifdef NON_MATCHING
void* Lib_MemSet(u8* a0, u32 a1, u32 a2) {
u8* v0;
// XXX: realloc is messed up
if (a1 == 0) {
_blkclr((void*)a0, (u32)a2);
return a0;
}
for (v0 = a0; a2 != 0; a2--) {
*v0++ = a1;
}
return a0;
}
#else
GLOBAL_ASM("./asm/non_matchings/z_lib/Lib_MemSet.asm")
#endif
f32 Math_Coss(s16 angle) {
return coss(angle) * D_801DDA80;
}
f32 Math_Sins(s16 angle) {
return sins(angle) * D_801DDA84;
}
s32 Lib_StepTowardsGet_i(s32 start, s32 value, s32 step) {
s32 v1;
if (value >= start) {
v1 = start + step;
if (value >= v1) {
return v1;
}
} else {
v1 = start - step;
if (v1 >= value) {
return v1;
}
}
return value;
}
void Lib_StepTowards_i(s32* start, s32 value, s32 step) {
*start = Lib_StepTowardsGet_i(*start, value, step);
}
s32 Lib_StepTowardsCheck_i(s32* start, s32 value, s32 step) {
Lib_StepTowards_i(start, value, step);
return value == *start;
}
s32 Lib_StepTowardsCheckFramerateScaled_s(s16* start, s16 target, s16 step) {
f32 f0;
if (step != 0) {
f0 = gFramerateDivisorHalf;
if ((s16)(*start - target) > 0) {
step = -step;
}
*start += (s16)(step * f0);
if (((s16)(*start - target) * step) >= 0) {
*start = target;
return 1;
}
} else if (target == *start) {
return 1;
}
return 0;
}
s32 Lib_StepTowardsCheck_s(s16* start, s16 target, s16 step) {
if (step != 0) {
if (target < *start) {
step = -step;
}
*start += step;
if (((*start - target) * step) >= 0) {
*start = target;
return 1;
}
} else if (target == *start) {
return 1;
}
return 0;
}
s32 Lib_StepTowardsCheck_c(s8* start, s8 target, s8 step) {
if (step != 0) {
if (target < *start) {
step = -step;
}
*start += step;
if (((*start - target) * step) >= 0) {
*start = target;
return 1;
}
} else if (target == *start) {
return 1;
}
return 0;
}
#ifdef NON_MATCHING
s32 Lib_StepTowardsCheck_f(f32* start, f32 target, f32 step) {
if (step != 0) {
// XXX: regalloc is messed up
if (target < *start) {
step = -step;
}
*start += step;
if (((*start - target) * step) >= 0) {
*start = target;
return 1;
}
} else if (target != *start) {
return 1;
}
return 0;
}
#else
GLOBAL_ASM("./asm/non_matchings/z_lib/Lib_StepTowardsCheck_f.asm")
#endif
#ifdef NON_MATCHING
s32 func_800FF0D0(s16* a0, s16 a1, s16 a2) {
s32 v0 = *a0;
// XXX: regalloc is messed up
*a0 += a2;
if (((*a0 - a1) * (v0 - a1)) <= 0) {
*a0 = a1;
return 1;
}
return 0;
}
#else
GLOBAL_ASM("./asm/non_matchings/z_lib/func_800FF0D0.asm")
#endif
#ifdef NON_MATCHING
void func_800FF138() {
}
#else
GLOBAL_ASM("./asm/non_matchings/z_lib/func_800FF138.asm")
#endif
#ifdef NON_MATCHING
void func_800FF1FC(void) {
}
#else
GLOBAL_ASM("./asm/non_matchings/z_lib/func_800FF1FC.asm")
#endif
#ifdef NON_MATCHING
void func_800FF2A8(void) {
}
#else
GLOBAL_ASM("./asm/non_matchings/z_lib/func_800FF2A8.asm")
#endif
#ifdef NON_MATCHING
void func_800FF2F8(void) {
}
#else
GLOBAL_ASM("./asm/non_matchings/z_lib/func_800FF2F8.asm")
#endif
#ifdef NON_MATCHING
void func_800FF3A0(void) {
}
#else
GLOBAL_ASM("./asm/non_matchings/z_lib/func_800FF3A0.asm")
#endif
s16 Math_Rand_S16Offset(s16 base, s16 range) {
return (s16)(randZeroOne() * range) + base;
}
s16 Math_Rand_S16OffsetStride(s16 base, s16 stride, s16 range) {
return (s16)(randZeroOne() * range) * stride + base;
}
void Math_Vec3f_Copy(Vec3f* dest, Vec3f* src) {
f32 x = src->x;
f32 y = src->y;
f32 z = src->z;
dest->x = x;
dest->y = y;
dest->z = z;
}
void Math_Vec3s_Copy(Vec3s* dest, Vec3s* src) {
s16 x = src->x;
s16 y = src->y;
s16 z = src->z;
dest->x = x;
dest->y = y;
dest->z = z;
}
void Math_Vec3s_ToVec3f(Vec3f* dest, Vec3s* src) {
f32 x = src->x;
f32 y = src->y;
f32 z = src->z;
dest->x = x;
dest->y = y;
dest->z = z;
}
void Math_Vec3f_ToVec3s(Vec3s* dest, Vec3f* src) {
f32 x = src->x;
f32 y = src->y;
f32 z = src->z;
dest->x = x;
dest->y = y;
dest->z = z;
}
void Math_Vec3f_Sum(Vec3f* l, Vec3f* r, Vec3f* dest) {
dest->x = l->x + r->x;
dest->y = l->y + r->y;
dest->z = l->z + r->z;
}
void Math_Vec3f_Diff(Vec3f* l, Vec3f* r, Vec3f* dest) {
dest->x = l->x - r->x;
dest->y = l->y - r->y;
dest->z = l->z - r->z;
}
void Math_Vec3s_DiffToVec3f(Vec3f* dest, Vec3s* l, Vec3s* r) {
dest->x = l->x - r->x;
dest->y = l->y - r->y;
dest->z = l->z - r->z;
}
void Math_Vec3f_Scale(Vec3f* vec, f32 scale) {
vec->x *= scale;
vec->y *= scale;
vec->z *= scale;
}
void Math_Vec3f_ScaleAndStore(Vec3f* vec, f32 scale, Vec3f* dest) {
dest->x = vec->x * scale;
dest->y = vec->y * scale;
dest->z = vec->z * scale;
}
void Math_Vec3f_Lerp(Vec3f* a, Vec3f* b, f32 t, Vec3f* dest) {
dest->x = (b->x - a->x) * t + a->x;
dest->y = (b->y - a->y) * t + a->y;
dest->z = (b->z - a->z) * t + a->z;
}
void Math_Vec3f_SumScaled(Vec3f* a, Vec3f* b, f32 scale, Vec3f* dest) {
dest->x = b->x * scale + a->x;
dest->y = b->y * scale + a->y;
dest->z = b->z * scale + a->z;
}
void Math_Vec3f_ModifyRand(Vec3f* orig, f32 scale, Vec3f* dest) {
dest->x = randPlusMinusPoint5Scaled(scale) + orig->x;
dest->y = randPlusMinusPoint5Scaled(scale) + orig->y;
dest->z = randPlusMinusPoint5Scaled(scale) + orig->z;
}
void Math_Vec3f_DistXYZAndStoreNormalizedDiff(Vec3f* a, Vec3f* b, f32 scale, Vec3f* dest) {
f32 f0 = Math_Vec3f_DistXYZAndStoreDiff(a, b, dest);
f32 f2;
if (f0 == 0) {
return;
}
f2 = scale / f0;
dest->x *= f2;
dest->y *= f2;
dest->z *= f2;
}
f32 Math_Vec3f_DistXYZ(Vec3f* a, Vec3f* b) {
Vec3f sp1C;
Math_Vec3f_Diff(b, a, &sp1C);
return sqrtf((sp1C.x * sp1C.x) + (sp1C.y * sp1C.y) + (sp1C.z * sp1C.z));
}
f32 Math_Vec3f_DistXYZAndStoreDiff(Vec3f* a, Vec3f* b, Vec3f* difference) {
Math_Vec3f_Diff(b, a, difference);
return sqrtf((difference->x * difference->x) + (difference->y * difference->y) + (difference->z * difference->z));
}
f32 Math_Vec3f_DistXZ(Vec3f* a, Vec3f* b) {
f32 dx = b->x - a->x;
f32 dz = b->z - a->z;
return sqrtf((dx * dx) + (dz * dz));
}
f32 Math_Vec3f_DistXZAndStore(Vec3f* a, Vec3f* b, f32* xDiff, f32* zDiff) {
*xDiff = b->x - a->x;
*zDiff = b->z - a->z;
return sqrtf((*xDiff * *xDiff) + (*zDiff * *zDiff));
}
#ifdef NON_MATCHING
void Math_Vec3f_PushAwayXZ(Vec3f* start, Vec3f* pusher, f32 distanceToApproach) {
f32 sp24;
f32 sp20;
f32 f0 = Math_Vec3f_DistXZAndStore(pusher, start, &sp24, &sp20);
f32 f2 = f0 - distanceToApproach;
if ((f0 >= distanceToApproach) && (f2 != 0)) {
f2 /= f0;
} else {
f2 = 0;
}
start->x = pusher->x + sp24 * f2;
start->z = pusher->z + sp20 * f2;
}
#else
GLOBAL_ASM("./asm/non_matchings/z_lib/Math_Vec3f_PushAwayXZ.asm")
#endif
f32 Math_Vec3f_DiffY(Vec3f* a, Vec3f* b) {
return b->y - a->y;
}
s16 Math_Vec3f_Yaw(Vec3f* from, Vec3f* to) {
f32 f14 = to->x - from->x;
f32 f12 = to->z - from->z;
return atans_flip(f12, f14);
}
s16 Math_Vec3f_Pitch(Vec3f* from, Vec3f* to) {
return atans_flip(Math_Vec3f_DistXZ(from, to), from->y - to->y);
}
void Actor_ProcessInitChain(Actor* actor, InitChainEntry* init) {
do {
actorInitVarFuncs[init->type]((u8*)actor, init);
} while ((init++)->cont);
}
void IChain_Apply_u8(u8* actor, InitChainEntry* init) {
*(u8*)(actor + init->offset) = (u8)(init->value);
}
void IChain_Apply_s8(u8* actor, InitChainEntry* init) {
*(u8*)(actor + init->offset) = (u8)(init->value);
}
void IChain_Apply_u16(u8* actor, InitChainEntry* init) {
*(u16*)(actor + init->offset) = (u16)(init->value);
}
void IChain_Apply_s16(u8* actor, InitChainEntry* init) {
*(u16*)(actor + init->offset) = (u16)(init->value);
}
void IChain_Apply_u32(u8* actor, InitChainEntry* init) {
*(u32*)(actor + init->offset) = (u32)(init->value);
}
void IChain_Apply_s32(u8* actor, InitChainEntry* init) {
*(u32*)(actor + init->offset) = (u32)(init->value);
}
void IChain_Apply_f32(u8* actor, InitChainEntry* init) {
*(f32*)(actor + init->offset) = (f32)(init->value);
}
void IChain_Apply_f32div1000(u8* actor, InitChainEntry* init) {
*(f32*)(actor + init->offset) = (f32)(init->value) / 1000;
}
void IChain_Apply_Vec3f(u8* actor, InitChainEntry* init) {
Vec3f* v0 = (Vec3f*)(actor + init->offset);
f32 f0 = (f32)(init->value);
v0->z = f0;
v0->y = f0;
v0->x = f0;
}
void IChain_Apply_Vec3fdiv1000(u8* actor, InitChainEntry* init) {
Vec3f* v0 = (Vec3f*)(actor + init->offset);
f32 f0 = (f32)(init->value) / 1000;
v0->z = f0;
v0->y = f0;
v0->x = f0;
}
void IChain_Apply_Vec3s(u8* actor, InitChainEntry* init) {
Vec3s* v0 = (Vec3s*)(actor + init->offset);
s16 v1 = (s16)(init->value);
v0->z = v1;
v0->y = v1;
v0->x = v1;
}
f32 Math_SmoothScaleMaxMinF(f32* a0, f32 a1, f32 a2, f32 a3, f32 a4) {
f32 f0;
if (*a0 != a1) {
f0 = (a1 - *a0) * a2;
if ((f0 >= a4) || (f0 <= -a4)) {
if (f0 > a3) {
f0 = a3;
}
if (f0 < -a3) {
f0 = -a3;
}
*a0 += f0;
} else {
if (f0 > 0) {
if (f0 < a4) {
*a0 += a4;
if (a1 < *a0) {
*a0 = a1;
}
}
} else {
if (-a4 < f0) {
*a0 += -a4;
if (*a0 < a1) {
*a0 = a1;
}
}
}
}
}
return fabsf(a1 - *a0);
}
void Math_SmoothScaleMaxF(f32* start, f32 target, f32 scale, f32 maxStep) {
f32 f2;
if (*start != target) {
f2 = (target - *start) * scale;
if (f2 > maxStep) {
f2 = maxStep;
} else if (f2 < -maxStep) {
f2 = -maxStep;
}
*start += f2;
}
}
void Math_SmoothDownscaleMaxF(f32* start, f32 scale, f32 maxStep) {
f32 f0 = *start * scale;
if (maxStep < f0) {
f0 = maxStep;
} else if (f0 < -maxStep) {
f0 = -maxStep;
}
*start = *start - f0;
}
#ifdef NON_MATCHING
s32 Math_SmoothScaleMaxMinS(s16* start, s16 target, s16 scale, s16 maxStep, s16 minStep) {
}
#else
GLOBAL_ASM("./asm/non_matchings/z_lib/Math_SmoothScaleMaxMinS.asm")
#endif
void Math_SmoothScaleMaxS(s16* start, s16 target, s16 scale, s16 maxStep) {
s16 v0 = target - *start;
v0 /= scale;
if (v0 > maxStep) {
*start += maxStep;
return;
}
if (v0 < -maxStep) {
*start -= maxStep;
return;
}
*start += v0;
}
void Color_RGBA8_Copy(ColorRGBA8* dst, ColorRGBA8* src) {
dst->red = src->red;
dst->green = src->green;
dst->blue = src->blue;
dst->alpha = src->alpha;
}
void func_801000A4(u16 a0) {
play_sound(a0);
}
void func_801000CC(u16 a0) {
func_8019F128(a0);
}
void func_801000F4(s32 a0, u16 a1) {
func_8019F1C0(a0, a1);
}
void Lib_TranslateAndRotateYVec3f(Vec3f* translation, s16 rotation, Vec3f* src, Vec3f* dst) {
f32 sp1C;
f32 f0;
sp1C = Math_Coss(rotation);
f0 = Math_Sins(rotation);
dst->x = translation->x + (src->x * sp1C + src->z * f0);
dst->y = translation->y + src->y;
dst->z = translation->z + (src->z * sp1C - src->x * f0);
}
#ifdef NON_MATCHING
void Lib_LerpRGB(RGB* a, RGB* b, f32 t, RGB* dst) {
// XXX regalloc is slightly off
dst->red = (f32)a->red + ((f32)b->red - (f32)a->red) * t;
dst->green = (f32)a->green + ((f32)b->green - (f32)a->green) * t;
dst->blue = (f32)a->blue + ((f32)b->blue - (f32)a->blue) * t;
}
#else
GLOBAL_ASM("./asm/non_matchings/z_lib/Lib_LerpRGB.asm")
#endif
f32 Lib_PushAwayVec3f(Vec3f* start, Vec3f* pusher, f32 distanceToApproach) {
Vec3f sp24;
f32 f2;
f32 f0;
Math_Vec3f_Diff(pusher, start, &sp24);
f0 = Math3D_Length(&sp24);
if (distanceToApproach < f0) {
f2 = distanceToApproach / f0;
f0 = f0 - distanceToApproach;
start->x = start->x + f2 * sp24.x;
start->y = start->y + f2 * sp24.y;
start->z = start->z + f2 * sp24.z;
} else {
Math_Vec3f_Copy(start, pusher);
f0 = 0;
}
return f0;
}
void Lib_Nop801004FC(void) {}
void* Lib_PtrSegToVirt(void* ptr) {
return SEGMENTED_TO_VIRTUAL(ptr);
}
void* Lib_PtrSegToVirtNull(void* ptr) {
// UB: to cast the pointer to u32 in order to bitshift.
if (((u32)ptr >> 28) == 0) {
return ptr;
}
return SEGMENTED_TO_VIRTUAL(ptr);
}
void* Lib_PtrSegToK0(void* ptr) {
if (ptr == NULL) {
return NULL;
} else {
return (void*)PHYSICAL_TO_VIRTUAL(ptr);
}
}
void* Lib_PtrSegToK0Null(void* ptr) {
if (ptr == NULL) {
return NULL;
} else {
return (void*)PHYSICAL_TO_VIRTUAL(ptr);
}
}