3054 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			3054 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * gdb server stub
 | |
|  *
 | |
|  * Copyright (c) 2003-2005 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include "config.h"
 | |
| #include "qemu-common.h"
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <stdarg.h>
 | |
| #include <string.h>
 | |
| #include <errno.h>
 | |
| #include <unistd.h>
 | |
| #include <fcntl.h>
 | |
| 
 | |
| #include "qemu.h"
 | |
| #else
 | |
| #include "monitor/monitor.h"
 | |
| #include "char/char.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "exec/gdbstub.h"
 | |
| #endif
 | |
| 
 | |
| #define MAX_PACKET_LENGTH 4096
 | |
| 
 | |
| #include "cpu.h"
 | |
| #include "qemu/sockets.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "qemu/bitops.h"
 | |
| 
 | |
| #ifndef TARGET_CPU_MEMORY_RW_DEBUG
 | |
| static inline int target_memory_rw_debug(CPUArchState *env, target_ulong addr,
 | |
|                                          uint8_t *buf, int len, int is_write)
 | |
| {
 | |
|     return cpu_memory_rw_debug(env, addr, buf, len, is_write);
 | |
| }
 | |
| #else
 | |
| /* target_memory_rw_debug() defined in cpu.h */
 | |
| #endif
 | |
| 
 | |
| enum {
 | |
|     GDB_SIGNAL_0 = 0,
 | |
|     GDB_SIGNAL_INT = 2,
 | |
|     GDB_SIGNAL_QUIT = 3,
 | |
|     GDB_SIGNAL_TRAP = 5,
 | |
|     GDB_SIGNAL_ABRT = 6,
 | |
|     GDB_SIGNAL_ALRM = 14,
 | |
|     GDB_SIGNAL_IO = 23,
 | |
|     GDB_SIGNAL_XCPU = 24,
 | |
|     GDB_SIGNAL_UNKNOWN = 143
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| 
 | |
| /* Map target signal numbers to GDB protocol signal numbers and vice
 | |
|  * versa.  For user emulation's currently supported systems, we can
 | |
|  * assume most signals are defined.
 | |
|  */
 | |
| 
 | |
| static int gdb_signal_table[] = {
 | |
|     0,
 | |
|     TARGET_SIGHUP,
 | |
|     TARGET_SIGINT,
 | |
|     TARGET_SIGQUIT,
 | |
|     TARGET_SIGILL,
 | |
|     TARGET_SIGTRAP,
 | |
|     TARGET_SIGABRT,
 | |
|     -1, /* SIGEMT */
 | |
|     TARGET_SIGFPE,
 | |
|     TARGET_SIGKILL,
 | |
|     TARGET_SIGBUS,
 | |
|     TARGET_SIGSEGV,
 | |
|     TARGET_SIGSYS,
 | |
|     TARGET_SIGPIPE,
 | |
|     TARGET_SIGALRM,
 | |
|     TARGET_SIGTERM,
 | |
|     TARGET_SIGURG,
 | |
|     TARGET_SIGSTOP,
 | |
|     TARGET_SIGTSTP,
 | |
|     TARGET_SIGCONT,
 | |
|     TARGET_SIGCHLD,
 | |
|     TARGET_SIGTTIN,
 | |
|     TARGET_SIGTTOU,
 | |
|     TARGET_SIGIO,
 | |
|     TARGET_SIGXCPU,
 | |
|     TARGET_SIGXFSZ,
 | |
|     TARGET_SIGVTALRM,
 | |
|     TARGET_SIGPROF,
 | |
|     TARGET_SIGWINCH,
 | |
|     -1, /* SIGLOST */
 | |
|     TARGET_SIGUSR1,
 | |
|     TARGET_SIGUSR2,
 | |
| #ifdef TARGET_SIGPWR
 | |
|     TARGET_SIGPWR,
 | |
| #else
 | |
|     -1,
 | |
| #endif
 | |
|     -1, /* SIGPOLL */
 | |
|     -1,
 | |
|     -1,
 | |
|     -1,
 | |
|     -1,
 | |
|     -1,
 | |
|     -1,
 | |
|     -1,
 | |
|     -1,
 | |
|     -1,
 | |
|     -1,
 | |
|     -1,
 | |
| #ifdef __SIGRTMIN
 | |
|     __SIGRTMIN + 1,
 | |
|     __SIGRTMIN + 2,
 | |
|     __SIGRTMIN + 3,
 | |
|     __SIGRTMIN + 4,
 | |
|     __SIGRTMIN + 5,
 | |
|     __SIGRTMIN + 6,
 | |
|     __SIGRTMIN + 7,
 | |
|     __SIGRTMIN + 8,
 | |
|     __SIGRTMIN + 9,
 | |
|     __SIGRTMIN + 10,
 | |
|     __SIGRTMIN + 11,
 | |
|     __SIGRTMIN + 12,
 | |
|     __SIGRTMIN + 13,
 | |
|     __SIGRTMIN + 14,
 | |
|     __SIGRTMIN + 15,
 | |
|     __SIGRTMIN + 16,
 | |
|     __SIGRTMIN + 17,
 | |
|     __SIGRTMIN + 18,
 | |
|     __SIGRTMIN + 19,
 | |
|     __SIGRTMIN + 20,
 | |
|     __SIGRTMIN + 21,
 | |
|     __SIGRTMIN + 22,
 | |
|     __SIGRTMIN + 23,
 | |
|     __SIGRTMIN + 24,
 | |
|     __SIGRTMIN + 25,
 | |
|     __SIGRTMIN + 26,
 | |
|     __SIGRTMIN + 27,
 | |
|     __SIGRTMIN + 28,
 | |
|     __SIGRTMIN + 29,
 | |
|     __SIGRTMIN + 30,
 | |
|     __SIGRTMIN + 31,
 | |
|     -1, /* SIGCANCEL */
 | |
|     __SIGRTMIN,
 | |
|     __SIGRTMIN + 32,
 | |
|     __SIGRTMIN + 33,
 | |
|     __SIGRTMIN + 34,
 | |
|     __SIGRTMIN + 35,
 | |
|     __SIGRTMIN + 36,
 | |
|     __SIGRTMIN + 37,
 | |
|     __SIGRTMIN + 38,
 | |
|     __SIGRTMIN + 39,
 | |
|     __SIGRTMIN + 40,
 | |
|     __SIGRTMIN + 41,
 | |
|     __SIGRTMIN + 42,
 | |
|     __SIGRTMIN + 43,
 | |
|     __SIGRTMIN + 44,
 | |
|     __SIGRTMIN + 45,
 | |
|     __SIGRTMIN + 46,
 | |
|     __SIGRTMIN + 47,
 | |
|     __SIGRTMIN + 48,
 | |
|     __SIGRTMIN + 49,
 | |
|     __SIGRTMIN + 50,
 | |
|     __SIGRTMIN + 51,
 | |
|     __SIGRTMIN + 52,
 | |
|     __SIGRTMIN + 53,
 | |
|     __SIGRTMIN + 54,
 | |
|     __SIGRTMIN + 55,
 | |
|     __SIGRTMIN + 56,
 | |
|     __SIGRTMIN + 57,
 | |
|     __SIGRTMIN + 58,
 | |
|     __SIGRTMIN + 59,
 | |
|     __SIGRTMIN + 60,
 | |
|     __SIGRTMIN + 61,
 | |
|     __SIGRTMIN + 62,
 | |
|     __SIGRTMIN + 63,
 | |
|     __SIGRTMIN + 64,
 | |
|     __SIGRTMIN + 65,
 | |
|     __SIGRTMIN + 66,
 | |
|     __SIGRTMIN + 67,
 | |
|     __SIGRTMIN + 68,
 | |
|     __SIGRTMIN + 69,
 | |
|     __SIGRTMIN + 70,
 | |
|     __SIGRTMIN + 71,
 | |
|     __SIGRTMIN + 72,
 | |
|     __SIGRTMIN + 73,
 | |
|     __SIGRTMIN + 74,
 | |
|     __SIGRTMIN + 75,
 | |
|     __SIGRTMIN + 76,
 | |
|     __SIGRTMIN + 77,
 | |
|     __SIGRTMIN + 78,
 | |
|     __SIGRTMIN + 79,
 | |
|     __SIGRTMIN + 80,
 | |
|     __SIGRTMIN + 81,
 | |
|     __SIGRTMIN + 82,
 | |
|     __SIGRTMIN + 83,
 | |
|     __SIGRTMIN + 84,
 | |
|     __SIGRTMIN + 85,
 | |
|     __SIGRTMIN + 86,
 | |
|     __SIGRTMIN + 87,
 | |
|     __SIGRTMIN + 88,
 | |
|     __SIGRTMIN + 89,
 | |
|     __SIGRTMIN + 90,
 | |
|     __SIGRTMIN + 91,
 | |
|     __SIGRTMIN + 92,
 | |
|     __SIGRTMIN + 93,
 | |
|     __SIGRTMIN + 94,
 | |
|     __SIGRTMIN + 95,
 | |
|     -1, /* SIGINFO */
 | |
|     -1, /* UNKNOWN */
 | |
|     -1, /* DEFAULT */
 | |
|     -1,
 | |
|     -1,
 | |
|     -1,
 | |
|     -1,
 | |
|     -1,
 | |
|     -1
 | |
| #endif
 | |
| };
 | |
| #else
 | |
| /* In system mode we only need SIGINT and SIGTRAP; other signals
 | |
|    are not yet supported.  */
 | |
| 
 | |
| enum {
 | |
|     TARGET_SIGINT = 2,
 | |
|     TARGET_SIGTRAP = 5
 | |
| };
 | |
| 
 | |
| static int gdb_signal_table[] = {
 | |
|     -1,
 | |
|     -1,
 | |
|     TARGET_SIGINT,
 | |
|     -1,
 | |
|     -1,
 | |
|     TARGET_SIGTRAP
 | |
| };
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| static int target_signal_to_gdb (int sig)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
 | |
|         if (gdb_signal_table[i] == sig)
 | |
|             return i;
 | |
|     return GDB_SIGNAL_UNKNOWN;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int gdb_signal_to_target (int sig)
 | |
| {
 | |
|     if (sig < ARRAY_SIZE (gdb_signal_table))
 | |
|         return gdb_signal_table[sig];
 | |
|     else
 | |
|         return -1;
 | |
| }
 | |
| 
 | |
| //#define DEBUG_GDB
 | |
| 
 | |
| typedef struct GDBRegisterState {
 | |
|     int base_reg;
 | |
|     int num_regs;
 | |
|     gdb_reg_cb get_reg;
 | |
|     gdb_reg_cb set_reg;
 | |
|     const char *xml;
 | |
|     struct GDBRegisterState *next;
 | |
| } GDBRegisterState;
 | |
| 
 | |
| enum RSState {
 | |
|     RS_INACTIVE,
 | |
|     RS_IDLE,
 | |
|     RS_GETLINE,
 | |
|     RS_CHKSUM1,
 | |
|     RS_CHKSUM2,
 | |
| };
 | |
| typedef struct GDBState {
 | |
|     CPUArchState *c_cpu; /* current CPU for step/continue ops */
 | |
|     CPUArchState *g_cpu; /* current CPU for other ops */
 | |
|     CPUArchState *query_cpu; /* for q{f|s}ThreadInfo */
 | |
|     enum RSState state; /* parsing state */
 | |
|     char line_buf[MAX_PACKET_LENGTH];
 | |
|     int line_buf_index;
 | |
|     int line_csum;
 | |
|     uint8_t last_packet[MAX_PACKET_LENGTH + 4];
 | |
|     int last_packet_len;
 | |
|     int signal;
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|     int fd;
 | |
|     int running_state;
 | |
| #else
 | |
|     CharDriverState *chr;
 | |
|     CharDriverState *mon_chr;
 | |
| #endif
 | |
|     char syscall_buf[256];
 | |
|     gdb_syscall_complete_cb current_syscall_cb;
 | |
| } GDBState;
 | |
| 
 | |
| /* By default use no IRQs and no timers while single stepping so as to
 | |
|  * make single stepping like an ICE HW step.
 | |
|  */
 | |
| static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
 | |
| 
 | |
| static GDBState *gdbserver_state;
 | |
| 
 | |
| /* This is an ugly hack to cope with both new and old gdb.
 | |
|    If gdb sends qXfer:features:read then assume we're talking to a newish
 | |
|    gdb that understands target descriptions.  */
 | |
| static int gdb_has_xml;
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| /* XXX: This is not thread safe.  Do we care?  */
 | |
| static int gdbserver_fd = -1;
 | |
| 
 | |
| static int get_char(GDBState *s)
 | |
| {
 | |
|     uint8_t ch;
 | |
|     int ret;
 | |
| 
 | |
|     for(;;) {
 | |
|         ret = qemu_recv(s->fd, &ch, 1, 0);
 | |
|         if (ret < 0) {
 | |
|             if (errno == ECONNRESET)
 | |
|                 s->fd = -1;
 | |
|             if (errno != EINTR && errno != EAGAIN)
 | |
|                 return -1;
 | |
|         } else if (ret == 0) {
 | |
|             close(s->fd);
 | |
|             s->fd = -1;
 | |
|             return -1;
 | |
|         } else {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return ch;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static enum {
 | |
|     GDB_SYS_UNKNOWN,
 | |
|     GDB_SYS_ENABLED,
 | |
|     GDB_SYS_DISABLED,
 | |
| } gdb_syscall_mode;
 | |
| 
 | |
| /* If gdb is connected when the first semihosting syscall occurs then use
 | |
|    remote gdb syscalls.  Otherwise use native file IO.  */
 | |
| int use_gdb_syscalls(void)
 | |
| {
 | |
|     if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
 | |
|         gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
 | |
|                                             : GDB_SYS_DISABLED);
 | |
|     }
 | |
|     return gdb_syscall_mode == GDB_SYS_ENABLED;
 | |
| }
 | |
| 
 | |
| /* Resume execution.  */
 | |
| static inline void gdb_continue(GDBState *s)
 | |
| {
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|     s->running_state = 1;
 | |
| #else
 | |
|     vm_start();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void put_buffer(GDBState *s, const uint8_t *buf, int len)
 | |
| {
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|     int ret;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         ret = send(s->fd, buf, len, 0);
 | |
|         if (ret < 0) {
 | |
|             if (errno != EINTR && errno != EAGAIN)
 | |
|                 return;
 | |
|         } else {
 | |
|             buf += ret;
 | |
|             len -= ret;
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     qemu_chr_fe_write(s->chr, buf, len);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int fromhex(int v)
 | |
| {
 | |
|     if (v >= '0' && v <= '9')
 | |
|         return v - '0';
 | |
|     else if (v >= 'A' && v <= 'F')
 | |
|         return v - 'A' + 10;
 | |
|     else if (v >= 'a' && v <= 'f')
 | |
|         return v - 'a' + 10;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| static inline int tohex(int v)
 | |
| {
 | |
|     if (v < 10)
 | |
|         return v + '0';
 | |
|     else
 | |
|         return v - 10 + 'a';
 | |
| }
 | |
| 
 | |
| static void memtohex(char *buf, const uint8_t *mem, int len)
 | |
| {
 | |
|     int i, c;
 | |
|     char *q;
 | |
|     q = buf;
 | |
|     for(i = 0; i < len; i++) {
 | |
|         c = mem[i];
 | |
|         *q++ = tohex(c >> 4);
 | |
|         *q++ = tohex(c & 0xf);
 | |
|     }
 | |
|     *q = '\0';
 | |
| }
 | |
| 
 | |
| static void hextomem(uint8_t *mem, const char *buf, int len)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for(i = 0; i < len; i++) {
 | |
|         mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
 | |
|         buf += 2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* return -1 if error, 0 if OK */
 | |
| static int put_packet_binary(GDBState *s, const char *buf, int len)
 | |
| {
 | |
|     int csum, i;
 | |
|     uint8_t *p;
 | |
| 
 | |
|     for(;;) {
 | |
|         p = s->last_packet;
 | |
|         *(p++) = '$';
 | |
|         memcpy(p, buf, len);
 | |
|         p += len;
 | |
|         csum = 0;
 | |
|         for(i = 0; i < len; i++) {
 | |
|             csum += buf[i];
 | |
|         }
 | |
|         *(p++) = '#';
 | |
|         *(p++) = tohex((csum >> 4) & 0xf);
 | |
|         *(p++) = tohex((csum) & 0xf);
 | |
| 
 | |
|         s->last_packet_len = p - s->last_packet;
 | |
|         put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|         i = get_char(s);
 | |
|         if (i < 0)
 | |
|             return -1;
 | |
|         if (i == '+')
 | |
|             break;
 | |
| #else
 | |
|         break;
 | |
| #endif
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* return -1 if error, 0 if OK */
 | |
| static int put_packet(GDBState *s, const char *buf)
 | |
| {
 | |
| #ifdef DEBUG_GDB
 | |
|     printf("reply='%s'\n", buf);
 | |
| #endif
 | |
| 
 | |
|     return put_packet_binary(s, buf, strlen(buf));
 | |
| }
 | |
| 
 | |
| /* The GDB remote protocol transfers values in target byte order.  This means
 | |
|    we can use the raw memory access routines to access the value buffer.
 | |
|    Conveniently, these also handle the case where the buffer is mis-aligned.
 | |
|  */
 | |
| #define GET_REG8(val) do { \
 | |
|     stb_p(mem_buf, val); \
 | |
|     return 1; \
 | |
|     } while(0)
 | |
| #define GET_REG16(val) do { \
 | |
|     stw_p(mem_buf, val); \
 | |
|     return 2; \
 | |
|     } while(0)
 | |
| #define GET_REG32(val) do { \
 | |
|     stl_p(mem_buf, val); \
 | |
|     return 4; \
 | |
|     } while(0)
 | |
| #define GET_REG64(val) do { \
 | |
|     stq_p(mem_buf, val); \
 | |
|     return 8; \
 | |
|     } while(0)
 | |
| 
 | |
| #if TARGET_LONG_BITS == 64
 | |
| #define GET_REGL(val) GET_REG64(val)
 | |
| #define ldtul_p(addr) ldq_p(addr)
 | |
| #else
 | |
| #define GET_REGL(val) GET_REG32(val)
 | |
| #define ldtul_p(addr) ldl_p(addr)
 | |
| #endif
 | |
| 
 | |
| #if defined(TARGET_I386)
 | |
| 
 | |
| #ifdef TARGET_X86_64
 | |
| static const int gpr_map[16] = {
 | |
|     R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
 | |
|     8, 9, 10, 11, 12, 13, 14, 15
 | |
| };
 | |
| #else
 | |
| #define gpr_map gpr_map32
 | |
| #endif
 | |
| static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
 | |
| 
 | |
| #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
 | |
| 
 | |
| #define IDX_IP_REG      CPU_NB_REGS
 | |
| #define IDX_FLAGS_REG   (IDX_IP_REG + 1)
 | |
| #define IDX_SEG_REGS    (IDX_FLAGS_REG + 1)
 | |
| #define IDX_FP_REGS     (IDX_SEG_REGS + 6)
 | |
| #define IDX_XMM_REGS    (IDX_FP_REGS + 16)
 | |
| #define IDX_MXCSR_REG   (IDX_XMM_REGS + CPU_NB_REGS)
 | |
| 
 | |
| static int cpu_gdb_read_register(CPUX86State *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     if (n < CPU_NB_REGS) {
 | |
|         if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
 | |
|             GET_REG64(env->regs[gpr_map[n]]);
 | |
|         } else if (n < CPU_NB_REGS32) {
 | |
|             GET_REG32(env->regs[gpr_map32[n]]);
 | |
|         }
 | |
|     } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
 | |
| #ifdef USE_X86LDOUBLE
 | |
|         /* FIXME: byteswap float values - after fixing fpregs layout. */
 | |
|         memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
 | |
| #else
 | |
|         memset(mem_buf, 0, 10);
 | |
| #endif
 | |
|         return 10;
 | |
|     } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
 | |
|         n -= IDX_XMM_REGS;
 | |
|         if (n < CPU_NB_REGS32 ||
 | |
|             (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
 | |
|             stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
 | |
|             stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
 | |
|             return 16;
 | |
|         }
 | |
|     } else {
 | |
|         switch (n) {
 | |
|         case IDX_IP_REG:
 | |
|             if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
 | |
|                 GET_REG64(env->eip);
 | |
|             } else {
 | |
|                 GET_REG32(env->eip);
 | |
|             }
 | |
|         case IDX_FLAGS_REG: GET_REG32(env->eflags);
 | |
| 
 | |
|         case IDX_SEG_REGS:     GET_REG32(env->segs[R_CS].selector);
 | |
|         case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
 | |
|         case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
 | |
|         case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
 | |
|         case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
 | |
|         case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
 | |
| 
 | |
|         case IDX_FP_REGS + 8:  GET_REG32(env->fpuc);
 | |
|         case IDX_FP_REGS + 9:  GET_REG32((env->fpus & ~0x3800) |
 | |
|                                          (env->fpstt & 0x7) << 11);
 | |
|         case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
 | |
|         case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
 | |
|         case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
 | |
|         case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
 | |
|         case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
 | |
|         case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
 | |
| 
 | |
|         case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cpu_x86_gdb_load_seg(CPUX86State *env, int sreg, uint8_t *mem_buf)
 | |
| {
 | |
|     uint16_t selector = ldl_p(mem_buf);
 | |
| 
 | |
|     if (selector != env->segs[sreg].selector) {
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|         cpu_x86_load_seg(env, sreg, selector);
 | |
| #else
 | |
|         unsigned int limit, flags;
 | |
|         target_ulong base;
 | |
| 
 | |
|         if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
 | |
|             base = selector << 4;
 | |
|             limit = 0xffff;
 | |
|             flags = 0;
 | |
|         } else {
 | |
|             if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
 | |
|                 return 4;
 | |
|         }
 | |
|         cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
 | |
| #endif
 | |
|     }
 | |
|     return 4;
 | |
| }
 | |
| 
 | |
| static int cpu_gdb_write_register(CPUX86State *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     if (n < CPU_NB_REGS) {
 | |
|         if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
 | |
|             env->regs[gpr_map[n]] = ldtul_p(mem_buf);
 | |
|             return sizeof(target_ulong);
 | |
|         } else if (n < CPU_NB_REGS32) {
 | |
|             n = gpr_map32[n];
 | |
|             env->regs[n] &= ~0xffffffffUL;
 | |
|             env->regs[n] |= (uint32_t)ldl_p(mem_buf);
 | |
|             return 4;
 | |
|         }
 | |
|     } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
 | |
| #ifdef USE_X86LDOUBLE
 | |
|         /* FIXME: byteswap float values - after fixing fpregs layout. */
 | |
|         memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
 | |
| #endif
 | |
|         return 10;
 | |
|     } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
 | |
|         n -= IDX_XMM_REGS;
 | |
|         if (n < CPU_NB_REGS32 ||
 | |
|             (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
 | |
|             env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
 | |
|             env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
 | |
|             return 16;
 | |
|         }
 | |
|     } else {
 | |
|         switch (n) {
 | |
|         case IDX_IP_REG:
 | |
|             if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
 | |
|                 env->eip = ldq_p(mem_buf);
 | |
|                 return 8;
 | |
|             } else {
 | |
|                 env->eip &= ~0xffffffffUL;
 | |
|                 env->eip |= (uint32_t)ldl_p(mem_buf);
 | |
|                 return 4;
 | |
|             }
 | |
|         case IDX_FLAGS_REG:
 | |
|             env->eflags = ldl_p(mem_buf);
 | |
|             return 4;
 | |
| 
 | |
|         case IDX_SEG_REGS:     return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
 | |
|         case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
 | |
|         case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
 | |
|         case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
 | |
|         case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
 | |
|         case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
 | |
| 
 | |
|         case IDX_FP_REGS + 8:
 | |
|             env->fpuc = ldl_p(mem_buf);
 | |
|             return 4;
 | |
|         case IDX_FP_REGS + 9:
 | |
|             tmp = ldl_p(mem_buf);
 | |
|             env->fpstt = (tmp >> 11) & 7;
 | |
|             env->fpus = tmp & ~0x3800;
 | |
|             return 4;
 | |
|         case IDX_FP_REGS + 10: /* ftag */  return 4;
 | |
|         case IDX_FP_REGS + 11: /* fiseg */ return 4;
 | |
|         case IDX_FP_REGS + 12: /* fioff */ return 4;
 | |
|         case IDX_FP_REGS + 13: /* foseg */ return 4;
 | |
|         case IDX_FP_REGS + 14: /* fooff */ return 4;
 | |
|         case IDX_FP_REGS + 15: /* fop */   return 4;
 | |
| 
 | |
|         case IDX_MXCSR_REG:
 | |
|             env->mxcsr = ldl_p(mem_buf);
 | |
|             return 4;
 | |
|         }
 | |
|     }
 | |
|     /* Unrecognised register.  */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #elif defined (TARGET_PPC)
 | |
| 
 | |
| /* Old gdb always expects FP registers.  Newer (xml-aware) gdb only
 | |
|    expects whatever the target description contains.  Due to a
 | |
|    historical mishap the FP registers appear in between core integer
 | |
|    regs and PC, MSR, CR, and so forth.  We hack round this by giving the
 | |
|    FP regs zero size when talking to a newer gdb.  */
 | |
| #define NUM_CORE_REGS 71
 | |
| #if defined (TARGET_PPC64)
 | |
| #define GDB_CORE_XML "power64-core.xml"
 | |
| #else
 | |
| #define GDB_CORE_XML "power-core.xml"
 | |
| #endif
 | |
| 
 | |
| static int cpu_gdb_read_register(CPUPPCState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     if (n < 32) {
 | |
|         /* gprs */
 | |
|         GET_REGL(env->gpr[n]);
 | |
|     } else if (n < 64) {
 | |
|         /* fprs */
 | |
|         if (gdb_has_xml)
 | |
|             return 0;
 | |
|         stfq_p(mem_buf, env->fpr[n-32]);
 | |
|         return 8;
 | |
|     } else {
 | |
|         switch (n) {
 | |
|         case 64: GET_REGL(env->nip);
 | |
|         case 65: GET_REGL(env->msr);
 | |
|         case 66:
 | |
|             {
 | |
|                 uint32_t cr = 0;
 | |
|                 int i;
 | |
|                 for (i = 0; i < 8; i++)
 | |
|                     cr |= env->crf[i] << (32 - ((i + 1) * 4));
 | |
|                 GET_REG32(cr);
 | |
|             }
 | |
|         case 67: GET_REGL(env->lr);
 | |
|         case 68: GET_REGL(env->ctr);
 | |
|         case 69: GET_REGL(env->xer);
 | |
|         case 70:
 | |
|             {
 | |
|                 if (gdb_has_xml)
 | |
|                     return 0;
 | |
|                 GET_REG32(env->fpscr);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cpu_gdb_write_register(CPUPPCState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     if (n < 32) {
 | |
|         /* gprs */
 | |
|         env->gpr[n] = ldtul_p(mem_buf);
 | |
|         return sizeof(target_ulong);
 | |
|     } else if (n < 64) {
 | |
|         /* fprs */
 | |
|         if (gdb_has_xml)
 | |
|             return 0;
 | |
|         env->fpr[n-32] = ldfq_p(mem_buf);
 | |
|         return 8;
 | |
|     } else {
 | |
|         switch (n) {
 | |
|         case 64:
 | |
|             env->nip = ldtul_p(mem_buf);
 | |
|             return sizeof(target_ulong);
 | |
|         case 65:
 | |
|             ppc_store_msr(env, ldtul_p(mem_buf));
 | |
|             return sizeof(target_ulong);
 | |
|         case 66:
 | |
|             {
 | |
|                 uint32_t cr = ldl_p(mem_buf);
 | |
|                 int i;
 | |
|                 for (i = 0; i < 8; i++)
 | |
|                     env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
 | |
|                 return 4;
 | |
|             }
 | |
|         case 67:
 | |
|             env->lr = ldtul_p(mem_buf);
 | |
|             return sizeof(target_ulong);
 | |
|         case 68:
 | |
|             env->ctr = ldtul_p(mem_buf);
 | |
|             return sizeof(target_ulong);
 | |
|         case 69:
 | |
|             env->xer = ldtul_p(mem_buf);
 | |
|             return sizeof(target_ulong);
 | |
|         case 70:
 | |
|             /* fpscr */
 | |
|             if (gdb_has_xml)
 | |
|                 return 0;
 | |
|             return 4;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #elif defined (TARGET_SPARC)
 | |
| 
 | |
| #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
 | |
| #define NUM_CORE_REGS 86
 | |
| #else
 | |
| #define NUM_CORE_REGS 72
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_ABI32
 | |
| #define GET_REGA(val) GET_REG32(val)
 | |
| #else
 | |
| #define GET_REGA(val) GET_REGL(val)
 | |
| #endif
 | |
| 
 | |
| static int cpu_gdb_read_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     if (n < 8) {
 | |
|         /* g0..g7 */
 | |
|         GET_REGA(env->gregs[n]);
 | |
|     }
 | |
|     if (n < 32) {
 | |
|         /* register window */
 | |
|         GET_REGA(env->regwptr[n - 8]);
 | |
|     }
 | |
| #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
 | |
|     if (n < 64) {
 | |
|         /* fprs */
 | |
|         if (n & 1) {
 | |
|             GET_REG32(env->fpr[(n - 32) / 2].l.lower);
 | |
|         } else {
 | |
|             GET_REG32(env->fpr[(n - 32) / 2].l.upper);
 | |
|         }
 | |
|     }
 | |
|     /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
 | |
|     switch (n) {
 | |
|     case 64: GET_REGA(env->y);
 | |
|     case 65: GET_REGA(cpu_get_psr(env));
 | |
|     case 66: GET_REGA(env->wim);
 | |
|     case 67: GET_REGA(env->tbr);
 | |
|     case 68: GET_REGA(env->pc);
 | |
|     case 69: GET_REGA(env->npc);
 | |
|     case 70: GET_REGA(env->fsr);
 | |
|     case 71: GET_REGA(0); /* csr */
 | |
|     default: GET_REGA(0);
 | |
|     }
 | |
| #else
 | |
|     if (n < 64) {
 | |
|         /* f0-f31 */
 | |
|         if (n & 1) {
 | |
|             GET_REG32(env->fpr[(n - 32) / 2].l.lower);
 | |
|         } else {
 | |
|             GET_REG32(env->fpr[(n - 32) / 2].l.upper);
 | |
|         }
 | |
|     }
 | |
|     if (n < 80) {
 | |
|         /* f32-f62 (double width, even numbers only) */
 | |
|         GET_REG64(env->fpr[(n - 32) / 2].ll);
 | |
|     }
 | |
|     switch (n) {
 | |
|     case 80: GET_REGL(env->pc);
 | |
|     case 81: GET_REGL(env->npc);
 | |
|     case 82: GET_REGL((cpu_get_ccr(env) << 32) |
 | |
|                       ((env->asi & 0xff) << 24) |
 | |
|                       ((env->pstate & 0xfff) << 8) |
 | |
|                       cpu_get_cwp64(env));
 | |
|     case 83: GET_REGL(env->fsr);
 | |
|     case 84: GET_REGL(env->fprs);
 | |
|     case 85: GET_REGL(env->y);
 | |
|     }
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cpu_gdb_write_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
| #if defined(TARGET_ABI32)
 | |
|     abi_ulong tmp;
 | |
| 
 | |
|     tmp = ldl_p(mem_buf);
 | |
| #else
 | |
|     target_ulong tmp;
 | |
| 
 | |
|     tmp = ldtul_p(mem_buf);
 | |
| #endif
 | |
| 
 | |
|     if (n < 8) {
 | |
|         /* g0..g7 */
 | |
|         env->gregs[n] = tmp;
 | |
|     } else if (n < 32) {
 | |
|         /* register window */
 | |
|         env->regwptr[n - 8] = tmp;
 | |
|     }
 | |
| #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
 | |
|     else if (n < 64) {
 | |
|         /* fprs */
 | |
|         /* f0-f31 */
 | |
|         if (n & 1) {
 | |
|             env->fpr[(n - 32) / 2].l.lower = tmp;
 | |
|         } else {
 | |
|             env->fpr[(n - 32) / 2].l.upper = tmp;
 | |
|         }
 | |
|     } else {
 | |
|         /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
 | |
|         switch (n) {
 | |
|         case 64: env->y = tmp; break;
 | |
|         case 65: cpu_put_psr(env, tmp); break;
 | |
|         case 66: env->wim = tmp; break;
 | |
|         case 67: env->tbr = tmp; break;
 | |
|         case 68: env->pc = tmp; break;
 | |
|         case 69: env->npc = tmp; break;
 | |
|         case 70: env->fsr = tmp; break;
 | |
|         default: return 0;
 | |
|         }
 | |
|     }
 | |
|     return 4;
 | |
| #else
 | |
|     else if (n < 64) {
 | |
|         /* f0-f31 */
 | |
|         tmp = ldl_p(mem_buf);
 | |
|         if (n & 1) {
 | |
|             env->fpr[(n - 32) / 2].l.lower = tmp;
 | |
|         } else {
 | |
|             env->fpr[(n - 32) / 2].l.upper = tmp;
 | |
|         }
 | |
|         return 4;
 | |
|     } else if (n < 80) {
 | |
|         /* f32-f62 (double width, even numbers only) */
 | |
|         env->fpr[(n - 32) / 2].ll = tmp;
 | |
|     } else {
 | |
|         switch (n) {
 | |
|         case 80: env->pc = tmp; break;
 | |
|         case 81: env->npc = tmp; break;
 | |
|         case 82:
 | |
|             cpu_put_ccr(env, tmp >> 32);
 | |
| 	    env->asi = (tmp >> 24) & 0xff;
 | |
| 	    env->pstate = (tmp >> 8) & 0xfff;
 | |
|             cpu_put_cwp64(env, tmp & 0xff);
 | |
| 	    break;
 | |
|         case 83: env->fsr = tmp; break;
 | |
|         case 84: env->fprs = tmp; break;
 | |
|         case 85: env->y = tmp; break;
 | |
|         default: return 0;
 | |
|         }
 | |
|     }
 | |
|     return 8;
 | |
| #endif
 | |
| }
 | |
| #elif defined (TARGET_ARM)
 | |
| 
 | |
| /* Old gdb always expect FPA registers.  Newer (xml-aware) gdb only expect
 | |
|    whatever the target description contains.  Due to a historical mishap
 | |
|    the FPA registers appear in between core integer regs and the CPSR.
 | |
|    We hack round this by giving the FPA regs zero size when talking to a
 | |
|    newer gdb.  */
 | |
| #define NUM_CORE_REGS 26
 | |
| #define GDB_CORE_XML "arm-core.xml"
 | |
| 
 | |
| static int cpu_gdb_read_register(CPUARMState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     if (n < 16) {
 | |
|         /* Core integer register.  */
 | |
|         GET_REG32(env->regs[n]);
 | |
|     }
 | |
|     if (n < 24) {
 | |
|         /* FPA registers.  */
 | |
|         if (gdb_has_xml)
 | |
|             return 0;
 | |
|         memset(mem_buf, 0, 12);
 | |
|         return 12;
 | |
|     }
 | |
|     switch (n) {
 | |
|     case 24:
 | |
|         /* FPA status register.  */
 | |
|         if (gdb_has_xml)
 | |
|             return 0;
 | |
|         GET_REG32(0);
 | |
|     case 25:
 | |
|         /* CPSR */
 | |
|         GET_REG32(cpsr_read(env));
 | |
|     }
 | |
|     /* Unknown register.  */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cpu_gdb_write_register(CPUARMState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     tmp = ldl_p(mem_buf);
 | |
| 
 | |
|     /* Mask out low bit of PC to workaround gdb bugs.  This will probably
 | |
|        cause problems if we ever implement the Jazelle DBX extensions.  */
 | |
|     if (n == 15)
 | |
|         tmp &= ~1;
 | |
| 
 | |
|     if (n < 16) {
 | |
|         /* Core integer register.  */
 | |
|         env->regs[n] = tmp;
 | |
|         return 4;
 | |
|     }
 | |
|     if (n < 24) { /* 16-23 */
 | |
|         /* FPA registers (ignored).  */
 | |
|         if (gdb_has_xml)
 | |
|             return 0;
 | |
|         return 12;
 | |
|     }
 | |
|     switch (n) {
 | |
|     case 24:
 | |
|         /* FPA status register (ignored).  */
 | |
|         if (gdb_has_xml)
 | |
|             return 0;
 | |
|         return 4;
 | |
|     case 25:
 | |
|         /* CPSR */
 | |
|         cpsr_write (env, tmp, 0xffffffff);
 | |
|         return 4;
 | |
|     }
 | |
|     /* Unknown register.  */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #elif defined (TARGET_M68K)
 | |
| 
 | |
| #define NUM_CORE_REGS 18
 | |
| 
 | |
| #define GDB_CORE_XML "cf-core.xml"
 | |
| 
 | |
| static int cpu_gdb_read_register(CPUM68KState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     if (n < 8) {
 | |
|         /* D0-D7 */
 | |
|         GET_REG32(env->dregs[n]);
 | |
|     } else if (n < 16) {
 | |
|         /* A0-A7 */
 | |
|         GET_REG32(env->aregs[n - 8]);
 | |
|     } else {
 | |
| 	switch (n) {
 | |
|         case 16: GET_REG32(env->sr);
 | |
|         case 17: GET_REG32(env->pc);
 | |
|         }
 | |
|     }
 | |
|     /* FP registers not included here because they vary between
 | |
|        ColdFire and m68k.  Use XML bits for these.  */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cpu_gdb_write_register(CPUM68KState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     tmp = ldl_p(mem_buf);
 | |
| 
 | |
|     if (n < 8) {
 | |
|         /* D0-D7 */
 | |
|         env->dregs[n] = tmp;
 | |
|     } else if (n < 16) {
 | |
|         /* A0-A7 */
 | |
|         env->aregs[n - 8] = tmp;
 | |
|     } else {
 | |
|         switch (n) {
 | |
|         case 16: env->sr = tmp; break;
 | |
|         case 17: env->pc = tmp; break;
 | |
|         default: return 0;
 | |
|         }
 | |
|     }
 | |
|     return 4;
 | |
| }
 | |
| #elif defined (TARGET_MIPS)
 | |
| 
 | |
| #define NUM_CORE_REGS 73
 | |
| 
 | |
| static int cpu_gdb_read_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     if (n < 32) {
 | |
|         GET_REGL(env->active_tc.gpr[n]);
 | |
|     }
 | |
|     if (env->CP0_Config1 & (1 << CP0C1_FP)) {
 | |
|         if (n >= 38 && n < 70) {
 | |
|             if (env->CP0_Status & (1 << CP0St_FR))
 | |
| 		GET_REGL(env->active_fpu.fpr[n - 38].d);
 | |
|             else
 | |
| 		GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
 | |
|         }
 | |
|         switch (n) {
 | |
|         case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
 | |
|         case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
 | |
|         }
 | |
|     }
 | |
|     switch (n) {
 | |
|     case 32: GET_REGL((int32_t)env->CP0_Status);
 | |
|     case 33: GET_REGL(env->active_tc.LO[0]);
 | |
|     case 34: GET_REGL(env->active_tc.HI[0]);
 | |
|     case 35: GET_REGL(env->CP0_BadVAddr);
 | |
|     case 36: GET_REGL((int32_t)env->CP0_Cause);
 | |
|     case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
 | |
|     case 72: GET_REGL(0); /* fp */
 | |
|     case 89: GET_REGL((int32_t)env->CP0_PRid);
 | |
|     }
 | |
|     if (n >= 73 && n <= 88) {
 | |
| 	/* 16 embedded regs.  */
 | |
| 	GET_REGL(0);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* convert MIPS rounding mode in FCR31 to IEEE library */
 | |
| static unsigned int ieee_rm[] =
 | |
|   {
 | |
|     float_round_nearest_even,
 | |
|     float_round_to_zero,
 | |
|     float_round_up,
 | |
|     float_round_down
 | |
|   };
 | |
| #define RESTORE_ROUNDING_MODE \
 | |
|     set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
 | |
| 
 | |
| static int cpu_gdb_write_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     target_ulong tmp;
 | |
| 
 | |
|     tmp = ldtul_p(mem_buf);
 | |
| 
 | |
|     if (n < 32) {
 | |
|         env->active_tc.gpr[n] = tmp;
 | |
|         return sizeof(target_ulong);
 | |
|     }
 | |
|     if (env->CP0_Config1 & (1 << CP0C1_FP)
 | |
|             && n >= 38 && n < 73) {
 | |
|         if (n < 70) {
 | |
|             if (env->CP0_Status & (1 << CP0St_FR))
 | |
|               env->active_fpu.fpr[n - 38].d = tmp;
 | |
|             else
 | |
|               env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
 | |
|         }
 | |
|         switch (n) {
 | |
|         case 70:
 | |
|             env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
 | |
|             /* set rounding mode */
 | |
|             RESTORE_ROUNDING_MODE;
 | |
|             break;
 | |
|         case 71: env->active_fpu.fcr0 = tmp; break;
 | |
|         }
 | |
|         return sizeof(target_ulong);
 | |
|     }
 | |
|     switch (n) {
 | |
|     case 32: env->CP0_Status = tmp; break;
 | |
|     case 33: env->active_tc.LO[0] = tmp; break;
 | |
|     case 34: env->active_tc.HI[0] = tmp; break;
 | |
|     case 35: env->CP0_BadVAddr = tmp; break;
 | |
|     case 36: env->CP0_Cause = tmp; break;
 | |
|     case 37:
 | |
|         env->active_tc.PC = tmp & ~(target_ulong)1;
 | |
|         if (tmp & 1) {
 | |
|             env->hflags |= MIPS_HFLAG_M16;
 | |
|         } else {
 | |
|             env->hflags &= ~(MIPS_HFLAG_M16);
 | |
|         }
 | |
|         break;
 | |
|     case 72: /* fp, ignored */ break;
 | |
|     default: 
 | |
| 	if (n > 89)
 | |
| 	    return 0;
 | |
| 	/* Other registers are readonly.  Ignore writes.  */
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     return sizeof(target_ulong);
 | |
| }
 | |
| #elif defined(TARGET_OPENRISC)
 | |
| 
 | |
| #define NUM_CORE_REGS (32 + 3)
 | |
| 
 | |
| static int cpu_gdb_read_register(CPUOpenRISCState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     if (n < 32) {
 | |
|         GET_REG32(env->gpr[n]);
 | |
|     } else {
 | |
|         switch (n) {
 | |
|         case 32:    /* PPC */
 | |
|             GET_REG32(env->ppc);
 | |
|             break;
 | |
| 
 | |
|         case 33:    /* NPC */
 | |
|             GET_REG32(env->npc);
 | |
|             break;
 | |
| 
 | |
|         case 34:    /* SR */
 | |
|             GET_REG32(env->sr);
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cpu_gdb_write_register(CPUOpenRISCState *env,
 | |
|                                   uint8_t *mem_buf, int n)
 | |
| {
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     if (n > NUM_CORE_REGS) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     tmp = ldl_p(mem_buf);
 | |
| 
 | |
|     if (n < 32) {
 | |
|         env->gpr[n] = tmp;
 | |
|     } else {
 | |
|         switch (n) {
 | |
|         case 32: /* PPC */
 | |
|             env->ppc = tmp;
 | |
|             break;
 | |
| 
 | |
|         case 33: /* NPC */
 | |
|             env->npc = tmp;
 | |
|             break;
 | |
| 
 | |
|         case 34: /* SR */
 | |
|             env->sr = tmp;
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return 4;
 | |
| }
 | |
| #elif defined (TARGET_SH4)
 | |
| 
 | |
| /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
 | |
| /* FIXME: We should use XML for this.  */
 | |
| 
 | |
| #define NUM_CORE_REGS 59
 | |
| 
 | |
| static int cpu_gdb_read_register(CPUSH4State *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     switch (n) {
 | |
|     case 0 ... 7:
 | |
|         if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
 | |
|             GET_REGL(env->gregs[n + 16]);
 | |
|         } else {
 | |
|             GET_REGL(env->gregs[n]);
 | |
|         }
 | |
|     case 8 ... 15:
 | |
|         GET_REGL(env->gregs[n]);
 | |
|     case 16:
 | |
|         GET_REGL(env->pc);
 | |
|     case 17:
 | |
|         GET_REGL(env->pr);
 | |
|     case 18:
 | |
|         GET_REGL(env->gbr);
 | |
|     case 19:
 | |
|         GET_REGL(env->vbr);
 | |
|     case 20:
 | |
|         GET_REGL(env->mach);
 | |
|     case 21:
 | |
|         GET_REGL(env->macl);
 | |
|     case 22:
 | |
|         GET_REGL(env->sr);
 | |
|     case 23:
 | |
|         GET_REGL(env->fpul);
 | |
|     case 24:
 | |
|         GET_REGL(env->fpscr);
 | |
|     case 25 ... 40:
 | |
|         if (env->fpscr & FPSCR_FR) {
 | |
|             stfl_p(mem_buf, env->fregs[n - 9]);
 | |
|         } else {
 | |
|             stfl_p(mem_buf, env->fregs[n - 25]);
 | |
|         }
 | |
|         return 4;
 | |
|     case 41:
 | |
|         GET_REGL(env->ssr);
 | |
|     case 42:
 | |
|         GET_REGL(env->spc);
 | |
|     case 43 ... 50:
 | |
|         GET_REGL(env->gregs[n - 43]);
 | |
|     case 51 ... 58:
 | |
|         GET_REGL(env->gregs[n - (51 - 16)]);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cpu_gdb_write_register(CPUSH4State *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     switch (n) {
 | |
|     case 0 ... 7:
 | |
|         if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
 | |
|             env->gregs[n + 16] = ldl_p(mem_buf);
 | |
|         } else {
 | |
|             env->gregs[n] = ldl_p(mem_buf);
 | |
|         }
 | |
|         break;
 | |
|     case 8 ... 15:
 | |
|         env->gregs[n] = ldl_p(mem_buf);
 | |
|         break;
 | |
|     case 16:
 | |
|         env->pc = ldl_p(mem_buf);
 | |
|         break;
 | |
|     case 17:
 | |
|         env->pr = ldl_p(mem_buf);
 | |
|         break;
 | |
|     case 18:
 | |
|         env->gbr = ldl_p(mem_buf);
 | |
|         break;
 | |
|     case 19:
 | |
|         env->vbr = ldl_p(mem_buf);
 | |
|         break;
 | |
|     case 20:
 | |
|         env->mach = ldl_p(mem_buf);
 | |
|         break;
 | |
|     case 21:
 | |
|         env->macl = ldl_p(mem_buf);
 | |
|         break;
 | |
|     case 22:
 | |
|         env->sr = ldl_p(mem_buf);
 | |
|         break;
 | |
|     case 23:
 | |
|         env->fpul = ldl_p(mem_buf);
 | |
|         break;
 | |
|     case 24:
 | |
|         env->fpscr = ldl_p(mem_buf);
 | |
|         break;
 | |
|     case 25 ... 40:
 | |
|         if (env->fpscr & FPSCR_FR) {
 | |
|             env->fregs[n - 9] = ldfl_p(mem_buf);
 | |
|         } else {
 | |
|             env->fregs[n - 25] = ldfl_p(mem_buf);
 | |
|         }
 | |
|         break;
 | |
|     case 41:
 | |
|         env->ssr = ldl_p(mem_buf);
 | |
|         break;
 | |
|     case 42:
 | |
|         env->spc = ldl_p(mem_buf);
 | |
|         break;
 | |
|     case 43 ... 50:
 | |
|         env->gregs[n - 43] = ldl_p(mem_buf);
 | |
|         break;
 | |
|     case 51 ... 58:
 | |
|         env->gregs[n - (51 - 16)] = ldl_p(mem_buf);
 | |
|         break;
 | |
|     default: return 0;
 | |
|     }
 | |
| 
 | |
|     return 4;
 | |
| }
 | |
| #elif defined (TARGET_MICROBLAZE)
 | |
| 
 | |
| #define NUM_CORE_REGS (32 + 5)
 | |
| 
 | |
| static int cpu_gdb_read_register(CPUMBState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     if (n < 32) {
 | |
| 	GET_REG32(env->regs[n]);
 | |
|     } else {
 | |
| 	GET_REG32(env->sregs[n - 32]);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cpu_gdb_write_register(CPUMBState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     if (n > NUM_CORE_REGS)
 | |
| 	return 0;
 | |
| 
 | |
|     tmp = ldl_p(mem_buf);
 | |
| 
 | |
|     if (n < 32) {
 | |
| 	env->regs[n] = tmp;
 | |
|     } else {
 | |
| 	env->sregs[n - 32] = tmp;
 | |
|     }
 | |
|     return 4;
 | |
| }
 | |
| #elif defined (TARGET_CRIS)
 | |
| 
 | |
| #define NUM_CORE_REGS 49
 | |
| 
 | |
| static int
 | |
| read_register_crisv10(CPUCRISState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     if (n < 15) {
 | |
|         GET_REG32(env->regs[n]);
 | |
|     }
 | |
| 
 | |
|     if (n == 15) {
 | |
|         GET_REG32(env->pc);
 | |
|     }
 | |
| 
 | |
|     if (n < 32) {
 | |
|         switch (n) {
 | |
|         case 16:
 | |
|             GET_REG8(env->pregs[n - 16]);
 | |
|             break;
 | |
|         case 17:
 | |
|             GET_REG8(env->pregs[n - 16]);
 | |
|             break;
 | |
|         case 20:
 | |
|         case 21:
 | |
|             GET_REG16(env->pregs[n - 16]);
 | |
|             break;
 | |
|         default:
 | |
|             if (n >= 23) {
 | |
|                 GET_REG32(env->pregs[n - 16]);
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cpu_gdb_read_register(CPUCRISState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     uint8_t srs;
 | |
| 
 | |
|     if (env->pregs[PR_VR] < 32)
 | |
|         return read_register_crisv10(env, mem_buf, n);
 | |
| 
 | |
|     srs = env->pregs[PR_SRS];
 | |
|     if (n < 16) {
 | |
| 	GET_REG32(env->regs[n]);
 | |
|     }
 | |
| 
 | |
|     if (n >= 21 && n < 32) {
 | |
| 	GET_REG32(env->pregs[n - 16]);
 | |
|     }
 | |
|     if (n >= 33 && n < 49) {
 | |
| 	GET_REG32(env->sregs[srs][n - 33]);
 | |
|     }
 | |
|     switch (n) {
 | |
|     case 16: GET_REG8(env->pregs[0]);
 | |
|     case 17: GET_REG8(env->pregs[1]);
 | |
|     case 18: GET_REG32(env->pregs[2]);
 | |
|     case 19: GET_REG8(srs);
 | |
|     case 20: GET_REG16(env->pregs[4]);
 | |
|     case 32: GET_REG32(env->pc);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cpu_gdb_write_register(CPUCRISState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     if (n > 49)
 | |
| 	return 0;
 | |
| 
 | |
|     tmp = ldl_p(mem_buf);
 | |
| 
 | |
|     if (n < 16) {
 | |
| 	env->regs[n] = tmp;
 | |
|     }
 | |
| 
 | |
|     if (n >= 21 && n < 32) {
 | |
| 	env->pregs[n - 16] = tmp;
 | |
|     }
 | |
| 
 | |
|     /* FIXME: Should support function regs be writable?  */
 | |
|     switch (n) {
 | |
|     case 16: return 1;
 | |
|     case 17: return 1;
 | |
|     case 18: env->pregs[PR_PID] = tmp; break;
 | |
|     case 19: return 1;
 | |
|     case 20: return 2;
 | |
|     case 32: env->pc = tmp; break;
 | |
|     }
 | |
| 
 | |
|     return 4;
 | |
| }
 | |
| #elif defined (TARGET_ALPHA)
 | |
| 
 | |
| #define NUM_CORE_REGS 67
 | |
| 
 | |
| static int cpu_gdb_read_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     uint64_t val;
 | |
|     CPU_DoubleU d;
 | |
| 
 | |
|     switch (n) {
 | |
|     case 0 ... 30:
 | |
|         val = env->ir[n];
 | |
|         break;
 | |
|     case 32 ... 62:
 | |
|         d.d = env->fir[n - 32];
 | |
|         val = d.ll;
 | |
|         break;
 | |
|     case 63:
 | |
|         val = cpu_alpha_load_fpcr(env);
 | |
|         break;
 | |
|     case 64:
 | |
|         val = env->pc;
 | |
|         break;
 | |
|     case 66:
 | |
|         val = env->unique;
 | |
|         break;
 | |
|     case 31:
 | |
|     case 65:
 | |
|         /* 31 really is the zero register; 65 is unassigned in the
 | |
|            gdb protocol, but is still required to occupy 8 bytes. */
 | |
|         val = 0;
 | |
|         break;
 | |
|     default:
 | |
|         return 0;
 | |
|     }
 | |
|     GET_REGL(val);
 | |
| }
 | |
| 
 | |
| static int cpu_gdb_write_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     target_ulong tmp = ldtul_p(mem_buf);
 | |
|     CPU_DoubleU d;
 | |
| 
 | |
|     switch (n) {
 | |
|     case 0 ... 30:
 | |
|         env->ir[n] = tmp;
 | |
|         break;
 | |
|     case 32 ... 62:
 | |
|         d.ll = tmp;
 | |
|         env->fir[n - 32] = d.d;
 | |
|         break;
 | |
|     case 63:
 | |
|         cpu_alpha_store_fpcr(env, tmp);
 | |
|         break;
 | |
|     case 64:
 | |
|         env->pc = tmp;
 | |
|         break;
 | |
|     case 66:
 | |
|         env->unique = tmp;
 | |
|         break;
 | |
|     case 31:
 | |
|     case 65:
 | |
|         /* 31 really is the zero register; 65 is unassigned in the
 | |
|            gdb protocol, but is still required to occupy 8 bytes. */
 | |
|         break;
 | |
|     default:
 | |
|         return 0;
 | |
|     }
 | |
|     return 8;
 | |
| }
 | |
| #elif defined (TARGET_S390X)
 | |
| 
 | |
| #define NUM_CORE_REGS  S390_NUM_REGS
 | |
| 
 | |
| static int cpu_gdb_read_register(CPUS390XState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     uint64_t val;
 | |
|     int cc_op;
 | |
| 
 | |
|     switch (n) {
 | |
|     case S390_PSWM_REGNUM:
 | |
|         cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst, env->cc_vr);
 | |
|         val = deposit64(env->psw.mask, 44, 2, cc_op);
 | |
|         GET_REGL(val);
 | |
|         break;
 | |
|     case S390_PSWA_REGNUM:
 | |
|         GET_REGL(env->psw.addr);
 | |
|         break;
 | |
|     case S390_R0_REGNUM ... S390_R15_REGNUM:
 | |
|         GET_REGL(env->regs[n-S390_R0_REGNUM]);
 | |
|         break;
 | |
|     case S390_A0_REGNUM ... S390_A15_REGNUM:
 | |
|         GET_REG32(env->aregs[n-S390_A0_REGNUM]);
 | |
|         break;
 | |
|     case S390_FPC_REGNUM:
 | |
|         GET_REG32(env->fpc);
 | |
|         break;
 | |
|     case S390_F0_REGNUM ... S390_F15_REGNUM:
 | |
|         GET_REG64(env->fregs[n-S390_F0_REGNUM].ll);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cpu_gdb_write_register(CPUS390XState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     target_ulong tmpl;
 | |
|     uint32_t tmp32;
 | |
|     int r = 8;
 | |
|     tmpl = ldtul_p(mem_buf);
 | |
|     tmp32 = ldl_p(mem_buf);
 | |
| 
 | |
|     switch (n) {
 | |
|     case S390_PSWM_REGNUM:
 | |
|         env->psw.mask = tmpl;
 | |
|         env->cc_op = extract64(tmpl, 44, 2);
 | |
|         break;
 | |
|     case S390_PSWA_REGNUM:
 | |
|         env->psw.addr = tmpl;
 | |
|         break;
 | |
|     case S390_R0_REGNUM ... S390_R15_REGNUM:
 | |
|         env->regs[n-S390_R0_REGNUM] = tmpl;
 | |
|         break;
 | |
|     case S390_A0_REGNUM ... S390_A15_REGNUM:
 | |
|         env->aregs[n-S390_A0_REGNUM] = tmp32;
 | |
|         r = 4;
 | |
|         break;
 | |
|     case S390_FPC_REGNUM:
 | |
|         env->fpc = tmp32;
 | |
|         r = 4;
 | |
|         break;
 | |
|     case S390_F0_REGNUM ... S390_F15_REGNUM:
 | |
|         env->fregs[n-S390_F0_REGNUM].ll = tmpl;
 | |
|         break;
 | |
|     default:
 | |
|         return 0;
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| #elif defined (TARGET_LM32)
 | |
| 
 | |
| #include "hw/lm32_pic.h"
 | |
| #define NUM_CORE_REGS (32 + 7)
 | |
| 
 | |
| static int cpu_gdb_read_register(CPULM32State *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     if (n < 32) {
 | |
|         GET_REG32(env->regs[n]);
 | |
|     } else {
 | |
|         switch (n) {
 | |
|         case 32:
 | |
|             GET_REG32(env->pc);
 | |
|             break;
 | |
|         /* FIXME: put in right exception ID */
 | |
|         case 33:
 | |
|             GET_REG32(0);
 | |
|             break;
 | |
|         case 34:
 | |
|             GET_REG32(env->eba);
 | |
|             break;
 | |
|         case 35:
 | |
|             GET_REG32(env->deba);
 | |
|             break;
 | |
|         case 36:
 | |
|             GET_REG32(env->ie);
 | |
|             break;
 | |
|         case 37:
 | |
|             GET_REG32(lm32_pic_get_im(env->pic_state));
 | |
|             break;
 | |
|         case 38:
 | |
|             GET_REG32(lm32_pic_get_ip(env->pic_state));
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cpu_gdb_write_register(CPULM32State *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     if (n > NUM_CORE_REGS) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     tmp = ldl_p(mem_buf);
 | |
| 
 | |
|     if (n < 32) {
 | |
|         env->regs[n] = tmp;
 | |
|     } else {
 | |
|         switch (n) {
 | |
|         case 32:
 | |
|             env->pc = tmp;
 | |
|             break;
 | |
|         case 34:
 | |
|             env->eba = tmp;
 | |
|             break;
 | |
|         case 35:
 | |
|             env->deba = tmp;
 | |
|             break;
 | |
|         case 36:
 | |
|             env->ie = tmp;
 | |
|             break;
 | |
|         case 37:
 | |
|             lm32_pic_set_im(env->pic_state, tmp);
 | |
|             break;
 | |
|         case 38:
 | |
|             lm32_pic_set_ip(env->pic_state, tmp);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return 4;
 | |
| }
 | |
| #elif defined(TARGET_XTENSA)
 | |
| 
 | |
| /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
 | |
|  * Use num_regs to see all registers. gdb modification is required for that:
 | |
|  * reset bit 0 in the 'flags' field of the registers definitions in the
 | |
|  * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
 | |
|  */
 | |
| #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
 | |
| #define num_g_regs NUM_CORE_REGS
 | |
| 
 | |
| static int cpu_gdb_read_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
 | |
| 
 | |
|     if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     switch (reg->type) {
 | |
|     case 9: /*pc*/
 | |
|         GET_REG32(env->pc);
 | |
|         break;
 | |
| 
 | |
|     case 1: /*ar*/
 | |
|         xtensa_sync_phys_from_window(env);
 | |
|         GET_REG32(env->phys_regs[(reg->targno & 0xff) % env->config->nareg]);
 | |
|         break;
 | |
| 
 | |
|     case 2: /*SR*/
 | |
|         GET_REG32(env->sregs[reg->targno & 0xff]);
 | |
|         break;
 | |
| 
 | |
|     case 3: /*UR*/
 | |
|         GET_REG32(env->uregs[reg->targno & 0xff]);
 | |
|         break;
 | |
| 
 | |
|     case 4: /*f*/
 | |
|         GET_REG32(float32_val(env->fregs[reg->targno & 0x0f]));
 | |
|         break;
 | |
| 
 | |
|     case 8: /*a*/
 | |
|         GET_REG32(env->regs[reg->targno & 0x0f]);
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         qemu_log("%s from reg %d of unsupported type %d\n",
 | |
|                 __func__, n, reg->type);
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int cpu_gdb_write_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     uint32_t tmp;
 | |
|     const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
 | |
| 
 | |
|     if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     tmp = ldl_p(mem_buf);
 | |
| 
 | |
|     switch (reg->type) {
 | |
|     case 9: /*pc*/
 | |
|         env->pc = tmp;
 | |
|         break;
 | |
| 
 | |
|     case 1: /*ar*/
 | |
|         env->phys_regs[(reg->targno & 0xff) % env->config->nareg] = tmp;
 | |
|         xtensa_sync_window_from_phys(env);
 | |
|         break;
 | |
| 
 | |
|     case 2: /*SR*/
 | |
|         env->sregs[reg->targno & 0xff] = tmp;
 | |
|         break;
 | |
| 
 | |
|     case 3: /*UR*/
 | |
|         env->uregs[reg->targno & 0xff] = tmp;
 | |
|         break;
 | |
| 
 | |
|     case 4: /*f*/
 | |
|         env->fregs[reg->targno & 0x0f] = make_float32(tmp);
 | |
|         break;
 | |
| 
 | |
|     case 8: /*a*/
 | |
|         env->regs[reg->targno & 0x0f] = tmp;
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         qemu_log("%s to reg %d of unsupported type %d\n",
 | |
|                 __func__, n, reg->type);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return 4;
 | |
| }
 | |
| #else
 | |
| 
 | |
| #define NUM_CORE_REGS 0
 | |
| 
 | |
| static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if !defined(TARGET_XTENSA)
 | |
| static int num_g_regs = NUM_CORE_REGS;
 | |
| #endif
 | |
| 
 | |
| #ifdef GDB_CORE_XML
 | |
| /* Encode data using the encoding for 'x' packets.  */
 | |
| static int memtox(char *buf, const char *mem, int len)
 | |
| {
 | |
|     char *p = buf;
 | |
|     char c;
 | |
| 
 | |
|     while (len--) {
 | |
|         c = *(mem++);
 | |
|         switch (c) {
 | |
|         case '#': case '$': case '*': case '}':
 | |
|             *(p++) = '}';
 | |
|             *(p++) = c ^ 0x20;
 | |
|             break;
 | |
|         default:
 | |
|             *(p++) = c;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return p - buf;
 | |
| }
 | |
| 
 | |
| static const char *get_feature_xml(const char *p, const char **newp)
 | |
| {
 | |
|     size_t len;
 | |
|     int i;
 | |
|     const char *name;
 | |
|     static char target_xml[1024];
 | |
| 
 | |
|     len = 0;
 | |
|     while (p[len] && p[len] != ':')
 | |
|         len++;
 | |
|     *newp = p + len;
 | |
| 
 | |
|     name = NULL;
 | |
|     if (strncmp(p, "target.xml", len) == 0) {
 | |
|         /* Generate the XML description for this CPU.  */
 | |
|         if (!target_xml[0]) {
 | |
|             GDBRegisterState *r;
 | |
| 
 | |
|             snprintf(target_xml, sizeof(target_xml),
 | |
|                      "<?xml version=\"1.0\"?>"
 | |
|                      "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
 | |
|                      "<target>"
 | |
|                      "<xi:include href=\"%s\"/>",
 | |
|                      GDB_CORE_XML);
 | |
| 
 | |
|             for (r = first_cpu->gdb_regs; r; r = r->next) {
 | |
|                 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
 | |
|                 pstrcat(target_xml, sizeof(target_xml), r->xml);
 | |
|                 pstrcat(target_xml, sizeof(target_xml), "\"/>");
 | |
|             }
 | |
|             pstrcat(target_xml, sizeof(target_xml), "</target>");
 | |
|         }
 | |
|         return target_xml;
 | |
|     }
 | |
|     for (i = 0; ; i++) {
 | |
|         name = xml_builtin[i][0];
 | |
|         if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
 | |
|             break;
 | |
|     }
 | |
|     return name ? xml_builtin[i][1] : NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int reg)
 | |
| {
 | |
|     GDBRegisterState *r;
 | |
| 
 | |
|     if (reg < NUM_CORE_REGS)
 | |
|         return cpu_gdb_read_register(env, mem_buf, reg);
 | |
| 
 | |
|     for (r = env->gdb_regs; r; r = r->next) {
 | |
|         if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
 | |
|             return r->get_reg(env, mem_buf, reg - r->base_reg);
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int reg)
 | |
| {
 | |
|     GDBRegisterState *r;
 | |
| 
 | |
|     if (reg < NUM_CORE_REGS)
 | |
|         return cpu_gdb_write_register(env, mem_buf, reg);
 | |
| 
 | |
|     for (r = env->gdb_regs; r; r = r->next) {
 | |
|         if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
 | |
|             return r->set_reg(env, mem_buf, reg - r->base_reg);
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #if !defined(TARGET_XTENSA)
 | |
| /* Register a supplemental set of CPU registers.  If g_pos is nonzero it
 | |
|    specifies the first register number and these registers are included in
 | |
|    a standard "g" packet.  Direction is relative to gdb, i.e. get_reg is
 | |
|    gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
 | |
|  */
 | |
| 
 | |
| void gdb_register_coprocessor(CPUArchState * env,
 | |
|                              gdb_reg_cb get_reg, gdb_reg_cb set_reg,
 | |
|                              int num_regs, const char *xml, int g_pos)
 | |
| {
 | |
|     GDBRegisterState *s;
 | |
|     GDBRegisterState **p;
 | |
|     static int last_reg = NUM_CORE_REGS;
 | |
| 
 | |
|     p = &env->gdb_regs;
 | |
|     while (*p) {
 | |
|         /* Check for duplicates.  */
 | |
|         if (strcmp((*p)->xml, xml) == 0)
 | |
|             return;
 | |
|         p = &(*p)->next;
 | |
|     }
 | |
| 
 | |
|     s = g_new0(GDBRegisterState, 1);
 | |
|     s->base_reg = last_reg;
 | |
|     s->num_regs = num_regs;
 | |
|     s->get_reg = get_reg;
 | |
|     s->set_reg = set_reg;
 | |
|     s->xml = xml;
 | |
| 
 | |
|     /* Add to end of list.  */
 | |
|     last_reg += num_regs;
 | |
|     *p = s;
 | |
|     if (g_pos) {
 | |
|         if (g_pos != s->base_reg) {
 | |
|             fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
 | |
|                     "Expected %d got %d\n", xml, g_pos, s->base_reg);
 | |
|         } else {
 | |
|             num_g_regs = last_reg;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static const int xlat_gdb_type[] = {
 | |
|     [GDB_WATCHPOINT_WRITE]  = BP_GDB | BP_MEM_WRITE,
 | |
|     [GDB_WATCHPOINT_READ]   = BP_GDB | BP_MEM_READ,
 | |
|     [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
 | |
| {
 | |
|     CPUArchState *env;
 | |
|     int err = 0;
 | |
| 
 | |
|     if (kvm_enabled())
 | |
|         return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
 | |
| 
 | |
|     switch (type) {
 | |
|     case GDB_BREAKPOINT_SW:
 | |
|     case GDB_BREAKPOINT_HW:
 | |
|         for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|             err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
 | |
|             if (err)
 | |
|                 break;
 | |
|         }
 | |
|         return err;
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     case GDB_WATCHPOINT_WRITE:
 | |
|     case GDB_WATCHPOINT_READ:
 | |
|     case GDB_WATCHPOINT_ACCESS:
 | |
|         for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|             err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
 | |
|                                         NULL);
 | |
|             if (err)
 | |
|                 break;
 | |
|         }
 | |
|         return err;
 | |
| #endif
 | |
|     default:
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
 | |
| {
 | |
|     CPUArchState *env;
 | |
|     int err = 0;
 | |
| 
 | |
|     if (kvm_enabled())
 | |
|         return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
 | |
| 
 | |
|     switch (type) {
 | |
|     case GDB_BREAKPOINT_SW:
 | |
|     case GDB_BREAKPOINT_HW:
 | |
|         for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|             err = cpu_breakpoint_remove(env, addr, BP_GDB);
 | |
|             if (err)
 | |
|                 break;
 | |
|         }
 | |
|         return err;
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     case GDB_WATCHPOINT_WRITE:
 | |
|     case GDB_WATCHPOINT_READ:
 | |
|     case GDB_WATCHPOINT_ACCESS:
 | |
|         for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|             err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
 | |
|             if (err)
 | |
|                 break;
 | |
|         }
 | |
|         return err;
 | |
| #endif
 | |
|     default:
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void gdb_breakpoint_remove_all(void)
 | |
| {
 | |
|     CPUArchState *env;
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         cpu_breakpoint_remove_all(env, BP_GDB);
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|         cpu_watchpoint_remove_all(env, BP_GDB);
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
 | |
| {
 | |
|     cpu_synchronize_state(s->c_cpu);
 | |
| #if defined(TARGET_I386)
 | |
|     s->c_cpu->eip = pc;
 | |
| #elif defined (TARGET_PPC)
 | |
|     s->c_cpu->nip = pc;
 | |
| #elif defined (TARGET_SPARC)
 | |
|     s->c_cpu->pc = pc;
 | |
|     s->c_cpu->npc = pc + 4;
 | |
| #elif defined (TARGET_ARM)
 | |
|     s->c_cpu->regs[15] = pc;
 | |
| #elif defined (TARGET_SH4)
 | |
|     s->c_cpu->pc = pc;
 | |
| #elif defined (TARGET_MIPS)
 | |
|     s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
 | |
|     if (pc & 1) {
 | |
|         s->c_cpu->hflags |= MIPS_HFLAG_M16;
 | |
|     } else {
 | |
|         s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
 | |
|     }
 | |
| #elif defined (TARGET_MICROBLAZE)
 | |
|     s->c_cpu->sregs[SR_PC] = pc;
 | |
| #elif defined(TARGET_OPENRISC)
 | |
|     s->c_cpu->pc = pc;
 | |
| #elif defined (TARGET_CRIS)
 | |
|     s->c_cpu->pc = pc;
 | |
| #elif defined (TARGET_ALPHA)
 | |
|     s->c_cpu->pc = pc;
 | |
| #elif defined (TARGET_S390X)
 | |
|     s->c_cpu->psw.addr = pc;
 | |
| #elif defined (TARGET_LM32)
 | |
|     s->c_cpu->pc = pc;
 | |
| #elif defined(TARGET_XTENSA)
 | |
|     s->c_cpu->pc = pc;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static CPUArchState *find_cpu(uint32_t thread_id)
 | |
| {
 | |
|     CPUArchState *env;
 | |
| 
 | |
|     for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         if (cpu_index(env) == thread_id) {
 | |
|             return env;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static int gdb_handle_packet(GDBState *s, const char *line_buf)
 | |
| {
 | |
|     CPUArchState *env;
 | |
|     const char *p;
 | |
|     uint32_t thread;
 | |
|     int ch, reg_size, type, res;
 | |
|     char buf[MAX_PACKET_LENGTH];
 | |
|     uint8_t mem_buf[MAX_PACKET_LENGTH];
 | |
|     uint8_t *registers;
 | |
|     target_ulong addr, len;
 | |
| 
 | |
| #ifdef DEBUG_GDB
 | |
|     printf("command='%s'\n", line_buf);
 | |
| #endif
 | |
|     p = line_buf;
 | |
|     ch = *p++;
 | |
|     switch(ch) {
 | |
|     case '?':
 | |
|         /* TODO: Make this return the correct value for user-mode.  */
 | |
|         snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
 | |
|                  cpu_index(s->c_cpu));
 | |
|         put_packet(s, buf);
 | |
|         /* Remove all the breakpoints when this query is issued,
 | |
|          * because gdb is doing and initial connect and the state
 | |
|          * should be cleaned up.
 | |
|          */
 | |
|         gdb_breakpoint_remove_all();
 | |
|         break;
 | |
|     case 'c':
 | |
|         if (*p != '\0') {
 | |
|             addr = strtoull(p, (char **)&p, 16);
 | |
|             gdb_set_cpu_pc(s, addr);
 | |
|         }
 | |
|         s->signal = 0;
 | |
|         gdb_continue(s);
 | |
| 	return RS_IDLE;
 | |
|     case 'C':
 | |
|         s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
 | |
|         if (s->signal == -1)
 | |
|             s->signal = 0;
 | |
|         gdb_continue(s);
 | |
|         return RS_IDLE;
 | |
|     case 'v':
 | |
|         if (strncmp(p, "Cont", 4) == 0) {
 | |
|             int res_signal, res_thread;
 | |
| 
 | |
|             p += 4;
 | |
|             if (*p == '?') {
 | |
|                 put_packet(s, "vCont;c;C;s;S");
 | |
|                 break;
 | |
|             }
 | |
|             res = 0;
 | |
|             res_signal = 0;
 | |
|             res_thread = 0;
 | |
|             while (*p) {
 | |
|                 int action, signal;
 | |
| 
 | |
|                 if (*p++ != ';') {
 | |
|                     res = 0;
 | |
|                     break;
 | |
|                 }
 | |
|                 action = *p++;
 | |
|                 signal = 0;
 | |
|                 if (action == 'C' || action == 'S') {
 | |
|                     signal = strtoul(p, (char **)&p, 16);
 | |
|                 } else if (action != 'c' && action != 's') {
 | |
|                     res = 0;
 | |
|                     break;
 | |
|                 }
 | |
|                 thread = 0;
 | |
|                 if (*p == ':') {
 | |
|                     thread = strtoull(p+1, (char **)&p, 16);
 | |
|                 }
 | |
|                 action = tolower(action);
 | |
|                 if (res == 0 || (res == 'c' && action == 's')) {
 | |
|                     res = action;
 | |
|                     res_signal = signal;
 | |
|                     res_thread = thread;
 | |
|                 }
 | |
|             }
 | |
|             if (res) {
 | |
|                 if (res_thread != -1 && res_thread != 0) {
 | |
|                     env = find_cpu(res_thread);
 | |
|                     if (env == NULL) {
 | |
|                         put_packet(s, "E22");
 | |
|                         break;
 | |
|                     }
 | |
|                     s->c_cpu = env;
 | |
|                 }
 | |
|                 if (res == 's') {
 | |
|                     cpu_single_step(s->c_cpu, sstep_flags);
 | |
|                 }
 | |
|                 s->signal = res_signal;
 | |
|                 gdb_continue(s);
 | |
|                 return RS_IDLE;
 | |
|             }
 | |
|             break;
 | |
|         } else {
 | |
|             goto unknown_command;
 | |
|         }
 | |
|     case 'k':
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|         /* Kill the target */
 | |
|         fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
 | |
|         exit(0);
 | |
| #endif
 | |
|     case 'D':
 | |
|         /* Detach packet */
 | |
|         gdb_breakpoint_remove_all();
 | |
|         gdb_syscall_mode = GDB_SYS_DISABLED;
 | |
|         gdb_continue(s);
 | |
|         put_packet(s, "OK");
 | |
|         break;
 | |
|     case 's':
 | |
|         if (*p != '\0') {
 | |
|             addr = strtoull(p, (char **)&p, 16);
 | |
|             gdb_set_cpu_pc(s, addr);
 | |
|         }
 | |
|         cpu_single_step(s->c_cpu, sstep_flags);
 | |
|         gdb_continue(s);
 | |
| 	return RS_IDLE;
 | |
|     case 'F':
 | |
|         {
 | |
|             target_ulong ret;
 | |
|             target_ulong err;
 | |
| 
 | |
|             ret = strtoull(p, (char **)&p, 16);
 | |
|             if (*p == ',') {
 | |
|                 p++;
 | |
|                 err = strtoull(p, (char **)&p, 16);
 | |
|             } else {
 | |
|                 err = 0;
 | |
|             }
 | |
|             if (*p == ',')
 | |
|                 p++;
 | |
|             type = *p;
 | |
|             if (s->current_syscall_cb) {
 | |
|                 s->current_syscall_cb(s->c_cpu, ret, err);
 | |
|                 s->current_syscall_cb = NULL;
 | |
|             }
 | |
|             if (type == 'C') {
 | |
|                 put_packet(s, "T02");
 | |
|             } else {
 | |
|                 gdb_continue(s);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case 'g':
 | |
|         cpu_synchronize_state(s->g_cpu);
 | |
|         env = s->g_cpu;
 | |
|         len = 0;
 | |
|         for (addr = 0; addr < num_g_regs; addr++) {
 | |
|             reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
 | |
|             len += reg_size;
 | |
|         }
 | |
|         memtohex(buf, mem_buf, len);
 | |
|         put_packet(s, buf);
 | |
|         break;
 | |
|     case 'G':
 | |
|         cpu_synchronize_state(s->g_cpu);
 | |
|         env = s->g_cpu;
 | |
|         registers = mem_buf;
 | |
|         len = strlen(p) / 2;
 | |
|         hextomem((uint8_t *)registers, p, len);
 | |
|         for (addr = 0; addr < num_g_regs && len > 0; addr++) {
 | |
|             reg_size = gdb_write_register(s->g_cpu, registers, addr);
 | |
|             len -= reg_size;
 | |
|             registers += reg_size;
 | |
|         }
 | |
|         put_packet(s, "OK");
 | |
|         break;
 | |
|     case 'm':
 | |
|         addr = strtoull(p, (char **)&p, 16);
 | |
|         if (*p == ',')
 | |
|             p++;
 | |
|         len = strtoull(p, NULL, 16);
 | |
|         if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
 | |
|             put_packet (s, "E14");
 | |
|         } else {
 | |
|             memtohex(buf, mem_buf, len);
 | |
|             put_packet(s, buf);
 | |
|         }
 | |
|         break;
 | |
|     case 'M':
 | |
|         addr = strtoull(p, (char **)&p, 16);
 | |
|         if (*p == ',')
 | |
|             p++;
 | |
|         len = strtoull(p, (char **)&p, 16);
 | |
|         if (*p == ':')
 | |
|             p++;
 | |
|         hextomem(mem_buf, p, len);
 | |
|         if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) {
 | |
|             put_packet(s, "E14");
 | |
|         } else {
 | |
|             put_packet(s, "OK");
 | |
|         }
 | |
|         break;
 | |
|     case 'p':
 | |
|         /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
 | |
|            This works, but can be very slow.  Anything new enough to
 | |
|            understand XML also knows how to use this properly.  */
 | |
|         if (!gdb_has_xml)
 | |
|             goto unknown_command;
 | |
|         addr = strtoull(p, (char **)&p, 16);
 | |
|         reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
 | |
|         if (reg_size) {
 | |
|             memtohex(buf, mem_buf, reg_size);
 | |
|             put_packet(s, buf);
 | |
|         } else {
 | |
|             put_packet(s, "E14");
 | |
|         }
 | |
|         break;
 | |
|     case 'P':
 | |
|         if (!gdb_has_xml)
 | |
|             goto unknown_command;
 | |
|         addr = strtoull(p, (char **)&p, 16);
 | |
|         if (*p == '=')
 | |
|             p++;
 | |
|         reg_size = strlen(p) / 2;
 | |
|         hextomem(mem_buf, p, reg_size);
 | |
|         gdb_write_register(s->g_cpu, mem_buf, addr);
 | |
|         put_packet(s, "OK");
 | |
|         break;
 | |
|     case 'Z':
 | |
|     case 'z':
 | |
|         type = strtoul(p, (char **)&p, 16);
 | |
|         if (*p == ',')
 | |
|             p++;
 | |
|         addr = strtoull(p, (char **)&p, 16);
 | |
|         if (*p == ',')
 | |
|             p++;
 | |
|         len = strtoull(p, (char **)&p, 16);
 | |
|         if (ch == 'Z')
 | |
|             res = gdb_breakpoint_insert(addr, len, type);
 | |
|         else
 | |
|             res = gdb_breakpoint_remove(addr, len, type);
 | |
|         if (res >= 0)
 | |
|              put_packet(s, "OK");
 | |
|         else if (res == -ENOSYS)
 | |
|             put_packet(s, "");
 | |
|         else
 | |
|             put_packet(s, "E22");
 | |
|         break;
 | |
|     case 'H':
 | |
|         type = *p++;
 | |
|         thread = strtoull(p, (char **)&p, 16);
 | |
|         if (thread == -1 || thread == 0) {
 | |
|             put_packet(s, "OK");
 | |
|             break;
 | |
|         }
 | |
|         env = find_cpu(thread);
 | |
|         if (env == NULL) {
 | |
|             put_packet(s, "E22");
 | |
|             break;
 | |
|         }
 | |
|         switch (type) {
 | |
|         case 'c':
 | |
|             s->c_cpu = env;
 | |
|             put_packet(s, "OK");
 | |
|             break;
 | |
|         case 'g':
 | |
|             s->g_cpu = env;
 | |
|             put_packet(s, "OK");
 | |
|             break;
 | |
|         default:
 | |
|              put_packet(s, "E22");
 | |
|              break;
 | |
|         }
 | |
|         break;
 | |
|     case 'T':
 | |
|         thread = strtoull(p, (char **)&p, 16);
 | |
|         env = find_cpu(thread);
 | |
| 
 | |
|         if (env != NULL) {
 | |
|             put_packet(s, "OK");
 | |
|         } else {
 | |
|             put_packet(s, "E22");
 | |
|         }
 | |
|         break;
 | |
|     case 'q':
 | |
|     case 'Q':
 | |
|         /* parse any 'q' packets here */
 | |
|         if (!strcmp(p,"qemu.sstepbits")) {
 | |
|             /* Query Breakpoint bit definitions */
 | |
|             snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
 | |
|                      SSTEP_ENABLE,
 | |
|                      SSTEP_NOIRQ,
 | |
|                      SSTEP_NOTIMER);
 | |
|             put_packet(s, buf);
 | |
|             break;
 | |
|         } else if (strncmp(p,"qemu.sstep",10) == 0) {
 | |
|             /* Display or change the sstep_flags */
 | |
|             p += 10;
 | |
|             if (*p != '=') {
 | |
|                 /* Display current setting */
 | |
|                 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
 | |
|                 put_packet(s, buf);
 | |
|                 break;
 | |
|             }
 | |
|             p++;
 | |
|             type = strtoul(p, (char **)&p, 16);
 | |
|             sstep_flags = type;
 | |
|             put_packet(s, "OK");
 | |
|             break;
 | |
|         } else if (strcmp(p,"C") == 0) {
 | |
|             /* "Current thread" remains vague in the spec, so always return
 | |
|              *  the first CPU (gdb returns the first thread). */
 | |
|             put_packet(s, "QC1");
 | |
|             break;
 | |
|         } else if (strcmp(p,"fThreadInfo") == 0) {
 | |
|             s->query_cpu = first_cpu;
 | |
|             goto report_cpuinfo;
 | |
|         } else if (strcmp(p,"sThreadInfo") == 0) {
 | |
|         report_cpuinfo:
 | |
|             if (s->query_cpu) {
 | |
|                 snprintf(buf, sizeof(buf), "m%x", cpu_index(s->query_cpu));
 | |
|                 put_packet(s, buf);
 | |
|                 s->query_cpu = s->query_cpu->next_cpu;
 | |
|             } else
 | |
|                 put_packet(s, "l");
 | |
|             break;
 | |
|         } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
 | |
|             thread = strtoull(p+16, (char **)&p, 16);
 | |
|             env = find_cpu(thread);
 | |
|             if (env != NULL) {
 | |
|                 cpu_synchronize_state(env);
 | |
|                 len = snprintf((char *)mem_buf, sizeof(mem_buf),
 | |
|                                "CPU#%d [%s]", env->cpu_index,
 | |
|                                env->halted ? "halted " : "running");
 | |
|                 memtohex(buf, mem_buf, len);
 | |
|                 put_packet(s, buf);
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|         else if (strncmp(p, "Offsets", 7) == 0) {
 | |
|             TaskState *ts = s->c_cpu->opaque;
 | |
| 
 | |
|             snprintf(buf, sizeof(buf),
 | |
|                      "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
 | |
|                      ";Bss=" TARGET_ABI_FMT_lx,
 | |
|                      ts->info->code_offset,
 | |
|                      ts->info->data_offset,
 | |
|                      ts->info->data_offset);
 | |
|             put_packet(s, buf);
 | |
|             break;
 | |
|         }
 | |
| #else /* !CONFIG_USER_ONLY */
 | |
|         else if (strncmp(p, "Rcmd,", 5) == 0) {
 | |
|             int len = strlen(p + 5);
 | |
| 
 | |
|             if ((len % 2) != 0) {
 | |
|                 put_packet(s, "E01");
 | |
|                 break;
 | |
|             }
 | |
|             hextomem(mem_buf, p + 5, len);
 | |
|             len = len / 2;
 | |
|             mem_buf[len++] = 0;
 | |
|             qemu_chr_be_write(s->mon_chr, mem_buf, len);
 | |
|             put_packet(s, "OK");
 | |
|             break;
 | |
|         }
 | |
| #endif /* !CONFIG_USER_ONLY */
 | |
|         if (strncmp(p, "Supported", 9) == 0) {
 | |
|             snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
 | |
| #ifdef GDB_CORE_XML
 | |
|             pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
 | |
| #endif
 | |
|             put_packet(s, buf);
 | |
|             break;
 | |
|         }
 | |
| #ifdef GDB_CORE_XML
 | |
|         if (strncmp(p, "Xfer:features:read:", 19) == 0) {
 | |
|             const char *xml;
 | |
|             target_ulong total_len;
 | |
| 
 | |
|             gdb_has_xml = 1;
 | |
|             p += 19;
 | |
|             xml = get_feature_xml(p, &p);
 | |
|             if (!xml) {
 | |
|                 snprintf(buf, sizeof(buf), "E00");
 | |
|                 put_packet(s, buf);
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             if (*p == ':')
 | |
|                 p++;
 | |
|             addr = strtoul(p, (char **)&p, 16);
 | |
|             if (*p == ',')
 | |
|                 p++;
 | |
|             len = strtoul(p, (char **)&p, 16);
 | |
| 
 | |
|             total_len = strlen(xml);
 | |
|             if (addr > total_len) {
 | |
|                 snprintf(buf, sizeof(buf), "E00");
 | |
|                 put_packet(s, buf);
 | |
|                 break;
 | |
|             }
 | |
|             if (len > (MAX_PACKET_LENGTH - 5) / 2)
 | |
|                 len = (MAX_PACKET_LENGTH - 5) / 2;
 | |
|             if (len < total_len - addr) {
 | |
|                 buf[0] = 'm';
 | |
|                 len = memtox(buf + 1, xml + addr, len);
 | |
|             } else {
 | |
|                 buf[0] = 'l';
 | |
|                 len = memtox(buf + 1, xml + addr, total_len - addr);
 | |
|             }
 | |
|             put_packet_binary(s, buf, len + 1);
 | |
|             break;
 | |
|         }
 | |
| #endif
 | |
|         /* Unrecognised 'q' command.  */
 | |
|         goto unknown_command;
 | |
| 
 | |
|     default:
 | |
|     unknown_command:
 | |
|         /* put empty packet */
 | |
|         buf[0] = '\0';
 | |
|         put_packet(s, buf);
 | |
|         break;
 | |
|     }
 | |
|     return RS_IDLE;
 | |
| }
 | |
| 
 | |
| void gdb_set_stop_cpu(CPUArchState *env)
 | |
| {
 | |
|     gdbserver_state->c_cpu = env;
 | |
|     gdbserver_state->g_cpu = env;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static void gdb_vm_state_change(void *opaque, int running, RunState state)
 | |
| {
 | |
|     GDBState *s = gdbserver_state;
 | |
|     CPUArchState *env = s->c_cpu;
 | |
|     char buf[256];
 | |
|     const char *type;
 | |
|     int ret;
 | |
| 
 | |
|     if (running || s->state == RS_INACTIVE) {
 | |
|         return;
 | |
|     }
 | |
|     /* Is there a GDB syscall waiting to be sent?  */
 | |
|     if (s->current_syscall_cb) {
 | |
|         put_packet(s, s->syscall_buf);
 | |
|         return;
 | |
|     }
 | |
|     switch (state) {
 | |
|     case RUN_STATE_DEBUG:
 | |
|         if (env->watchpoint_hit) {
 | |
|             switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
 | |
|             case BP_MEM_READ:
 | |
|                 type = "r";
 | |
|                 break;
 | |
|             case BP_MEM_ACCESS:
 | |
|                 type = "a";
 | |
|                 break;
 | |
|             default:
 | |
|                 type = "";
 | |
|                 break;
 | |
|             }
 | |
|             snprintf(buf, sizeof(buf),
 | |
|                      "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
 | |
|                      GDB_SIGNAL_TRAP, cpu_index(env), type,
 | |
|                      env->watchpoint_hit->vaddr);
 | |
|             env->watchpoint_hit = NULL;
 | |
|             goto send_packet;
 | |
|         }
 | |
|         tb_flush(env);
 | |
|         ret = GDB_SIGNAL_TRAP;
 | |
|         break;
 | |
|     case RUN_STATE_PAUSED:
 | |
|         ret = GDB_SIGNAL_INT;
 | |
|         break;
 | |
|     case RUN_STATE_SHUTDOWN:
 | |
|         ret = GDB_SIGNAL_QUIT;
 | |
|         break;
 | |
|     case RUN_STATE_IO_ERROR:
 | |
|         ret = GDB_SIGNAL_IO;
 | |
|         break;
 | |
|     case RUN_STATE_WATCHDOG:
 | |
|         ret = GDB_SIGNAL_ALRM;
 | |
|         break;
 | |
|     case RUN_STATE_INTERNAL_ERROR:
 | |
|         ret = GDB_SIGNAL_ABRT;
 | |
|         break;
 | |
|     case RUN_STATE_SAVE_VM:
 | |
|     case RUN_STATE_RESTORE_VM:
 | |
|         return;
 | |
|     case RUN_STATE_FINISH_MIGRATE:
 | |
|         ret = GDB_SIGNAL_XCPU;
 | |
|         break;
 | |
|     default:
 | |
|         ret = GDB_SIGNAL_UNKNOWN;
 | |
|         break;
 | |
|     }
 | |
|     snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, cpu_index(env));
 | |
| 
 | |
| send_packet:
 | |
|     put_packet(s, buf);
 | |
| 
 | |
|     /* disable single step if it was enabled */
 | |
|     cpu_single_step(env, 0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Send a gdb syscall request.
 | |
|    This accepts limited printf-style format specifiers, specifically:
 | |
|     %x  - target_ulong argument printed in hex.
 | |
|     %lx - 64-bit argument printed in hex.
 | |
|     %s  - string pointer (target_ulong) and length (int) pair.  */
 | |
| void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
 | |
| {
 | |
|     va_list va;
 | |
|     char *p;
 | |
|     char *p_end;
 | |
|     target_ulong addr;
 | |
|     uint64_t i64;
 | |
|     GDBState *s;
 | |
| 
 | |
|     s = gdbserver_state;
 | |
|     if (!s)
 | |
|         return;
 | |
|     s->current_syscall_cb = cb;
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     vm_stop(RUN_STATE_DEBUG);
 | |
| #endif
 | |
|     va_start(va, fmt);
 | |
|     p = s->syscall_buf;
 | |
|     p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
 | |
|     *(p++) = 'F';
 | |
|     while (*fmt) {
 | |
|         if (*fmt == '%') {
 | |
|             fmt++;
 | |
|             switch (*fmt++) {
 | |
|             case 'x':
 | |
|                 addr = va_arg(va, target_ulong);
 | |
|                 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
 | |
|                 break;
 | |
|             case 'l':
 | |
|                 if (*(fmt++) != 'x')
 | |
|                     goto bad_format;
 | |
|                 i64 = va_arg(va, uint64_t);
 | |
|                 p += snprintf(p, p_end - p, "%" PRIx64, i64);
 | |
|                 break;
 | |
|             case 's':
 | |
|                 addr = va_arg(va, target_ulong);
 | |
|                 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
 | |
|                               addr, va_arg(va, int));
 | |
|                 break;
 | |
|             default:
 | |
|             bad_format:
 | |
|                 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
 | |
|                         fmt - 1);
 | |
|                 break;
 | |
|             }
 | |
|         } else {
 | |
|             *(p++) = *(fmt++);
 | |
|         }
 | |
|     }
 | |
|     *p = 0;
 | |
|     va_end(va);
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|     put_packet(s, s->syscall_buf);
 | |
|     gdb_handlesig(s->c_cpu, 0);
 | |
| #else
 | |
|     /* In this case wait to send the syscall packet until notification that
 | |
|        the CPU has stopped.  This must be done because if the packet is sent
 | |
|        now the reply from the syscall request could be received while the CPU
 | |
|        is still in the running state, which can cause packets to be dropped
 | |
|        and state transition 'T' packets to be sent while the syscall is still
 | |
|        being processed.  */
 | |
|     cpu_exit(s->c_cpu);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void gdb_read_byte(GDBState *s, int ch)
 | |
| {
 | |
|     int i, csum;
 | |
|     uint8_t reply;
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     if (s->last_packet_len) {
 | |
|         /* Waiting for a response to the last packet.  If we see the start
 | |
|            of a new command then abandon the previous response.  */
 | |
|         if (ch == '-') {
 | |
| #ifdef DEBUG_GDB
 | |
|             printf("Got NACK, retransmitting\n");
 | |
| #endif
 | |
|             put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
 | |
|         }
 | |
| #ifdef DEBUG_GDB
 | |
|         else if (ch == '+')
 | |
|             printf("Got ACK\n");
 | |
|         else
 | |
|             printf("Got '%c' when expecting ACK/NACK\n", ch);
 | |
| #endif
 | |
|         if (ch == '+' || ch == '$')
 | |
|             s->last_packet_len = 0;
 | |
|         if (ch != '$')
 | |
|             return;
 | |
|     }
 | |
|     if (runstate_is_running()) {
 | |
|         /* when the CPU is running, we cannot do anything except stop
 | |
|            it when receiving a char */
 | |
|         vm_stop(RUN_STATE_PAUSED);
 | |
|     } else
 | |
| #endif
 | |
|     {
 | |
|         switch(s->state) {
 | |
|         case RS_IDLE:
 | |
|             if (ch == '$') {
 | |
|                 s->line_buf_index = 0;
 | |
|                 s->state = RS_GETLINE;
 | |
|             }
 | |
|             break;
 | |
|         case RS_GETLINE:
 | |
|             if (ch == '#') {
 | |
|             s->state = RS_CHKSUM1;
 | |
|             } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
 | |
|                 s->state = RS_IDLE;
 | |
|             } else {
 | |
|             s->line_buf[s->line_buf_index++] = ch;
 | |
|             }
 | |
|             break;
 | |
|         case RS_CHKSUM1:
 | |
|             s->line_buf[s->line_buf_index] = '\0';
 | |
|             s->line_csum = fromhex(ch) << 4;
 | |
|             s->state = RS_CHKSUM2;
 | |
|             break;
 | |
|         case RS_CHKSUM2:
 | |
|             s->line_csum |= fromhex(ch);
 | |
|             csum = 0;
 | |
|             for(i = 0; i < s->line_buf_index; i++) {
 | |
|                 csum += s->line_buf[i];
 | |
|             }
 | |
|             if (s->line_csum != (csum & 0xff)) {
 | |
|                 reply = '-';
 | |
|                 put_buffer(s, &reply, 1);
 | |
|                 s->state = RS_IDLE;
 | |
|             } else {
 | |
|                 reply = '+';
 | |
|                 put_buffer(s, &reply, 1);
 | |
|                 s->state = gdb_handle_packet(s, s->line_buf);
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             abort();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Tell the remote gdb that the process has exited.  */
 | |
| void gdb_exit(CPUArchState *env, int code)
 | |
| {
 | |
|   GDBState *s;
 | |
|   char buf[4];
 | |
| 
 | |
|   s = gdbserver_state;
 | |
|   if (!s) {
 | |
|       return;
 | |
|   }
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|   if (gdbserver_fd < 0 || s->fd < 0) {
 | |
|       return;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
 | |
|   put_packet(s, buf);
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|   if (s->chr) {
 | |
|       qemu_chr_delete(s->chr);
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| int
 | |
| gdb_queuesig (void)
 | |
| {
 | |
|     GDBState *s;
 | |
| 
 | |
|     s = gdbserver_state;
 | |
| 
 | |
|     if (gdbserver_fd < 0 || s->fd < 0)
 | |
|         return 0;
 | |
|     else
 | |
|         return 1;
 | |
| }
 | |
| 
 | |
| int
 | |
| gdb_handlesig (CPUArchState *env, int sig)
 | |
| {
 | |
|   GDBState *s;
 | |
|   char buf[256];
 | |
|   int n;
 | |
| 
 | |
|   s = gdbserver_state;
 | |
|   if (gdbserver_fd < 0 || s->fd < 0)
 | |
|     return sig;
 | |
| 
 | |
|   /* disable single step if it was enabled */
 | |
|   cpu_single_step(env, 0);
 | |
|   tb_flush(env);
 | |
| 
 | |
|   if (sig != 0)
 | |
|     {
 | |
|       snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
 | |
|       put_packet(s, buf);
 | |
|     }
 | |
|   /* put_packet() might have detected that the peer terminated the 
 | |
|      connection.  */
 | |
|   if (s->fd < 0)
 | |
|       return sig;
 | |
| 
 | |
|   sig = 0;
 | |
|   s->state = RS_IDLE;
 | |
|   s->running_state = 0;
 | |
|   while (s->running_state == 0) {
 | |
|       n = read (s->fd, buf, 256);
 | |
|       if (n > 0)
 | |
|         {
 | |
|           int i;
 | |
| 
 | |
|           for (i = 0; i < n; i++)
 | |
|             gdb_read_byte (s, buf[i]);
 | |
|         }
 | |
|       else if (n == 0 || errno != EAGAIN)
 | |
|         {
 | |
|           /* XXX: Connection closed.  Should probably wait for another
 | |
|              connection before continuing.  */
 | |
|           return sig;
 | |
|         }
 | |
|   }
 | |
|   sig = s->signal;
 | |
|   s->signal = 0;
 | |
|   return sig;
 | |
| }
 | |
| 
 | |
| /* Tell the remote gdb that the process has exited due to SIG.  */
 | |
| void gdb_signalled(CPUArchState *env, int sig)
 | |
| {
 | |
|   GDBState *s;
 | |
|   char buf[4];
 | |
| 
 | |
|   s = gdbserver_state;
 | |
|   if (gdbserver_fd < 0 || s->fd < 0)
 | |
|     return;
 | |
| 
 | |
|   snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
 | |
|   put_packet(s, buf);
 | |
| }
 | |
| 
 | |
| static void gdb_accept(void)
 | |
| {
 | |
|     GDBState *s;
 | |
|     struct sockaddr_in sockaddr;
 | |
|     socklen_t len;
 | |
|     int val, fd;
 | |
| 
 | |
|     for(;;) {
 | |
|         len = sizeof(sockaddr);
 | |
|         fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
 | |
|         if (fd < 0 && errno != EINTR) {
 | |
|             perror("accept");
 | |
|             return;
 | |
|         } else if (fd >= 0) {
 | |
| #ifndef _WIN32
 | |
|             fcntl(fd, F_SETFD, FD_CLOEXEC);
 | |
| #endif
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* set short latency */
 | |
|     val = 1;
 | |
|     setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
 | |
| 
 | |
|     s = g_malloc0(sizeof(GDBState));
 | |
|     s->c_cpu = first_cpu;
 | |
|     s->g_cpu = first_cpu;
 | |
|     s->fd = fd;
 | |
|     gdb_has_xml = 0;
 | |
| 
 | |
|     gdbserver_state = s;
 | |
| 
 | |
|     fcntl(fd, F_SETFL, O_NONBLOCK);
 | |
| }
 | |
| 
 | |
| static int gdbserver_open(int port)
 | |
| {
 | |
|     struct sockaddr_in sockaddr;
 | |
|     int fd, val, ret;
 | |
| 
 | |
|     fd = socket(PF_INET, SOCK_STREAM, 0);
 | |
|     if (fd < 0) {
 | |
|         perror("socket");
 | |
|         return -1;
 | |
|     }
 | |
| #ifndef _WIN32
 | |
|     fcntl(fd, F_SETFD, FD_CLOEXEC);
 | |
| #endif
 | |
| 
 | |
|     /* allow fast reuse */
 | |
|     val = 1;
 | |
|     setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
 | |
| 
 | |
|     sockaddr.sin_family = AF_INET;
 | |
|     sockaddr.sin_port = htons(port);
 | |
|     sockaddr.sin_addr.s_addr = 0;
 | |
|     ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
 | |
|     if (ret < 0) {
 | |
|         perror("bind");
 | |
|         close(fd);
 | |
|         return -1;
 | |
|     }
 | |
|     ret = listen(fd, 0);
 | |
|     if (ret < 0) {
 | |
|         perror("listen");
 | |
|         close(fd);
 | |
|         return -1;
 | |
|     }
 | |
|     return fd;
 | |
| }
 | |
| 
 | |
| int gdbserver_start(int port)
 | |
| {
 | |
|     gdbserver_fd = gdbserver_open(port);
 | |
|     if (gdbserver_fd < 0)
 | |
|         return -1;
 | |
|     /* accept connections */
 | |
|     gdb_accept();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Disable gdb stub for child processes.  */
 | |
| void gdbserver_fork(CPUArchState *env)
 | |
| {
 | |
|     GDBState *s = gdbserver_state;
 | |
|     if (gdbserver_fd < 0 || s->fd < 0)
 | |
|       return;
 | |
|     close(s->fd);
 | |
|     s->fd = -1;
 | |
|     cpu_breakpoint_remove_all(env, BP_GDB);
 | |
|     cpu_watchpoint_remove_all(env, BP_GDB);
 | |
| }
 | |
| #else
 | |
| static int gdb_chr_can_receive(void *opaque)
 | |
| {
 | |
|   /* We can handle an arbitrarily large amount of data.
 | |
|    Pick the maximum packet size, which is as good as anything.  */
 | |
|   return MAX_PACKET_LENGTH;
 | |
| }
 | |
| 
 | |
| static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < size; i++) {
 | |
|         gdb_read_byte(gdbserver_state, buf[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void gdb_chr_event(void *opaque, int event)
 | |
| {
 | |
|     switch (event) {
 | |
|     case CHR_EVENT_OPENED:
 | |
|         vm_stop(RUN_STATE_PAUSED);
 | |
|         gdb_has_xml = 0;
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void gdb_monitor_output(GDBState *s, const char *msg, int len)
 | |
| {
 | |
|     char buf[MAX_PACKET_LENGTH];
 | |
| 
 | |
|     buf[0] = 'O';
 | |
|     if (len > (MAX_PACKET_LENGTH/2) - 1)
 | |
|         len = (MAX_PACKET_LENGTH/2) - 1;
 | |
|     memtohex(buf + 1, (uint8_t *)msg, len);
 | |
|     put_packet(s, buf);
 | |
| }
 | |
| 
 | |
| static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
 | |
| {
 | |
|     const char *p = (const char *)buf;
 | |
|     int max_sz;
 | |
| 
 | |
|     max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
 | |
|     for (;;) {
 | |
|         if (len <= max_sz) {
 | |
|             gdb_monitor_output(gdbserver_state, p, len);
 | |
|             break;
 | |
|         }
 | |
|         gdb_monitor_output(gdbserver_state, p, max_sz);
 | |
|         p += max_sz;
 | |
|         len -= max_sz;
 | |
|     }
 | |
|     return len;
 | |
| }
 | |
| 
 | |
| #ifndef _WIN32
 | |
| static void gdb_sigterm_handler(int signal)
 | |
| {
 | |
|     if (runstate_is_running()) {
 | |
|         vm_stop(RUN_STATE_PAUSED);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int gdbserver_start(const char *device)
 | |
| {
 | |
|     GDBState *s;
 | |
|     char gdbstub_device_name[128];
 | |
|     CharDriverState *chr = NULL;
 | |
|     CharDriverState *mon_chr;
 | |
| 
 | |
|     if (!device)
 | |
|         return -1;
 | |
|     if (strcmp(device, "none") != 0) {
 | |
|         if (strstart(device, "tcp:", NULL)) {
 | |
|             /* enforce required TCP attributes */
 | |
|             snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
 | |
|                      "%s,nowait,nodelay,server", device);
 | |
|             device = gdbstub_device_name;
 | |
|         }
 | |
| #ifndef _WIN32
 | |
|         else if (strcmp(device, "stdio") == 0) {
 | |
|             struct sigaction act;
 | |
| 
 | |
|             memset(&act, 0, sizeof(act));
 | |
|             act.sa_handler = gdb_sigterm_handler;
 | |
|             sigaction(SIGINT, &act, NULL);
 | |
|         }
 | |
| #endif
 | |
|         chr = qemu_chr_new("gdb", device, NULL);
 | |
|         if (!chr)
 | |
|             return -1;
 | |
| 
 | |
|         qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
 | |
|                               gdb_chr_event, NULL);
 | |
|     }
 | |
| 
 | |
|     s = gdbserver_state;
 | |
|     if (!s) {
 | |
|         s = g_malloc0(sizeof(GDBState));
 | |
|         gdbserver_state = s;
 | |
| 
 | |
|         qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
 | |
| 
 | |
|         /* Initialize a monitor terminal for gdb */
 | |
|         mon_chr = g_malloc0(sizeof(*mon_chr));
 | |
|         mon_chr->chr_write = gdb_monitor_write;
 | |
|         monitor_init(mon_chr, 0);
 | |
|     } else {
 | |
|         if (s->chr)
 | |
|             qemu_chr_delete(s->chr);
 | |
|         mon_chr = s->mon_chr;
 | |
|         memset(s, 0, sizeof(GDBState));
 | |
|     }
 | |
|     s->c_cpu = first_cpu;
 | |
|     s->g_cpu = first_cpu;
 | |
|     s->chr = chr;
 | |
|     s->state = chr ? RS_IDLE : RS_INACTIVE;
 | |
|     s->mon_chr = mon_chr;
 | |
|     s->current_syscall_cb = NULL;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| #endif
 |