mm/src/boot/O2/loadfragment2.c

178 lines
7.9 KiB
C

/**
* @file loadfragment2.c
*
* Functions used to process and relocate dynamically loadable code segments (overlays).
*
* @note:
* These are for specific fragment overlays with the .ovl file extension
*/
#include "global.h"
#include "libc64/malloc.h"
#include "loadfragment.h"
s32 gOverlayLogSeverity = 2;
// Extract MIPS register rs from an instruction word
#define MIPS_REG_RS(insn) (((insn) >> 0x15) & 0x1F)
// Extract MIPS register rt from an instruction word
#define MIPS_REG_RT(insn) (((insn) >> 0x10) & 0x1F)
// Extract MIPS jump target from an instruction word
#define MIPS_JUMP_TARGET(insn) (((insn)&0x03FFFFFF) << 2)
/**
* Performs runtime relocation of overlay files, loadable code segments.
*
* Overlays are expected to be loadable anywhere in direct-mapped cached (KSEG0) memory, with some appropriate
* alignment requirements; memory addresses in such code must be updated once loaded to execute properly.
* When compiled, overlays are given 'fake' KSEG0 RAM addresses larger than the total possible available main memory
* (>= 0x80800000), such addresses are referred to as Virtual RAM (VRAM) to distinguish them. When loading the overlay,
* the relocation table produced at compile time is consulted to determine where and how to update these VRAM addresses
* to correct RAM addresses based on the location the overlay was loaded at, enabling the code to execute at this
* address as if it were compiled to run at this address.
*
* Each relocation is represented by a packed 32-bit value, formatted in the following way:
* - [31:30] 2-bit section id, taking values from the `RelocSectionId` enum.
* - [29:24] 6-bit relocation type describing which relocation operation should be performed. Same as ELF32 MIPS.
* - [23: 0] 24-bit section-relative offset indicating where in the section to apply this relocation.
*
* @param allocatedRamAddress Memory address the binary was loaded at.
* @param ovlRelocs Overlay relocation section containing overlay section layout and runtime relocations.
* @param vramStart Virtual RAM address that the overlay was compiled at.
*/
void Overlay_Relocate(void* allocatedRamAddr, OverlayRelocationSection* ovlRelocs, uintptr_t vramStart) {
u32 sections[RELOC_SECTION_MAX];
u32* relocDataP;
u32 reloc;
uintptr_t relocatedAddress;
u32 i;
u32* luiInstRef;
uintptr_t allocu32 = (uintptr_t)allocatedRamAddr;
u32* regValP;
//! MIPS ELF relocation does not generally require tracking register values, so at first glance it appears this
//! register tracking was an unnecessary complication. However there is a bug in the IDO compiler that can cause
//! relocations to be emitted in the wrong order under rare circumstances when the compiler attempts to reuse a
//! previous HI16 relocation for a different LO16 relocation as an optimization. This register tracking is likely
//! a workaround to prevent improper matching of unrelated HI16 and LO16 relocations that would otherwise arise
//! due to the incorrect ordering.
u32* luiRefs[32];
u32 luiVals[32];
u32 isLoNeg;
if (gOverlayLogSeverity >= 3) {}
sections[RELOC_SECTION_NULL] = 0;
sections[RELOC_SECTION_TEXT] = allocu32;
sections[RELOC_SECTION_DATA] = allocu32 + ovlRelocs->textSize;
sections[RELOC_SECTION_RODATA] = sections[RELOC_SECTION_DATA] + ovlRelocs->dataSize;
for (i = 0; i < ovlRelocs->numRelocations; i++) {
// This will always resolve to a 32-bit aligned address as each section
// containing code or pointers must be aligned to at least 4 bytes and the
// MIPS ABI defines the offset of both 16-bit and 32-bit relocations to be
// the start of the 32-bit word containing the target.
reloc = ovlRelocs->relocations[i];
relocDataP = (u32*)(sections[RELOC_SECTION(reloc)] + RELOC_OFFSET(reloc));
switch (RELOC_TYPE_MASK(reloc)) {
case R_MIPS_32 << RELOC_TYPE_SHIFT:
// Handles 32-bit address relocation, used for things such as jump tables and pointers in data.
// Just relocate the full address
// Check address is valid for relocation
if ((*relocDataP & 0x0F000000) == 0) {
*relocDataP = *relocDataP - vramStart + allocu32;
} else if (gOverlayLogSeverity >= 3) {
}
break;
case R_MIPS_26 << RELOC_TYPE_SHIFT:
// Handles 26-bit address relocation, used for jumps and jals.
// Extract the address from the target field of the J-type MIPS instruction.
// Relocate the address and update the instruction.
if (1) {
*relocDataP =
(*relocDataP & 0xFC000000) |
(((PHYS_TO_K0(MIPS_JUMP_TARGET(*relocDataP)) - vramStart + allocu32) & 0x0FFFFFFF) >> 2);
}
break;
case R_MIPS_HI16 << RELOC_TYPE_SHIFT:
// Handles relocation for a hi/lo pair, part 1.
// Store the reference to the LUI instruction (hi) using the `rt` register of the instruction.
// This will be updated later in the `R_MIPS_LO16` section.
luiRefs[(*relocDataP >> 0x10) & 0x1F] = relocDataP;
luiVals[(*relocDataP >> 0x10) & 0x1F] = *relocDataP;
break;
case R_MIPS_LO16 << RELOC_TYPE_SHIFT:
// Handles relocation for a hi/lo pair, part 2.
// Grab the stored LUI (hi) from the `R_MIPS_HI16` section using the `rs` register of the instruction.
// The full address is calculated, relocated, and then used to update both the LUI and lo instructions.
// If the lo part is negative, add 1 to the LUI value.
// Note: The lo instruction is assumed to have a signed immediate.
luiInstRef = luiRefs[(*relocDataP >> 0x15) & 0x1F];
regValP = &luiVals[(*relocDataP >> 0x15) & 0x1F];
// Check address is valid for relocation
if ((((*luiInstRef << 0x10) + (s16)*relocDataP) & 0x0F000000) == 0) {
relocatedAddress = ((*regValP << 0x10) + (s16)*relocDataP) - vramStart + allocu32;
isLoNeg = (relocatedAddress & 0x8000) ? 1 : 0;
*luiInstRef = (*luiInstRef & 0xFFFF0000) | (((relocatedAddress >> 0x10) & 0xFFFF) + isLoNeg);
*relocDataP = (*relocDataP & 0xFFFF0000) | (relocatedAddress & 0xFFFF);
} else if (gOverlayLogSeverity >= 3) {
}
break;
}
}
}
size_t Overlay_Load(uintptr_t vromStart, uintptr_t vromEnd, void* ramStart, void* ramEnd, void* allocatedRamAddr) {
uintptr_t vramStart = (uintptr_t)ramStart;
uintptr_t vramEnd = (uintptr_t)ramEnd;
s32 size = vromEnd - vromStart;
uintptr_t end;
OverlayRelocationSection* ovlRelocs;
if (gOverlayLogSeverity >= 3) {}
if (gOverlayLogSeverity >= 3) {}
end = (uintptr_t)allocatedRamAddr + size;
DmaMgr_SendRequest0(allocatedRamAddr, vromStart, size);
ovlRelocs = (OverlayRelocationSection*)(end - ((s32*)end)[-1]);
if (gOverlayLogSeverity >= 3) {}
if (gOverlayLogSeverity >= 3) {}
Overlay_Relocate(allocatedRamAddr, ovlRelocs, vramStart);
if (ovlRelocs->bssSize != 0) {
if (gOverlayLogSeverity >= 3) {}
bzero((void*)end, ovlRelocs->bssSize);
}
size = vramEnd - vramStart;
osWritebackDCache(allocatedRamAddr, size);
osInvalICache(allocatedRamAddr, size);
if (gOverlayLogSeverity >= 3) {}
return size;
}
void* Overlay_AllocateAndLoad(uintptr_t vromStart, uintptr_t vromEnd, void* vramStart, void* vramEnd) {
void* allocatedRamAddr = malloc_r((uintptr_t)vramEnd - (uintptr_t)vramStart);
if (allocatedRamAddr != NULL) {
Overlay_Load(vromStart, vromEnd, vramStart, vramEnd, allocatedRamAddr);
}
return allocatedRamAddr;
}