/* * m68k FPU helpers * * Copyright (c) 2006-2007 CodeSourcery * Written by Paul Brook * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" int32_t HELPER(reds32)(CPUM68KState *env, FPReg *val) { return floatx80_to_int32(val->d, &env->fp_status); } float32 HELPER(redf32)(CPUM68KState *env, FPReg *val) { return floatx80_to_float32(val->d, &env->fp_status); } void HELPER(exts32)(CPUM68KState *env, FPReg *res, int32_t val) { res->d = int32_to_floatx80(val, &env->fp_status); } void HELPER(extf32)(CPUM68KState *env, FPReg *res, float32 val) { res->d = float32_to_floatx80(val, &env->fp_status); } void HELPER(extf64)(CPUM68KState *env, FPReg *res, float64 val) { res->d = float64_to_floatx80(val, &env->fp_status); } float64 HELPER(redf64)(CPUM68KState *env, FPReg *val) { return floatx80_to_float64(val->d, &env->fp_status); } void HELPER(firound)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_round_to_int(val->d, &env->fp_status); } static void m68k_restore_precision_mode(CPUM68KState *env) { switch (env->fpcr & FPCR_PREC_MASK) { case FPCR_PREC_X: /* extended */ set_floatx80_rounding_precision(80, &env->fp_status); break; case FPCR_PREC_S: /* single */ set_floatx80_rounding_precision(32, &env->fp_status); break; case FPCR_PREC_D: /* double */ set_floatx80_rounding_precision(64, &env->fp_status); break; case FPCR_PREC_U: /* undefined */ default: break; } } static void cf_restore_precision_mode(CPUM68KState *env) { if (env->fpcr & FPCR_PREC_S) { /* single */ set_floatx80_rounding_precision(32, &env->fp_status); } else { /* double */ set_floatx80_rounding_precision(64, &env->fp_status); } } static void restore_rounding_mode(CPUM68KState *env) { switch (env->fpcr & FPCR_RND_MASK) { case FPCR_RND_N: /* round to nearest */ set_float_rounding_mode(float_round_nearest_even, &env->fp_status); break; case FPCR_RND_Z: /* round to zero */ set_float_rounding_mode(float_round_to_zero, &env->fp_status); break; case FPCR_RND_M: /* round toward minus infinity */ set_float_rounding_mode(float_round_down, &env->fp_status); break; case FPCR_RND_P: /* round toward positive infinity */ set_float_rounding_mode(float_round_up, &env->fp_status); break; } } void cpu_m68k_set_fpcr(CPUM68KState *env, uint32_t val) { env->fpcr = val & 0xffff; if (m68k_feature(env, M68K_FEATURE_CF_FPU)) { cf_restore_precision_mode(env); } else { m68k_restore_precision_mode(env); } restore_rounding_mode(env); } void HELPER(fitrunc)(CPUM68KState *env, FPReg *res, FPReg *val) { int rounding_mode = get_float_rounding_mode(&env->fp_status); set_float_rounding_mode(float_round_to_zero, &env->fp_status); res->d = floatx80_round_to_int(val->d, &env->fp_status); set_float_rounding_mode(rounding_mode, &env->fp_status); } void HELPER(set_fpcr)(CPUM68KState *env, uint32_t val) { cpu_m68k_set_fpcr(env, val); } void HELPER(fsqrt)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_sqrt(val->d, &env->fp_status); } void HELPER(fabs)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_abs(val->d); } void HELPER(fchs)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_chs(val->d); } void HELPER(fadd)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { res->d = floatx80_add(val0->d, val1->d, &env->fp_status); } void HELPER(fsub)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { res->d = floatx80_sub(val1->d, val0->d, &env->fp_status); } void HELPER(fmul)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { res->d = floatx80_mul(val0->d, val1->d, &env->fp_status); } void HELPER(fdiv)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { res->d = floatx80_div(val1->d, val0->d, &env->fp_status); } static int float_comp_to_cc(int float_compare) { switch (float_compare) { case float_relation_equal: return FPSR_CC_Z; case float_relation_less: return FPSR_CC_N; case float_relation_unordered: return FPSR_CC_A; case float_relation_greater: return 0; default: g_assert_not_reached(); } } void HELPER(fcmp)(CPUM68KState *env, FPReg *val0, FPReg *val1) { int float_compare; float_compare = floatx80_compare(val1->d, val0->d, &env->fp_status); env->fpsr = (env->fpsr & ~FPSR_CC_MASK) | float_comp_to_cc(float_compare); } void HELPER(ftst)(CPUM68KState *env, FPReg *val) { uint32_t cc = 0; if (floatx80_is_neg(val->d)) { cc |= FPSR_CC_N; } if (floatx80_is_any_nan(val->d)) { cc |= FPSR_CC_A; } else if (floatx80_is_infinity(val->d)) { cc |= FPSR_CC_I; } else if (floatx80_is_zero(val->d)) { cc |= FPSR_CC_Z; } env->fpsr = (env->fpsr & ~FPSR_CC_MASK) | cc; }