RTC: Do not fire timer periodically to catch next alarm
This patch limits further the usage of a periodic timer. It computes the time of the next alarm, and uses it to skip all intermediate occurrences of the timer. Cc: Yang Zhang <yang.z.zhang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
This commit is contained in:
		
							parent
							
								
									41a9b8b24d
								
							
						
					
					
						commit
						00cf57747d
					
				
							
								
								
									
										119
									
								
								hw/mc146818rtc.c
								
								
								
								
							
							
						
						
									
										119
									
								
								hw/mc146818rtc.c
								
								
								
								
							| 
						 | 
				
			
			@ -46,6 +46,11 @@
 | 
			
		|||
#endif
 | 
			
		||||
 | 
			
		||||
#define NSEC_PER_SEC    1000000000LL
 | 
			
		||||
#define SEC_PER_MIN     60
 | 
			
		||||
#define MIN_PER_HOUR    60
 | 
			
		||||
#define SEC_PER_HOUR    3600
 | 
			
		||||
#define HOUR_PER_DAY    24
 | 
			
		||||
#define SEC_PER_DAY     86400
 | 
			
		||||
 | 
			
		||||
#define RTC_REINJECT_ON_ACK_COUNT 20
 | 
			
		||||
#define RTC_CLOCK_RATE            32768
 | 
			
		||||
| 
						 | 
				
			
			@ -69,6 +74,7 @@ typedef struct RTCState {
 | 
			
		|||
    int64_t next_periodic_time;
 | 
			
		||||
    /* update-ended timer */
 | 
			
		||||
    QEMUTimer *update_timer;
 | 
			
		||||
    uint64_t next_alarm_time;
 | 
			
		||||
    uint16_t irq_reinject_on_ack_count;
 | 
			
		||||
    uint32_t irq_coalesced;
 | 
			
		||||
    uint32_t period;
 | 
			
		||||
| 
						 | 
				
			
			@ -82,6 +88,7 @@ static void rtc_set_time(RTCState *s);
 | 
			
		|||
static void rtc_update_time(RTCState *s);
 | 
			
		||||
static void rtc_set_cmos(RTCState *s);
 | 
			
		||||
static inline int rtc_from_bcd(RTCState *s, int a);
 | 
			
		||||
static uint64_t get_next_alarm(RTCState *s);
 | 
			
		||||
 | 
			
		||||
static inline bool rtc_running(RTCState *s)
 | 
			
		||||
{
 | 
			
		||||
| 
						 | 
				
			
			@ -204,6 +211,7 @@ static void check_update_timer(RTCState *s)
 | 
			
		|||
{
 | 
			
		||||
    uint64_t next_update_time;
 | 
			
		||||
    uint64_t guest_nsec;
 | 
			
		||||
    int next_alarm_sec;
 | 
			
		||||
 | 
			
		||||
    /* From the data sheet: "Holding the dividers in reset prevents
 | 
			
		||||
     * interrupts from operating, while setting the SET bit allows"
 | 
			
		||||
| 
						 | 
				
			
			@ -226,9 +234,21 @@ static void check_update_timer(RTCState *s)
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    guest_nsec = get_guest_rtc_ns(s) % NSEC_PER_SEC;
 | 
			
		||||
    /* reprogram to next second */
 | 
			
		||||
    /* if UF is clear, reprogram to next second */
 | 
			
		||||
    next_update_time = qemu_get_clock_ns(rtc_clock)
 | 
			
		||||
        + NSEC_PER_SEC - guest_nsec;
 | 
			
		||||
 | 
			
		||||
    /* Compute time of next alarm.  One second is already accounted
 | 
			
		||||
     * for in next_update_time.
 | 
			
		||||
     */
 | 
			
		||||
    next_alarm_sec = get_next_alarm(s);
 | 
			
		||||
    s->next_alarm_time = next_update_time + (next_alarm_sec - 1) * NSEC_PER_SEC;
 | 
			
		||||
 | 
			
		||||
    if (s->cmos_data[RTC_REG_C] & REG_C_UF) {
 | 
			
		||||
        /* UF is set, but AF is clear.  Program the timer to target
 | 
			
		||||
         * the alarm time.  */
 | 
			
		||||
        next_update_time = s->next_alarm_time;
 | 
			
		||||
    }
 | 
			
		||||
    if (next_update_time != qemu_timer_expire_time_ns(s->update_timer)) {
 | 
			
		||||
        qemu_mod_timer(s->update_timer, next_update_time);
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			@ -245,31 +265,95 @@ static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
 | 
			
		|||
    return hour;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static uint32_t check_alarm(RTCState *s)
 | 
			
		||||
static uint64_t get_next_alarm(RTCState *s)
 | 
			
		||||
{
 | 
			
		||||
    uint8_t alarm_hour, alarm_min, alarm_sec;
 | 
			
		||||
    uint8_t cur_hour, cur_min, cur_sec;
 | 
			
		||||
    int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
 | 
			
		||||
    int32_t hour, min, sec;
 | 
			
		||||
 | 
			
		||||
    rtc_update_time(s);
 | 
			
		||||
 | 
			
		||||
    alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
 | 
			
		||||
    alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
 | 
			
		||||
    alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
 | 
			
		||||
    alarm_hour = convert_hour(s, alarm_hour);
 | 
			
		||||
    alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
 | 
			
		||||
 | 
			
		||||
    cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
 | 
			
		||||
    cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
 | 
			
		||||
    cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
 | 
			
		||||
    cur_hour = convert_hour(s, cur_hour);
 | 
			
		||||
 | 
			
		||||
    if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0
 | 
			
		||||
                || alarm_sec == cur_sec) &&
 | 
			
		||||
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0
 | 
			
		||||
             || alarm_min == cur_min) &&
 | 
			
		||||
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0
 | 
			
		||||
             || alarm_hour == cur_hour)) {
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
    return 0;
 | 
			
		||||
    if (alarm_hour == -1) {
 | 
			
		||||
        alarm_hour = cur_hour;
 | 
			
		||||
        if (alarm_min == -1) {
 | 
			
		||||
            alarm_min = cur_min;
 | 
			
		||||
            if (alarm_sec == -1) {
 | 
			
		||||
                alarm_sec = cur_sec + 1;
 | 
			
		||||
            } else if (cur_sec > alarm_sec) {
 | 
			
		||||
                alarm_min++;
 | 
			
		||||
            }
 | 
			
		||||
        } else if (cur_min == alarm_min) {
 | 
			
		||||
            if (alarm_sec == -1) {
 | 
			
		||||
                alarm_sec = cur_sec + 1;
 | 
			
		||||
            } else {
 | 
			
		||||
                if (cur_sec > alarm_sec) {
 | 
			
		||||
                    alarm_hour++;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            if (alarm_sec == SEC_PER_MIN) {
 | 
			
		||||
                /* wrap to next hour, minutes is not in don't care mode */
 | 
			
		||||
                alarm_sec = 0;
 | 
			
		||||
                alarm_hour++;
 | 
			
		||||
            }
 | 
			
		||||
        } else if (cur_min > alarm_min) {
 | 
			
		||||
            alarm_hour++;
 | 
			
		||||
        }
 | 
			
		||||
    } else if (cur_hour == alarm_hour) {
 | 
			
		||||
        if (alarm_min == -1) {
 | 
			
		||||
            alarm_min = cur_min;
 | 
			
		||||
            if (alarm_sec == -1) {
 | 
			
		||||
                alarm_sec = cur_sec + 1;
 | 
			
		||||
            } else if (cur_sec > alarm_sec) {
 | 
			
		||||
                alarm_min++;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (alarm_sec == SEC_PER_MIN) {
 | 
			
		||||
                alarm_sec = 0;
 | 
			
		||||
                alarm_min++;
 | 
			
		||||
            }
 | 
			
		||||
            /* wrap to next day, hour is not in don't care mode */
 | 
			
		||||
            alarm_min %= MIN_PER_HOUR;
 | 
			
		||||
        } else if (cur_min == alarm_min) {
 | 
			
		||||
            if (alarm_sec == -1) {
 | 
			
		||||
                alarm_sec = cur_sec + 1;
 | 
			
		||||
            }
 | 
			
		||||
            /* wrap to next day, hours+minutes not in don't care mode */
 | 
			
		||||
            alarm_sec %= SEC_PER_MIN;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* values that are still don't care fire at the next min/sec */
 | 
			
		||||
    if (alarm_min == -1) {
 | 
			
		||||
        alarm_min = 0;
 | 
			
		||||
    }
 | 
			
		||||
    if (alarm_sec == -1) {
 | 
			
		||||
        alarm_sec = 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* keep values in range */
 | 
			
		||||
    if (alarm_sec == SEC_PER_MIN) {
 | 
			
		||||
        alarm_sec = 0;
 | 
			
		||||
        alarm_min++;
 | 
			
		||||
    }
 | 
			
		||||
    if (alarm_min == MIN_PER_HOUR) {
 | 
			
		||||
        alarm_min = 0;
 | 
			
		||||
        alarm_hour++;
 | 
			
		||||
    }
 | 
			
		||||
    alarm_hour %= HOUR_PER_DAY;
 | 
			
		||||
 | 
			
		||||
    hour = alarm_hour - cur_hour;
 | 
			
		||||
    min = hour * MIN_PER_HOUR + alarm_min - cur_min;
 | 
			
		||||
    sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
 | 
			
		||||
    return sec <= 0 ? sec + SEC_PER_DAY : sec;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void rtc_update_timer(void *opaque)
 | 
			
		||||
| 
						 | 
				
			
			@ -284,12 +368,13 @@ static void rtc_update_timer(void *opaque)
 | 
			
		|||
    rtc_update_time(s);
 | 
			
		||||
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 | 
			
		||||
 | 
			
		||||
    if (check_alarm(s)) {
 | 
			
		||||
    if (qemu_get_clock_ns(rtc_clock) >= s->next_alarm_time) {
 | 
			
		||||
        irqs |= REG_C_AF;
 | 
			
		||||
        if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
 | 
			
		||||
            qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
 | 
			
		||||
    s->cmos_data[RTC_REG_C] |= irqs;
 | 
			
		||||
    if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
 | 
			
		||||
| 
						 | 
				
			
			@ -407,6 +492,9 @@ static inline int rtc_to_bcd(RTCState *s, int a)
 | 
			
		|||
 | 
			
		||||
static inline int rtc_from_bcd(RTCState *s, int a)
 | 
			
		||||
{
 | 
			
		||||
    if ((a & 0xc0) == 0xc0) {
 | 
			
		||||
        return -1;
 | 
			
		||||
    }
 | 
			
		||||
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
 | 
			
		||||
        return a;
 | 
			
		||||
    } else {
 | 
			
		||||
| 
						 | 
				
			
			@ -642,6 +730,7 @@ static const VMStateDescription vmstate_rtc = {
 | 
			
		|||
        VMSTATE_UINT64_V(last_update, RTCState, 3),
 | 
			
		||||
        VMSTATE_INT64_V(offset, RTCState, 3),
 | 
			
		||||
        VMSTATE_TIMER_V(update_timer, RTCState, 3),
 | 
			
		||||
        VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
 | 
			
		||||
        VMSTATE_END_OF_LIST()
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue