630 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			630 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
/*
 | 
						|
 *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
 | 
						|
 *
 | 
						|
 *  Copyright (c) 2003-2007 Jocelyn Mayer
 | 
						|
 *  Copyright (c) 2013 David Gibson, IBM Corporation
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
#include "cpu.h"
 | 
						|
#include "exec/helper-proto.h"
 | 
						|
#include "sysemu/kvm.h"
 | 
						|
#include "kvm_ppc.h"
 | 
						|
#include "mmu-hash64.h"
 | 
						|
 | 
						|
//#define DEBUG_MMU
 | 
						|
//#define DEBUG_SLB
 | 
						|
 | 
						|
#ifdef DEBUG_MMU
 | 
						|
#  define LOG_MMU(...) qemu_log(__VA_ARGS__)
 | 
						|
#  define LOG_MMU_STATE(cpu) log_cpu_state((cpu), 0)
 | 
						|
#else
 | 
						|
#  define LOG_MMU(...) do { } while (0)
 | 
						|
#  define LOG_MMU_STATE(cpu) do { } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef DEBUG_SLB
 | 
						|
#  define LOG_SLB(...) qemu_log(__VA_ARGS__)
 | 
						|
#else
 | 
						|
#  define LOG_SLB(...) do { } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Used to indicate whether we have allocated htab in the
 | 
						|
 * host kernel
 | 
						|
 */
 | 
						|
bool kvmppc_kern_htab;
 | 
						|
/*
 | 
						|
 * SLB handling
 | 
						|
 */
 | 
						|
 | 
						|
static ppc_slb_t *slb_lookup(CPUPPCState *env, target_ulong eaddr)
 | 
						|
{
 | 
						|
    uint64_t esid_256M, esid_1T;
 | 
						|
    int n;
 | 
						|
 | 
						|
    LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
 | 
						|
 | 
						|
    esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
 | 
						|
    esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
 | 
						|
 | 
						|
    for (n = 0; n < env->slb_nr; n++) {
 | 
						|
        ppc_slb_t *slb = &env->slb[n];
 | 
						|
 | 
						|
        LOG_SLB("%s: slot %d %016" PRIx64 " %016"
 | 
						|
                    PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
 | 
						|
        /* We check for 1T matches on all MMUs here - if the MMU
 | 
						|
         * doesn't have 1T segment support, we will have prevented 1T
 | 
						|
         * entries from being inserted in the slbmte code. */
 | 
						|
        if (((slb->esid == esid_256M) &&
 | 
						|
             ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
 | 
						|
            || ((slb->esid == esid_1T) &&
 | 
						|
                ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
 | 
						|
            return slb;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
void dump_slb(FILE *f, fprintf_function cpu_fprintf, CPUPPCState *env)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    uint64_t slbe, slbv;
 | 
						|
 | 
						|
    cpu_synchronize_state(CPU(ppc_env_get_cpu(env)));
 | 
						|
 | 
						|
    cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
 | 
						|
    for (i = 0; i < env->slb_nr; i++) {
 | 
						|
        slbe = env->slb[i].esid;
 | 
						|
        slbv = env->slb[i].vsid;
 | 
						|
        if (slbe == 0 && slbv == 0) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
 | 
						|
                    i, slbe, slbv);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void helper_slbia(CPUPPCState *env)
 | 
						|
{
 | 
						|
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 | 
						|
    int n, do_invalidate;
 | 
						|
 | 
						|
    do_invalidate = 0;
 | 
						|
    /* XXX: Warning: slbia never invalidates the first segment */
 | 
						|
    for (n = 1; n < env->slb_nr; n++) {
 | 
						|
        ppc_slb_t *slb = &env->slb[n];
 | 
						|
 | 
						|
        if (slb->esid & SLB_ESID_V) {
 | 
						|
            slb->esid &= ~SLB_ESID_V;
 | 
						|
            /* XXX: given the fact that segment size is 256 MB or 1TB,
 | 
						|
             *      and we still don't have a tlb_flush_mask(env, n, mask)
 | 
						|
             *      in QEMU, we just invalidate all TLBs
 | 
						|
             */
 | 
						|
            do_invalidate = 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (do_invalidate) {
 | 
						|
        tlb_flush(CPU(cpu), 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void helper_slbie(CPUPPCState *env, target_ulong addr)
 | 
						|
{
 | 
						|
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 | 
						|
    ppc_slb_t *slb;
 | 
						|
 | 
						|
    slb = slb_lookup(env, addr);
 | 
						|
    if (!slb) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (slb->esid & SLB_ESID_V) {
 | 
						|
        slb->esid &= ~SLB_ESID_V;
 | 
						|
 | 
						|
        /* XXX: given the fact that segment size is 256 MB or 1TB,
 | 
						|
         *      and we still don't have a tlb_flush_mask(env, n, mask)
 | 
						|
         *      in QEMU, we just invalidate all TLBs
 | 
						|
         */
 | 
						|
        tlb_flush(CPU(cpu), 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int ppc_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
 | 
						|
{
 | 
						|
    int slot = rb & 0xfff;
 | 
						|
    ppc_slb_t *slb = &env->slb[slot];
 | 
						|
 | 
						|
    if (rb & (0x1000 - env->slb_nr)) {
 | 
						|
        return -1; /* Reserved bits set or slot too high */
 | 
						|
    }
 | 
						|
    if (rs & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
 | 
						|
        return -1; /* Bad segment size */
 | 
						|
    }
 | 
						|
    if ((rs & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
 | 
						|
        return -1; /* 1T segment on MMU that doesn't support it */
 | 
						|
    }
 | 
						|
 | 
						|
    /* Mask out the slot number as we store the entry */
 | 
						|
    slb->esid = rb & (SLB_ESID_ESID | SLB_ESID_V);
 | 
						|
    slb->vsid = rs;
 | 
						|
 | 
						|
    LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
 | 
						|
            " %016" PRIx64 "\n", __func__, slot, rb, rs,
 | 
						|
            slb->esid, slb->vsid);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int ppc_load_slb_esid(CPUPPCState *env, target_ulong rb,
 | 
						|
                             target_ulong *rt)
 | 
						|
{
 | 
						|
    int slot = rb & 0xfff;
 | 
						|
    ppc_slb_t *slb = &env->slb[slot];
 | 
						|
 | 
						|
    if (slot >= env->slb_nr) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    *rt = slb->esid;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int ppc_load_slb_vsid(CPUPPCState *env, target_ulong rb,
 | 
						|
                             target_ulong *rt)
 | 
						|
{
 | 
						|
    int slot = rb & 0xfff;
 | 
						|
    ppc_slb_t *slb = &env->slb[slot];
 | 
						|
 | 
						|
    if (slot >= env->slb_nr) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    *rt = slb->vsid;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
 | 
						|
{
 | 
						|
    if (ppc_store_slb(env, rb, rs) < 0) {
 | 
						|
        helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 | 
						|
                                   POWERPC_EXCP_INVAL);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
 | 
						|
{
 | 
						|
    target_ulong rt = 0;
 | 
						|
 | 
						|
    if (ppc_load_slb_esid(env, rb, &rt) < 0) {
 | 
						|
        helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 | 
						|
                                   POWERPC_EXCP_INVAL);
 | 
						|
    }
 | 
						|
    return rt;
 | 
						|
}
 | 
						|
 | 
						|
target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
 | 
						|
{
 | 
						|
    target_ulong rt = 0;
 | 
						|
 | 
						|
    if (ppc_load_slb_vsid(env, rb, &rt) < 0) {
 | 
						|
        helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 | 
						|
                                   POWERPC_EXCP_INVAL);
 | 
						|
    }
 | 
						|
    return rt;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * 64-bit hash table MMU handling
 | 
						|
 */
 | 
						|
 | 
						|
static int ppc_hash64_pte_prot(CPUPPCState *env,
 | 
						|
                               ppc_slb_t *slb, ppc_hash_pte64_t pte)
 | 
						|
{
 | 
						|
    unsigned pp, key;
 | 
						|
    /* Some pp bit combinations have undefined behaviour, so default
 | 
						|
     * to no access in those cases */
 | 
						|
    int prot = 0;
 | 
						|
 | 
						|
    key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
 | 
						|
             : (slb->vsid & SLB_VSID_KS));
 | 
						|
    pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
 | 
						|
 | 
						|
    if (key == 0) {
 | 
						|
        switch (pp) {
 | 
						|
        case 0x0:
 | 
						|
        case 0x1:
 | 
						|
        case 0x2:
 | 
						|
            prot = PAGE_READ | PAGE_WRITE;
 | 
						|
            break;
 | 
						|
 | 
						|
        case 0x3:
 | 
						|
        case 0x6:
 | 
						|
            prot = PAGE_READ;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        switch (pp) {
 | 
						|
        case 0x0:
 | 
						|
        case 0x6:
 | 
						|
            prot = 0;
 | 
						|
            break;
 | 
						|
 | 
						|
        case 0x1:
 | 
						|
        case 0x3:
 | 
						|
            prot = PAGE_READ;
 | 
						|
            break;
 | 
						|
 | 
						|
        case 0x2:
 | 
						|
            prot = PAGE_READ | PAGE_WRITE;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* No execute if either noexec or guarded bits set */
 | 
						|
    if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
 | 
						|
        || (slb->vsid & SLB_VSID_N)) {
 | 
						|
        prot |= PAGE_EXEC;
 | 
						|
    }
 | 
						|
 | 
						|
    return prot;
 | 
						|
}
 | 
						|
 | 
						|
static int ppc_hash64_amr_prot(CPUPPCState *env, ppc_hash_pte64_t pte)
 | 
						|
{
 | 
						|
    int key, amrbits;
 | 
						|
    int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | 
						|
 | 
						|
 | 
						|
    /* Only recent MMUs implement Virtual Page Class Key Protection */
 | 
						|
    if (!(env->mmu_model & POWERPC_MMU_AMR)) {
 | 
						|
        return prot;
 | 
						|
    }
 | 
						|
 | 
						|
    key = HPTE64_R_KEY(pte.pte1);
 | 
						|
    amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
 | 
						|
 | 
						|
    /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
 | 
						|
    /*         env->spr[SPR_AMR]); */
 | 
						|
 | 
						|
    /*
 | 
						|
     * A store is permitted if the AMR bit is 0. Remove write
 | 
						|
     * protection if it is set.
 | 
						|
     */
 | 
						|
    if (amrbits & 0x2) {
 | 
						|
        prot &= ~PAGE_WRITE;
 | 
						|
    }
 | 
						|
    /*
 | 
						|
     * A load is permitted if the AMR bit is 0. Remove read
 | 
						|
     * protection if it is set.
 | 
						|
     */
 | 
						|
    if (amrbits & 0x1) {
 | 
						|
        prot &= ~PAGE_READ;
 | 
						|
    }
 | 
						|
 | 
						|
    return prot;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
 | 
						|
{
 | 
						|
    uint64_t token = 0;
 | 
						|
    hwaddr pte_offset;
 | 
						|
 | 
						|
    pte_offset = pte_index * HASH_PTE_SIZE_64;
 | 
						|
    if (kvmppc_kern_htab) {
 | 
						|
        /*
 | 
						|
         * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
 | 
						|
         */
 | 
						|
        token = kvmppc_hash64_read_pteg(cpu, pte_index);
 | 
						|
        if (token) {
 | 
						|
            return token;
 | 
						|
        }
 | 
						|
        /*
 | 
						|
         * pteg read failed, even though we have allocated htab via
 | 
						|
         * kvmppc_reset_htab.
 | 
						|
         */
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    /*
 | 
						|
     * HTAB is controlled by QEMU. Just point to the internally
 | 
						|
     * accessible PTEG.
 | 
						|
     */
 | 
						|
    if (cpu->env.external_htab) {
 | 
						|
        token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
 | 
						|
    } else if (cpu->env.htab_base) {
 | 
						|
        token = cpu->env.htab_base + pte_offset;
 | 
						|
    }
 | 
						|
    return token;
 | 
						|
}
 | 
						|
 | 
						|
void ppc_hash64_stop_access(uint64_t token)
 | 
						|
{
 | 
						|
    if (kvmppc_kern_htab) {
 | 
						|
        return kvmppc_hash64_free_pteg(token);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static hwaddr ppc_hash64_pteg_search(CPUPPCState *env, hwaddr hash,
 | 
						|
                                     bool secondary, target_ulong ptem,
 | 
						|
                                     ppc_hash_pte64_t *pte)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    uint64_t token;
 | 
						|
    target_ulong pte0, pte1;
 | 
						|
    target_ulong pte_index;
 | 
						|
 | 
						|
    pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
 | 
						|
    token = ppc_hash64_start_access(ppc_env_get_cpu(env), pte_index);
 | 
						|
    if (!token) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    for (i = 0; i < HPTES_PER_GROUP; i++) {
 | 
						|
        pte0 = ppc_hash64_load_hpte0(env, token, i);
 | 
						|
        pte1 = ppc_hash64_load_hpte1(env, token, i);
 | 
						|
 | 
						|
        if ((pte0 & HPTE64_V_VALID)
 | 
						|
            && (secondary == !!(pte0 & HPTE64_V_SECONDARY))
 | 
						|
            && HPTE64_V_COMPARE(pte0, ptem)) {
 | 
						|
            pte->pte0 = pte0;
 | 
						|
            pte->pte1 = pte1;
 | 
						|
            ppc_hash64_stop_access(token);
 | 
						|
            return (pte_index + i) * HASH_PTE_SIZE_64;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ppc_hash64_stop_access(token);
 | 
						|
    /*
 | 
						|
     * We didn't find a valid entry.
 | 
						|
     */
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
static hwaddr ppc_hash64_htab_lookup(CPUPPCState *env,
 | 
						|
                                     ppc_slb_t *slb, target_ulong eaddr,
 | 
						|
                                     ppc_hash_pte64_t *pte)
 | 
						|
{
 | 
						|
    hwaddr pte_offset;
 | 
						|
    hwaddr hash;
 | 
						|
    uint64_t vsid, epnshift, epnmask, epn, ptem;
 | 
						|
 | 
						|
    /* Page size according to the SLB, which we use to generate the
 | 
						|
     * EPN for hash table lookup..  When we implement more recent MMU
 | 
						|
     * extensions this might be different from the actual page size
 | 
						|
     * encoded in the PTE */
 | 
						|
    epnshift = (slb->vsid & SLB_VSID_L)
 | 
						|
        ? TARGET_PAGE_BITS_16M : TARGET_PAGE_BITS;
 | 
						|
    epnmask = ~((1ULL << epnshift) - 1);
 | 
						|
 | 
						|
    if (slb->vsid & SLB_VSID_B) {
 | 
						|
        /* 1TB segment */
 | 
						|
        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
 | 
						|
        epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
 | 
						|
        hash = vsid ^ (vsid << 25) ^ (epn >> epnshift);
 | 
						|
    } else {
 | 
						|
        /* 256M segment */
 | 
						|
        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
 | 
						|
        epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
 | 
						|
        hash = vsid ^ (epn >> epnshift);
 | 
						|
    }
 | 
						|
    ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
 | 
						|
 | 
						|
    /* Page address translation */
 | 
						|
    LOG_MMU("htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
 | 
						|
            " hash " TARGET_FMT_plx "\n",
 | 
						|
            env->htab_base, env->htab_mask, hash);
 | 
						|
 | 
						|
    /* Primary PTEG lookup */
 | 
						|
    LOG_MMU("0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 | 
						|
            " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
 | 
						|
            " hash=" TARGET_FMT_plx "\n",
 | 
						|
            env->htab_base, env->htab_mask, vsid, ptem,  hash);
 | 
						|
    pte_offset = ppc_hash64_pteg_search(env, hash, 0, ptem, pte);
 | 
						|
 | 
						|
    if (pte_offset == -1) {
 | 
						|
        /* Secondary PTEG lookup */
 | 
						|
        LOG_MMU("1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 | 
						|
                " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
 | 
						|
                " hash=" TARGET_FMT_plx "\n", env->htab_base,
 | 
						|
                env->htab_mask, vsid, ptem, ~hash);
 | 
						|
 | 
						|
        pte_offset = ppc_hash64_pteg_search(env, ~hash, 1, ptem, pte);
 | 
						|
    }
 | 
						|
 | 
						|
    return pte_offset;
 | 
						|
}
 | 
						|
 | 
						|
static hwaddr ppc_hash64_pte_raddr(ppc_slb_t *slb, ppc_hash_pte64_t pte,
 | 
						|
                                   target_ulong eaddr)
 | 
						|
{
 | 
						|
    hwaddr rpn = pte.pte1 & HPTE64_R_RPN;
 | 
						|
    /* FIXME: Add support for SLLP extended page sizes */
 | 
						|
    int target_page_bits = (slb->vsid & SLB_VSID_L)
 | 
						|
        ? TARGET_PAGE_BITS_16M : TARGET_PAGE_BITS;
 | 
						|
    hwaddr mask = (1ULL << target_page_bits) - 1;
 | 
						|
 | 
						|
    return (rpn & ~mask) | (eaddr & mask);
 | 
						|
}
 | 
						|
 | 
						|
int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, target_ulong eaddr,
 | 
						|
                                int rwx, int mmu_idx)
 | 
						|
{
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
    CPUPPCState *env = &cpu->env;
 | 
						|
    ppc_slb_t *slb;
 | 
						|
    hwaddr pte_offset;
 | 
						|
    ppc_hash_pte64_t pte;
 | 
						|
    int pp_prot, amr_prot, prot;
 | 
						|
    uint64_t new_pte1;
 | 
						|
    const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
 | 
						|
    hwaddr raddr;
 | 
						|
 | 
						|
    assert((rwx == 0) || (rwx == 1) || (rwx == 2));
 | 
						|
 | 
						|
    /* 1. Handle real mode accesses */
 | 
						|
    if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
 | 
						|
        /* Translation is off */
 | 
						|
        /* In real mode the top 4 effective address bits are ignored */
 | 
						|
        raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
 | 
						|
        tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
 | 
						|
                     PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
 | 
						|
                     TARGET_PAGE_SIZE);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* 2. Translation is on, so look up the SLB */
 | 
						|
    slb = slb_lookup(env, eaddr);
 | 
						|
 | 
						|
    if (!slb) {
 | 
						|
        if (rwx == 2) {
 | 
						|
            cs->exception_index = POWERPC_EXCP_ISEG;
 | 
						|
            env->error_code = 0;
 | 
						|
        } else {
 | 
						|
            cs->exception_index = POWERPC_EXCP_DSEG;
 | 
						|
            env->error_code = 0;
 | 
						|
            env->spr[SPR_DAR] = eaddr;
 | 
						|
        }
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* 3. Check for segment level no-execute violation */
 | 
						|
    if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
 | 
						|
        cs->exception_index = POWERPC_EXCP_ISI;
 | 
						|
        env->error_code = 0x10000000;
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* 4. Locate the PTE in the hash table */
 | 
						|
    pte_offset = ppc_hash64_htab_lookup(env, slb, eaddr, &pte);
 | 
						|
    if (pte_offset == -1) {
 | 
						|
        if (rwx == 2) {
 | 
						|
            cs->exception_index = POWERPC_EXCP_ISI;
 | 
						|
            env->error_code = 0x40000000;
 | 
						|
        } else {
 | 
						|
            cs->exception_index = POWERPC_EXCP_DSI;
 | 
						|
            env->error_code = 0;
 | 
						|
            env->spr[SPR_DAR] = eaddr;
 | 
						|
            if (rwx == 1) {
 | 
						|
                env->spr[SPR_DSISR] = 0x42000000;
 | 
						|
            } else {
 | 
						|
                env->spr[SPR_DSISR] = 0x40000000;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    LOG_MMU("found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
 | 
						|
 | 
						|
    /* 5. Check access permissions */
 | 
						|
 | 
						|
    pp_prot = ppc_hash64_pte_prot(env, slb, pte);
 | 
						|
    amr_prot = ppc_hash64_amr_prot(env, pte);
 | 
						|
    prot = pp_prot & amr_prot;
 | 
						|
 | 
						|
    if ((need_prot[rwx] & ~prot) != 0) {
 | 
						|
        /* Access right violation */
 | 
						|
        LOG_MMU("PTE access rejected\n");
 | 
						|
        if (rwx == 2) {
 | 
						|
            cs->exception_index = POWERPC_EXCP_ISI;
 | 
						|
            env->error_code = 0x08000000;
 | 
						|
        } else {
 | 
						|
            target_ulong dsisr = 0;
 | 
						|
 | 
						|
            cs->exception_index = POWERPC_EXCP_DSI;
 | 
						|
            env->error_code = 0;
 | 
						|
            env->spr[SPR_DAR] = eaddr;
 | 
						|
            if (need_prot[rwx] & ~pp_prot) {
 | 
						|
                dsisr |= 0x08000000;
 | 
						|
            }
 | 
						|
            if (rwx == 1) {
 | 
						|
                dsisr |= 0x02000000;
 | 
						|
            }
 | 
						|
            if (need_prot[rwx] & ~amr_prot) {
 | 
						|
                dsisr |= 0x00200000;
 | 
						|
            }
 | 
						|
            env->spr[SPR_DSISR] = dsisr;
 | 
						|
        }
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    LOG_MMU("PTE access granted !\n");
 | 
						|
 | 
						|
    /* 6. Update PTE referenced and changed bits if necessary */
 | 
						|
 | 
						|
    new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
 | 
						|
    if (rwx == 1) {
 | 
						|
        new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
 | 
						|
    } else {
 | 
						|
        /* Treat the page as read-only for now, so that a later write
 | 
						|
         * will pass through this function again to set the C bit */
 | 
						|
        prot &= ~PAGE_WRITE;
 | 
						|
    }
 | 
						|
 | 
						|
    if (new_pte1 != pte.pte1) {
 | 
						|
        ppc_hash64_store_hpte(env, pte_offset / HASH_PTE_SIZE_64,
 | 
						|
                              pte.pte0, new_pte1);
 | 
						|
    }
 | 
						|
 | 
						|
    /* 7. Determine the real address from the PTE */
 | 
						|
 | 
						|
    raddr = ppc_hash64_pte_raddr(slb, pte, eaddr);
 | 
						|
 | 
						|
    tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
 | 
						|
                 prot, mmu_idx, TARGET_PAGE_SIZE);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
hwaddr ppc_hash64_get_phys_page_debug(CPUPPCState *env, target_ulong addr)
 | 
						|
{
 | 
						|
    ppc_slb_t *slb;
 | 
						|
    hwaddr pte_offset;
 | 
						|
    ppc_hash_pte64_t pte;
 | 
						|
 | 
						|
    if (msr_dr == 0) {
 | 
						|
        /* In real mode the top 4 effective address bits are ignored */
 | 
						|
        return addr & 0x0FFFFFFFFFFFFFFFULL;
 | 
						|
    }
 | 
						|
 | 
						|
    slb = slb_lookup(env, addr);
 | 
						|
    if (!slb) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    pte_offset = ppc_hash64_htab_lookup(env, slb, addr, &pte);
 | 
						|
    if (pte_offset == -1) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    return ppc_hash64_pte_raddr(slb, pte, addr) & TARGET_PAGE_MASK;
 | 
						|
}
 | 
						|
 | 
						|
void ppc_hash64_store_hpte(CPUPPCState *env,
 | 
						|
                           target_ulong pte_index,
 | 
						|
                           target_ulong pte0, target_ulong pte1)
 | 
						|
{
 | 
						|
    CPUState *cs = CPU(ppc_env_get_cpu(env));
 | 
						|
 | 
						|
    if (kvmppc_kern_htab) {
 | 
						|
        return kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
 | 
						|
    }
 | 
						|
 | 
						|
    pte_index *= HASH_PTE_SIZE_64;
 | 
						|
    if (env->external_htab) {
 | 
						|
        stq_p(env->external_htab + pte_index, pte0);
 | 
						|
        stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64/2, pte1);
 | 
						|
    } else {
 | 
						|
        stq_phys(cs->as, env->htab_base + pte_index, pte0);
 | 
						|
        stq_phys(cs->as, env->htab_base + pte_index + HASH_PTE_SIZE_64/2, pte1);
 | 
						|
    }
 | 
						|
}
 |