opts: slow, invert, cols. pre-convert LAB palette

This commit is contained in:
Gordon Shumway 2019-03-21 13:33:47 -04:00 committed by GitHub
parent 9a107645e4
commit 194cf3e1c3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 134 additions and 103 deletions

View File

@ -14,10 +14,13 @@ import supybot.callbacks as callbacks
import supybot.ircmsgs as ircmsgs
import os
import requests
from PIL import Image, ImageFilter
from PIL import Image
import numpy as np
import sys, math
from fake_useragent import UserAgent
from colormath.color_objects import sRGBColor, LabColor
from colormath.color_conversions import convert_color
from colormath.color_diff import delta_e_cie1976
try:
from supybot.i18n import PluginInternationalization
@ -96,105 +99,130 @@ class ASCII(callbacks.Plugin):
# get average
return np.average(im.reshape(w*h))
def getAverageC(self, pixel):
def getAverageC(self, pixel,speed):
"""
Given PIL Image, return average RGB value
"""
pixel = pixel[:3]
colors = {
"16":(71,0,0),
"17":(71,33,0),
"18":(71,71,0),
"19":(50,71,0),
"20":(0,71,0),
"21":(0,71,44),
"22":(0,71,71),
"23":(0,39,71),
"24":(0,0,71),
"25":(46,0,71),
"26":(71,0,71),
"27":(71,0,42),
"28":(116,0,0),
"29":(116,58,0),
"30":(116,116,0),
"31":(81,116,0),
"32":(0,116,0),
"33":(0,116,73),
"34":(0,116,116),
"35":(0,64,116),
"36":(0,0,116),
"37":(75,0,116),
"38":(116,0,116),
"39":(116,0,69),
"40":(181,0,0),
"41":(181,99,0),
"42":(181,181,0),
"43":(125,181,0),
"44":(0,181,0),
"45":(0,181,113),
"46":(0,181,181),
"47":(0,99,181),
"48":(0,0,181),
"49":(117,0,181),
"50":(181,0,181),
"51":(181,0,107),
"52":(255,0,0),
"53":(255,140,0),
"54":(255,255,0),
"55":(178,255,0),
"56":(0,255,0),
"57":(0,255,160),
"58":(0,255,255),
"59":(0,140,255),
"60":(0,0,255),
"61":(165,0,255),
"62":(255,0,255),
"63":(255,0,152),
"64":(255,89,89),
"65":(255,180,89),
"66":(255,255,113),
"67":(207,255,96),
"68":(111,255,111),
"69":(101,255,201),
"70":(109,255,255),
"71":(89,180,255),
"72":(89,89,255),
"73":(196,89,255),
"74":(255,102,255),
"75":(255,89,188),
"76":(255,156,156),
"77":(255,211,156),
"78":(255,255,156),
"79":(226,255,156),
"80":(156,255,156),
"81":(156,255,219),
"82":(156,255,255),
"83":(156,211,255),
"84":(156,156,255),
"85":(220,156,255),
"86":(255,156,255),
"87":(255,148,211),
"88":(0,0,0),
"89":(19,19,19),
"90":(40,40,40),
"91":(54,54,54),
"92":(77,77,77),
"93":(101,101,101),
"94":(129,129,129),
"95":(159,159,159),
"96":(188,188,188),
"97":(226,226,226),
"98":(255,255,255)}
manhattan = lambda x,y : abs(x[0] - y[0]) + abs(x[1] - y[1]) + abs(x[2] - y[2])
distances = {k: manhattan(v, pixel) for k, v in colors.items()}
color = min(distances, key=distances.get)
return color
speed = speed
ircColors = {LabColor(lab_l=1993.20515351498,lab_a=2324.0983231476234,lab_b=1950.0779087841693):16,
LabColor(lab_l=2302.159132332113,lab_a=1476.5998328806731,lab_b=2094.817440516089):17,
LabColor(lab_l=3267.109569734987,lab_a=-625.5719921685046,lab_b=2741.5824054551854):18,
LabColor(lab_l=3117.7906623358294,lab_a=-1524.3182007475084,lab_b=2563.4872768819705):19,
LabColor(lab_l=2994.225776415631,lab_a=-2500.8929369695743,lab_b=2413.738641368567):20,
LabColor(lab_l=3026.0461300232373,lab_a=-2106.053265646869,lab_b=1016.9116217498115):21,
LabColor(lab_l=3092.2778750318885,lab_a=-1395.2984432353226,lab_b=-410.2808083391245):22,
LabColor(lab_l=2082.37407522394,lab_a=439.80707297830793,lab_b=-1983.2971244240234):23,
LabColor(lab_l=1385.5715072995845,lab_a=2298.009119093381,lab_b=-3130.08523478244):24,
LabColor(lab_l=1761.7248957199076,lab_a=2495.1524432892943,lab_b=-2494.7963736847237):25,
LabColor(lab_l=2198.7916393341657,lab_a=2850.6336820262986,lab_b=-1765.3360075524952):26,
LabColor(lab_l=2055.801787008181,lab_a=2491.6677227532045,lab_b=-158.86279448684633):27,
LabColor(lab_l=2958.9498780747585,lab_a=3441.1996261238046,lab_b=2887.4025267278366):28,
LabColor(lab_l=3490.7754041570597,lab_a=1995.586399321347,lab_b=3144.023619818683):29,
LabColor(lab_l=4845.169302249827,lab_a=-926.259480557718,lab_b=4059.3516438937377):30,
LabColor(lab_l=4620.482019554244,lab_a=-2281.747228870049,lab_b=3791.325963678294):31,
LabColor(lab_l=4441.121161001645,lab_a=-3702.9723544655367,lab_b=3573.926467529447):32,
LabColor(lab_l=4489.963665823597,lab_a=-3098.035370892731,lab_b=1453.7194043799368):33,
LabColor(lab_l=4586.302989902044,lab_a=-2065.9627148173527,lab_b=-607.4864175067376):34,
LabColor(lab_l=3098.2589552331815,lab_a=634.8559351078204,lab_b=-2924.8401977939):35,
LabColor(lab_l=2059.250990402592,lab_a=3402.5703829703853,lab_b=-4634.592277094812):36,
LabColor(lab_l=2613.821127903904,lab_a=3692.817296863682,lab_b=-3697.953525308647):37,
LabColor(lab_l=3263.3535821224173,lab_a=4220.81951658537,lab_b=-2613.862567115958):38,
LabColor(lab_l=3052.7880497642973,lab_a=3692.3353415279757,lab_b=-255.20463970260963):39,
LabColor(lab_l=4230.166177007632,lab_a=4911.647610760525,lab_b=4121.209247509218):40,
LabColor(lab_l=5140.420692098141,lab_a=2469.29414128601,lab_b=4576.863521782283):41,
LabColor(lab_l=6922.379978784402,lab_a=-1322.0564509214903,lab_b=5793.940186325644):42,
LabColor(lab_l=6595.196756134379,lab_a=-3301.6293161796852,lab_b=5403.579861388848):43,
LabColor(lab_l=6345.679321104374,lab_a=-5285.277604778105,lab_b=5101.0895334333245):44,
LabColor(lab_l=6414.068737559316,lab_a=-4437.401859025286,lab_b=2114.577589536168):45,
LabColor(lab_l=6552.8983320653,lab_a=-2948.7626219415083,lab_b=-867.069491832234):46,
LabColor(lab_l=4407.084374518514,lab_a=955.4196746325267,lab_b=-4210.022191539629):47,
LabColor(lab_l=2946.0198408020497,lab_a=4856.511829505751,lab_b=-6614.98505109478):48,
LabColor(lab_l=3737.0822740921226,lab_a=5270.450895642849,lab_b=-5278.9196336943):49,
LabColor(lab_l=4664.64365234563,lab_a=6024.404378260297,lab_b=-3730.783804336487):50,
LabColor(lab_l=4362.152983533213,lab_a=5264.9896683827,lab_b=-330.4757953207826):51,
LabColor(lab_l=5569.417504595725,lab_a=6460.793430576633,lab_b=5421.048850085641):52,
LabColor(lab_l=6775.61797290782,lab_a=3226.238340029962,lab_b=6025.75867889489):53,
LabColor(lab_l=9110.762206548767,lab_a=-1739.0363295306556,lab_b=7621.363269416317):54,
LabColor(lab_l=8688.56571353183,lab_a=-4286.355755413659,lab_b=7117.728526067228):55,
LabColor(lab_l=8352.168733274038,lab_a=-6952.267249978224,lab_b=6709.985804801282):56,
LabColor(lab_l=8443.195089050523,lab_a=-5824.430407957365,lab_b=2749.492570275423):57,
LabColor(lab_l=8624.745133456714,lab_a=-3878.809655324538,lab_b=-1140.5453567984496):58,
LabColor(lab_l=5814.154106925882,lab_a=1229.6993153257815,lab_b=-5518.472254545321):59,
LabColor(lab_l=3880.248233844353,lab_a=6388.267687373855,lab_b=-8701.367717798912):60,
LabColor(lab_l=4922.735757149115,lab_a=6934.097154957253,lab_b=-6940.674046100774):61,
LabColor(lab_l=6140.930251611103,lab_a=7924.516438217041,lab_b=-4907.482255272506):62,
LabColor(lab_l=5746.387693687689,lab_a=6934.366712732735,lab_b=-492.7614873204078):63,
LabColor(lab_l=6074.110810805622,lab_a=5313.137095279206,lab_b=3103.1603383735187):64,
LabColor(lab_l=7549.6166232716405,lab_a=1638.3506351207516,lab_b=4766.116472071773):65,
LabColor(lab_l=9144.22544761627,lab_a=-1470.995605268513,lab_b=5615.164875231808):66,
LabColor(lab_l=8851.666121034279,lab_a=-3149.3613711592443,lab_b=5791.451685441684):67,
LabColor(lab_l=8500.557984917883,lab_a=-5550.555360677123,lab_b=4790.802527852141):68,
LabColor(lab_l=8594.087862835102,lab_a=-4460.502732282599,lab_b=1202.8053973127812):69,
LabColor(lab_l=8724.82598229055,lab_a=-3235.6496256362348,lab_b=-980.5575778174244):70,
LabColor(lab_l=6874.520048611572,lab_a=-289.5387261981774,lab_b=-3821.4400161526414):71,
LabColor(lab_l=4916.297192060128,lab_a=4307.513997705836,lab_b=-6974.795972582456):72,
LabColor(lab_l=5819.517276565197,lab_a=5772.740696787963,lab_b=-5464.249084289627):73,
LabColor(lab_l=6666.663989554589,lab_a=6410.850719920749,lab_b=-4071.3110342969558):74,
LabColor(lab_l=6280.324414591433,lab_a=6015.204491438752,lab_b=-1476.4275931956176):75,
LabColor(lab_l=7180.305703653475,lab_a=3151.7678127953095,lab_b=1373.1975029781495):76,
LabColor(lab_l=8248.198938024443,lab_a=714.6748507078441,lab_b=2817.036007030724):77,
LabColor(lab_l=9182.988945110867,lab_a=-1167.764518966436,lab_b=4015.5942289850245):78,
LabColor(lab_l=9007.020388812489,lab_a=-2093.713817441767,lab_b=3756.923645906545):79,
LabColor(lab_l=8680.802265994806,lab_a=-4081.390060312401,lab_b=3273.7168714125773):80,
LabColor(lab_l=8780.409047221645,lab_a=-3130.134177574469,lab_b=700.5659508608431):81,
LabColor(lab_l=8857.679484481941,lab_a=-2443.415301399,lab_b=-768.5984857936376):82,
LabColor(lab_l=7839.323835639718,lab_a=-570.9192199992401,lab_b=-2304.6246202346338):83,
LabColor(lab_l=6625.666242680838,lab_a=2027.7311898612672,lab_b=-4194.929725399932):84,
LabColor(lab_l=7108.652147423247,lab_a=3498.6937253971073,lab_b=-3402.110197127864):85,
LabColor(lab_l=7434.816150050725,lab_a=4358.722695392508,lab_b=-2869.8331598451205):86,
LabColor(lab_l=7167.213158394653,lab_a=4091.808365037888,lab_b=-1234.4936780628914):87,
LabColor(lab_l=0.0,lab_a=0.0,lab_b=0.0):88,
LabColor(lab_l=1158.5273281050518,lab_a=-0.004651426605661868,lab_b=-0.08668679001253565):89,
LabColor(lab_l=2112.0476709317145,lab_a=-0.008427609405003977,lab_b=-0.15706200883656152):90,
LabColor(lab_l=2688.734626403421,lab_a=-0.010711436251753526,lab_b=-0.19962478265682648):91,
LabColor(lab_l=3575.6716231579267,lab_a=-0.014223932083723412,lab_b=-0.26508577224220176):92,
LabColor(lab_l=4445.718937221886,lab_a=-0.017669540483211676,lab_b=-0.32930020728230147):93,
LabColor(lab_l=5409.950553527043,lab_a=-0.021488142643022456,lab_b=-0.4004659789487164):94,
LabColor(lab_l=6397.481176248715,lab_a=-0.025399014791815944,lab_b=-0.47335134966175474):95,
LabColor(lab_l=7317.0369197362015,lab_a=-0.0290406891458872,lab_b=-0.5412197880815484):96,
LabColor(lab_l=8480.24950353612,lab_a=-0.03364730649479952,lab_b=-0.6270714856782433):97,
LabColor(lab_l=9341.568974319263,lab_a=-0.037058350415009045,lab_b=-0.6906417562959177):98}
colors = list(ircColors.keys())
closest_colors = sorted(colors, key=lambda color: self.distance(color, pixel, speed))
closest_color = closest_colors[0]
return ircColors[closest_color]
def distance(self, c1, c2, speed):
if speed == 'fast':
rgb2 = sRGBColor(c2[0], c2[1], c2[2])
lab1 = c1
lab2 = convert_color(rgb2, LabColor)
(r1,g1,b1) = lab1.lab_l, lab1.lab_a, lab1.lab_b
(r2,g2,b2) = lab2.lab_l, lab2.lab_a, lab2.lab_b
return math.sqrt((r1 - r2)**2 + (g1 - g2) ** 2 + (b1 - b2) **2)
elif speed == 'medium':
c2 = sRGBColor(c2[0],c2[1],c2[2]);
c2 = convert_color(c2, LabColor);
delta_e = delta_e_cie1976(c1, c2);
return delta_e
def img(self, irc, msg, args, url):
"""
def img(self, irc, msg, args, optlist, url):
"""[--cols <number of columns>] [--invert] [--slow] (<url>)
Image to ANSI Art
"""
optlist = dict(optlist)
if 'slow' in optlist:
speed = 'medium'
else:
speed = 'fast'
if 'cols' in optlist:
cols = optlist.get('cols')
else:
cols = 100
if 'invert' in optlist:
gscale = "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_+~<>i!lI;:,\"^`'. "
else:
gscale = " .'`^\",:;Il!i><~+_-?][}{1)(|\/tfjrxnuvczXYUJCLQ0OZmwqpdbkhao*#MW&8%B@$"
path = os.path.dirname(os.path.abspath(__file__))
filepath = "{0}/tmp".format(path)
filename = "{0}/{1}".format(filepath, url.split('/')[-1])
@ -204,15 +232,14 @@ class ASCII(callbacks.Plugin):
if response.status_code == 200:
with open("{0}".format(filename), 'wb') as f:
f.write(response.content)
gscale = "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_+~<>i!lI;:,\"^`'. "
# open image and convert to grayscale
image = Image.open(filename).convert('L')
image2 = Image.open(filename)
os.remove(filename)
irc.reply("Please be patient while I render the image into ASCII characters and colorize the output.")
# store dimensions
W, H = image.size[0], image.size[1]
# compute width of tile
cols = 80
w = W/cols
# compute tile height based on aspect ratio and scale
scale = 0.5
@ -223,13 +250,13 @@ class ASCII(callbacks.Plugin):
if cols > W or rows > H:
print("Image too small for specified cols!")
exit(0)
if image2.mode != 'RGBA':
image2 = image2.convert('RGBA')
image2 = image2.convert('RGBA')
image2 = image2.resize((cols, rows), Image.LANCZOS)
colormap = np.array(image2)
# ascii image is a list of character strings
aimg = []
# generate list of dimensions
old_color = None
for j in range(rows):
y1 = int(j*h)
y2 = int((j+1)*h)
@ -247,20 +274,23 @@ class ASCII(callbacks.Plugin):
x2 = W
# crop image to extract tile
img = image.crop((x1, y1, x2, y2))
img2 = image2.crop((x1, y1, x2, y2))
# get average luminance
avg = int(self.getAverageL(img))
# look up ascii char
gsval = gscale[int((avg*69)/255)]
# get color value
color = self.getAverageC(colormap[j][i].tolist())
# append ascii char to string
aimg[j] += "\x03{0}{1}".format(color, gsval)
color = self.getAverageC(colormap[j][i].tolist(),speed)
if color != old_color or gsval != " ":
old_color = color
# append ascii char to string
aimg[j] += "\x03{0}{1}".format(color, gsval)
else:
aimg[j] += "{0}".format(gsval)
# return txt image
output = aimg
for line in output:
irc.reply(line, prefixNick=False)
img = wrap(img, ['text'])
irc.reply(line, prefixNick=False, noLengthCheck=False)
img = wrap(img,[getopts({'cols':'int', 'invert':'', 'slow':''}), ('text')])
def fontlist(self, irc, msg, args):
@ -287,3 +317,4 @@ class ASCII(callbacks.Plugin):
Class = ASCII