fpu/softfloat: re-factor sqrt
This is a little bit of a departure from softfloat's original approach as we skip the estimate step in favour of a straight iteration. There is a minor optimisation to avoid calculating more bits of precision than we need however this still brings a performance drop, especially for float64 operations. Suggested-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
		
							parent
							
								
									0c4c909291
								
							
						
					
					
						commit
						c13bb2da9e
					
				
							
								
								
									
										207
									
								
								fpu/softfloat.c
								
								
								
								
							
							
						
						
									
										207
									
								
								fpu/softfloat.c
								
								
								
								
							| 
						 | 
				
			
			@ -1896,6 +1896,102 @@ float64 float64_scalbn(float64 a, int n, float_status *status)
 | 
			
		|||
    return float64_round_pack_canonical(pr, status);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Square Root
 | 
			
		||||
 *
 | 
			
		||||
 * The old softfloat code did an approximation step before zeroing in
 | 
			
		||||
 * on the final result. However for simpleness we just compute the
 | 
			
		||||
 * square root by iterating down from the implicit bit to enough extra
 | 
			
		||||
 * bits to ensure we get a correctly rounded result.
 | 
			
		||||
 *
 | 
			
		||||
 * This does mean however the calculation is slower than before,
 | 
			
		||||
 * especially for 64 bit floats.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p)
 | 
			
		||||
{
 | 
			
		||||
    uint64_t a_frac, r_frac, s_frac;
 | 
			
		||||
    int bit, last_bit;
 | 
			
		||||
 | 
			
		||||
    if (is_nan(a.cls)) {
 | 
			
		||||
        return return_nan(a, s);
 | 
			
		||||
    }
 | 
			
		||||
    if (a.cls == float_class_zero) {
 | 
			
		||||
        return a;  /* sqrt(+-0) = +-0 */
 | 
			
		||||
    }
 | 
			
		||||
    if (a.sign) {
 | 
			
		||||
        s->float_exception_flags |= float_flag_invalid;
 | 
			
		||||
        a.cls = float_class_dnan;
 | 
			
		||||
        return a;
 | 
			
		||||
    }
 | 
			
		||||
    if (a.cls == float_class_inf) {
 | 
			
		||||
        return a;  /* sqrt(+inf) = +inf */
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(a.cls == float_class_normal);
 | 
			
		||||
 | 
			
		||||
    /* We need two overflow bits at the top. Adding room for that is a
 | 
			
		||||
     * right shift. If the exponent is odd, we can discard the low bit
 | 
			
		||||
     * by multiplying the fraction by 2; that's a left shift. Combine
 | 
			
		||||
     * those and we shift right if the exponent is even.
 | 
			
		||||
     */
 | 
			
		||||
    a_frac = a.frac;
 | 
			
		||||
    if (!(a.exp & 1)) {
 | 
			
		||||
        a_frac >>= 1;
 | 
			
		||||
    }
 | 
			
		||||
    a.exp >>= 1;
 | 
			
		||||
 | 
			
		||||
    /* Bit-by-bit computation of sqrt.  */
 | 
			
		||||
    r_frac = 0;
 | 
			
		||||
    s_frac = 0;
 | 
			
		||||
 | 
			
		||||
    /* Iterate from implicit bit down to the 3 extra bits to compute a
 | 
			
		||||
     * properly rounded result. Remember we've inserted one more bit
 | 
			
		||||
     * at the top, so these positions are one less.
 | 
			
		||||
     */
 | 
			
		||||
    bit = DECOMPOSED_BINARY_POINT - 1;
 | 
			
		||||
    last_bit = MAX(p->frac_shift - 4, 0);
 | 
			
		||||
    do {
 | 
			
		||||
        uint64_t q = 1ULL << bit;
 | 
			
		||||
        uint64_t t_frac = s_frac + q;
 | 
			
		||||
        if (t_frac <= a_frac) {
 | 
			
		||||
            s_frac = t_frac + q;
 | 
			
		||||
            a_frac -= t_frac;
 | 
			
		||||
            r_frac += q;
 | 
			
		||||
        }
 | 
			
		||||
        a_frac <<= 1;
 | 
			
		||||
    } while (--bit >= last_bit);
 | 
			
		||||
 | 
			
		||||
    /* Undo the right shift done above. If there is any remaining
 | 
			
		||||
     * fraction, the result is inexact. Set the sticky bit.
 | 
			
		||||
     */
 | 
			
		||||
    a.frac = (r_frac << 1) + (a_frac != 0);
 | 
			
		||||
 | 
			
		||||
    return a;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float16 __attribute__((flatten)) float16_sqrt(float16 a, float_status *status)
 | 
			
		||||
{
 | 
			
		||||
    FloatParts pa = float16_unpack_canonical(a, status);
 | 
			
		||||
    FloatParts pr = sqrt_float(pa, status, &float16_params);
 | 
			
		||||
    return float16_round_pack_canonical(pr, status);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float32 __attribute__((flatten)) float32_sqrt(float32 a, float_status *status)
 | 
			
		||||
{
 | 
			
		||||
    FloatParts pa = float32_unpack_canonical(a, status);
 | 
			
		||||
    FloatParts pr = sqrt_float(pa, status, &float32_params);
 | 
			
		||||
    return float32_round_pack_canonical(pr, status);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float64 __attribute__((flatten)) float64_sqrt(float64 a, float_status *status)
 | 
			
		||||
{
 | 
			
		||||
    FloatParts pa = float64_unpack_canonical(a, status);
 | 
			
		||||
    FloatParts pr = sqrt_float(pa, status, &float64_params);
 | 
			
		||||
    return float64_round_pack_canonical(pr, status);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*----------------------------------------------------------------------------
 | 
			
		||||
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
 | 
			
		||||
| and 7, and returns the properly rounded 32-bit integer corresponding to the
 | 
			
		||||
| 
						 | 
				
			
			@ -3303,62 +3399,6 @@ float32 float32_rem(float32 a, float32 b, float_status *status)
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*----------------------------------------------------------------------------
 | 
			
		||||
| Returns the square root of the single-precision floating-point value `a'.
 | 
			
		||||
| The operation is performed according to the IEC/IEEE Standard for Binary
 | 
			
		||||
| Floating-Point Arithmetic.
 | 
			
		||||
*----------------------------------------------------------------------------*/
 | 
			
		||||
 | 
			
		||||
float32 float32_sqrt(float32 a, float_status *status)
 | 
			
		||||
{
 | 
			
		||||
    flag aSign;
 | 
			
		||||
    int aExp, zExp;
 | 
			
		||||
    uint32_t aSig, zSig;
 | 
			
		||||
    uint64_t rem, term;
 | 
			
		||||
    a = float32_squash_input_denormal(a, status);
 | 
			
		||||
 | 
			
		||||
    aSig = extractFloat32Frac( a );
 | 
			
		||||
    aExp = extractFloat32Exp( a );
 | 
			
		||||
    aSign = extractFloat32Sign( a );
 | 
			
		||||
    if ( aExp == 0xFF ) {
 | 
			
		||||
        if (aSig) {
 | 
			
		||||
            return propagateFloat32NaN(a, float32_zero, status);
 | 
			
		||||
        }
 | 
			
		||||
        if ( ! aSign ) return a;
 | 
			
		||||
        float_raise(float_flag_invalid, status);
 | 
			
		||||
        return float32_default_nan(status);
 | 
			
		||||
    }
 | 
			
		||||
    if ( aSign ) {
 | 
			
		||||
        if ( ( aExp | aSig ) == 0 ) return a;
 | 
			
		||||
        float_raise(float_flag_invalid, status);
 | 
			
		||||
        return float32_default_nan(status);
 | 
			
		||||
    }
 | 
			
		||||
    if ( aExp == 0 ) {
 | 
			
		||||
        if ( aSig == 0 ) return float32_zero;
 | 
			
		||||
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | 
			
		||||
    }
 | 
			
		||||
    zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
 | 
			
		||||
    aSig = ( aSig | 0x00800000 )<<8;
 | 
			
		||||
    zSig = estimateSqrt32( aExp, aSig ) + 2;
 | 
			
		||||
    if ( ( zSig & 0x7F ) <= 5 ) {
 | 
			
		||||
        if ( zSig < 2 ) {
 | 
			
		||||
            zSig = 0x7FFFFFFF;
 | 
			
		||||
            goto roundAndPack;
 | 
			
		||||
        }
 | 
			
		||||
        aSig >>= aExp & 1;
 | 
			
		||||
        term = ( (uint64_t) zSig ) * zSig;
 | 
			
		||||
        rem = ( ( (uint64_t) aSig )<<32 ) - term;
 | 
			
		||||
        while ( (int64_t) rem < 0 ) {
 | 
			
		||||
            --zSig;
 | 
			
		||||
            rem += ( ( (uint64_t) zSig )<<1 ) | 1;
 | 
			
		||||
        }
 | 
			
		||||
        zSig |= ( rem != 0 );
 | 
			
		||||
    }
 | 
			
		||||
    shift32RightJamming( zSig, 1, &zSig );
 | 
			
		||||
 roundAndPack:
 | 
			
		||||
    return roundAndPackFloat32(0, zExp, zSig, status);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*----------------------------------------------------------------------------
 | 
			
		||||
| Returns the binary exponential of the single-precision floating-point value
 | 
			
		||||
| 
						 | 
				
			
			@ -4202,61 +4242,6 @@ float64 float64_rem(float64 a, float64 b, float_status *status)
 | 
			
		|||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*----------------------------------------------------------------------------
 | 
			
		||||
| Returns the square root of the double-precision floating-point value `a'.
 | 
			
		||||
| The operation is performed according to the IEC/IEEE Standard for Binary
 | 
			
		||||
| Floating-Point Arithmetic.
 | 
			
		||||
*----------------------------------------------------------------------------*/
 | 
			
		||||
 | 
			
		||||
float64 float64_sqrt(float64 a, float_status *status)
 | 
			
		||||
{
 | 
			
		||||
    flag aSign;
 | 
			
		||||
    int aExp, zExp;
 | 
			
		||||
    uint64_t aSig, zSig, doubleZSig;
 | 
			
		||||
    uint64_t rem0, rem1, term0, term1;
 | 
			
		||||
    a = float64_squash_input_denormal(a, status);
 | 
			
		||||
 | 
			
		||||
    aSig = extractFloat64Frac( a );
 | 
			
		||||
    aExp = extractFloat64Exp( a );
 | 
			
		||||
    aSign = extractFloat64Sign( a );
 | 
			
		||||
    if ( aExp == 0x7FF ) {
 | 
			
		||||
        if (aSig) {
 | 
			
		||||
            return propagateFloat64NaN(a, a, status);
 | 
			
		||||
        }
 | 
			
		||||
        if ( ! aSign ) return a;
 | 
			
		||||
        float_raise(float_flag_invalid, status);
 | 
			
		||||
        return float64_default_nan(status);
 | 
			
		||||
    }
 | 
			
		||||
    if ( aSign ) {
 | 
			
		||||
        if ( ( aExp | aSig ) == 0 ) return a;
 | 
			
		||||
        float_raise(float_flag_invalid, status);
 | 
			
		||||
        return float64_default_nan(status);
 | 
			
		||||
    }
 | 
			
		||||
    if ( aExp == 0 ) {
 | 
			
		||||
        if ( aSig == 0 ) return float64_zero;
 | 
			
		||||
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | 
			
		||||
    }
 | 
			
		||||
    zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
 | 
			
		||||
    aSig |= LIT64( 0x0010000000000000 );
 | 
			
		||||
    zSig = estimateSqrt32( aExp, aSig>>21 );
 | 
			
		||||
    aSig <<= 9 - ( aExp & 1 );
 | 
			
		||||
    zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
 | 
			
		||||
    if ( ( zSig & 0x1FF ) <= 5 ) {
 | 
			
		||||
        doubleZSig = zSig<<1;
 | 
			
		||||
        mul64To128( zSig, zSig, &term0, &term1 );
 | 
			
		||||
        sub128( aSig, 0, term0, term1, &rem0, &rem1 );
 | 
			
		||||
        while ( (int64_t) rem0 < 0 ) {
 | 
			
		||||
            --zSig;
 | 
			
		||||
            doubleZSig -= 2;
 | 
			
		||||
            add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
 | 
			
		||||
        }
 | 
			
		||||
        zSig |= ( ( rem0 | rem1 ) != 0 );
 | 
			
		||||
    }
 | 
			
		||||
    return roundAndPackFloat64(0, zExp, zSig, status);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*----------------------------------------------------------------------------
 | 
			
		||||
| Returns the binary log of the double-precision floating-point value `a'.
 | 
			
		||||
| The operation is performed according to the IEC/IEEE Standard for Binary
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -251,6 +251,7 @@ float16 float16_minnum(float16, float16, float_status *status);
 | 
			
		|||
float16 float16_maxnum(float16, float16, float_status *status);
 | 
			
		||||
float16 float16_minnummag(float16, float16, float_status *status);
 | 
			
		||||
float16 float16_maxnummag(float16, float16, float_status *status);
 | 
			
		||||
float16 float16_sqrt(float16, float_status *status);
 | 
			
		||||
int float16_compare(float16, float16, float_status *status);
 | 
			
		||||
int float16_compare_quiet(float16, float16, float_status *status);
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue