662 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			662 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * OneNAND flash memories emulation.
 | |
|  *
 | |
|  * Copyright (C) 2008 Nokia Corporation
 | |
|  * Written by Andrzej Zaborowski <andrew@openedhand.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation; either version 2 or
 | |
|  * (at your option) version 3 of the License.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along
 | |
|  * with this program; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "flash.h"
 | |
| #include "irq.h"
 | |
| #include "sysemu.h"
 | |
| #include "block.h"
 | |
| 
 | |
| /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
 | |
| #define PAGE_SHIFT	11
 | |
| 
 | |
| /* Fixed */
 | |
| #define BLOCK_SHIFT	(PAGE_SHIFT + 6)
 | |
| 
 | |
| typedef struct {
 | |
|     uint32_t id;
 | |
|     int shift;
 | |
|     target_phys_addr_t base;
 | |
|     qemu_irq intr;
 | |
|     qemu_irq rdy;
 | |
|     BlockDriverState *bdrv;
 | |
|     BlockDriverState *bdrv_cur;
 | |
|     uint8_t *image;
 | |
|     uint8_t *otp;
 | |
|     uint8_t *current;
 | |
|     ram_addr_t ram;
 | |
|     uint8_t *boot[2];
 | |
|     uint8_t *data[2][2];
 | |
|     int iomemtype;
 | |
|     int cycle;
 | |
|     int otpmode;
 | |
| 
 | |
|     uint16_t addr[8];
 | |
|     uint16_t unladdr[8];
 | |
|     int bufaddr;
 | |
|     int count;
 | |
|     uint16_t command;
 | |
|     uint16_t config[2];
 | |
|     uint16_t status;
 | |
|     uint16_t intstatus;
 | |
|     uint16_t wpstatus;
 | |
| 
 | |
|     ECCState ecc;
 | |
| 
 | |
|     int density_mask;
 | |
|     int secs;
 | |
|     int secs_cur;
 | |
|     int blocks;
 | |
|     uint8_t *blockwp;
 | |
| } OneNANDState;
 | |
| 
 | |
| enum {
 | |
|     ONEN_BUF_BLOCK = 0,
 | |
|     ONEN_BUF_BLOCK2 = 1,
 | |
|     ONEN_BUF_DEST_BLOCK = 2,
 | |
|     ONEN_BUF_DEST_PAGE = 3,
 | |
|     ONEN_BUF_PAGE = 7,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     ONEN_ERR_CMD = 1 << 10,
 | |
|     ONEN_ERR_ERASE = 1 << 11,
 | |
|     ONEN_ERR_PROG = 1 << 12,
 | |
|     ONEN_ERR_LOAD = 1 << 13,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     ONEN_INT_RESET = 1 << 4,
 | |
|     ONEN_INT_ERASE = 1 << 5,
 | |
|     ONEN_INT_PROG = 1 << 6,
 | |
|     ONEN_INT_LOAD = 1 << 7,
 | |
|     ONEN_INT = 1 << 15,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
 | |
|     ONEN_LOCK_LOCKED = 1 << 1,
 | |
|     ONEN_LOCK_UNLOCKED = 1 << 2,
 | |
| };
 | |
| 
 | |
| void onenand_base_update(void *opaque, target_phys_addr_t new)
 | |
| {
 | |
|     OneNANDState *s = (OneNANDState *) opaque;
 | |
| 
 | |
|     s->base = new;
 | |
| 
 | |
|     /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
 | |
|      * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
 | |
|      * write boot commands.  Also take note of the BWPS bit.  */
 | |
|     cpu_register_physical_memory(s->base + (0x0000 << s->shift),
 | |
|                     0x0200 << s->shift, s->iomemtype);
 | |
|     cpu_register_physical_memory(s->base + (0x0200 << s->shift),
 | |
|                     0xbe00 << s->shift,
 | |
|                     (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
 | |
|     if (s->iomemtype)
 | |
|         cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
 | |
|                     0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
 | |
| }
 | |
| 
 | |
| void onenand_base_unmap(void *opaque)
 | |
| {
 | |
|     OneNANDState *s = (OneNANDState *) opaque;
 | |
| 
 | |
|     cpu_register_physical_memory(s->base,
 | |
|                     0x10000 << s->shift, IO_MEM_UNASSIGNED);
 | |
| }
 | |
| 
 | |
| static void onenand_intr_update(OneNANDState *s)
 | |
| {
 | |
|     qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
 | |
| }
 | |
| 
 | |
| /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
 | |
| static void onenand_reset(OneNANDState *s, int cold)
 | |
| {
 | |
|     memset(&s->addr, 0, sizeof(s->addr));
 | |
|     s->command = 0;
 | |
|     s->count = 1;
 | |
|     s->bufaddr = 0;
 | |
|     s->config[0] = 0x40c0;
 | |
|     s->config[1] = 0x0000;
 | |
|     onenand_intr_update(s);
 | |
|     qemu_irq_raise(s->rdy);
 | |
|     s->status = 0x0000;
 | |
|     s->intstatus = cold ? 0x8080 : 0x8010;
 | |
|     s->unladdr[0] = 0;
 | |
|     s->unladdr[1] = 0;
 | |
|     s->wpstatus = 0x0002;
 | |
|     s->cycle = 0;
 | |
|     s->otpmode = 0;
 | |
|     s->bdrv_cur = s->bdrv;
 | |
|     s->current = s->image;
 | |
|     s->secs_cur = s->secs;
 | |
| 
 | |
|     if (cold) {
 | |
|         /* Lock the whole flash */
 | |
|         memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
 | |
| 
 | |
|         if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
 | |
|             hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
 | |
|                 void *dest)
 | |
| {
 | |
|     if (s->bdrv_cur)
 | |
|         return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
 | |
|     else if (sec + secn > s->secs_cur)
 | |
|         return 1;
 | |
| 
 | |
|     memcpy(dest, s->current + (sec << 9), secn << 9);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
 | |
|                 void *src)
 | |
| {
 | |
|     if (s->bdrv_cur)
 | |
|         return bdrv_write(s->bdrv_cur, sec, src, secn) < 0;
 | |
|     else if (sec + secn > s->secs_cur)
 | |
|         return 1;
 | |
| 
 | |
|     memcpy(s->current + (sec << 9), src, secn << 9);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
 | |
|                 void *dest)
 | |
| {
 | |
|     uint8_t buf[512];
 | |
| 
 | |
|     if (s->bdrv_cur) {
 | |
|         if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
 | |
|             return 1;
 | |
|         memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
 | |
|     } else if (sec + secn > s->secs_cur)
 | |
|         return 1;
 | |
|     else
 | |
|         memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
 | |
|  
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
 | |
|                 void *src)
 | |
| {
 | |
|     uint8_t buf[512];
 | |
| 
 | |
|     if (s->bdrv_cur) {
 | |
|         if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
 | |
|             return 1;
 | |
|         memcpy(buf + ((sec & 31) << 4), src, secn << 4);
 | |
|         return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0;
 | |
|     } else if (sec + secn > s->secs_cur)
 | |
|         return 1;
 | |
| 
 | |
|     memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4);
 | |
|  
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline int onenand_erase(OneNANDState *s, int sec, int num)
 | |
| {
 | |
|     /* TODO: optimise */
 | |
|     uint8_t buf[512];
 | |
| 
 | |
|     memset(buf, 0xff, sizeof(buf));
 | |
|     for (; num > 0; num --, sec ++) {
 | |
|         if (onenand_prog_main(s, sec, 1, buf))
 | |
|             return 1;
 | |
|         if (onenand_prog_spare(s, sec, 1, buf))
 | |
|             return 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void onenand_command(OneNANDState *s, int cmd)
 | |
| {
 | |
|     int b;
 | |
|     int sec;
 | |
|     void *buf;
 | |
| #define SETADDR(block, page)			\
 | |
|     sec = (s->addr[page] & 3) +			\
 | |
|             ((((s->addr[page] >> 2) & 0x3f) +	\
 | |
|               (((s->addr[block] & 0xfff) |	\
 | |
|                 (s->addr[block] >> 15 ?		\
 | |
|                  s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
 | |
| #define SETBUF_M()				\
 | |
|     buf = (s->bufaddr & 8) ?			\
 | |
|             s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];	\
 | |
|     buf += (s->bufaddr & 3) << 9;
 | |
| #define SETBUF_S()				\
 | |
|     buf = (s->bufaddr & 8) ?			\
 | |
|             s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];	\
 | |
|     buf += (s->bufaddr & 3) << 4;
 | |
| 
 | |
|     switch (cmd) {
 | |
|     case 0x00:	/* Load single/multiple sector data unit into buffer */
 | |
|         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
 | |
| 
 | |
|         SETBUF_M()
 | |
|         if (onenand_load_main(s, sec, s->count, buf))
 | |
|             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
 | |
| 
 | |
| #if 0
 | |
|         SETBUF_S()
 | |
|         if (onenand_load_spare(s, sec, s->count, buf))
 | |
|             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
 | |
| #endif
 | |
| 
 | |
|         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
 | |
|          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
 | |
|          * then we need two split the read/write into two chunks.
 | |
|          */
 | |
|         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
 | |
|         break;
 | |
|     case 0x13:	/* Load single/multiple spare sector into buffer */
 | |
|         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
 | |
| 
 | |
|         SETBUF_S()
 | |
|         if (onenand_load_spare(s, sec, s->count, buf))
 | |
|             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
 | |
| 
 | |
|         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
 | |
|          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
 | |
|          * then we need two split the read/write into two chunks.
 | |
|          */
 | |
|         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
 | |
|         break;
 | |
|     case 0x80:	/* Program single/multiple sector data unit from buffer */
 | |
|         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
 | |
| 
 | |
|         SETBUF_M()
 | |
|         if (onenand_prog_main(s, sec, s->count, buf))
 | |
|             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
 | |
| 
 | |
| #if 0
 | |
|         SETBUF_S()
 | |
|         if (onenand_prog_spare(s, sec, s->count, buf))
 | |
|             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
 | |
| #endif
 | |
| 
 | |
|         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
 | |
|          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
 | |
|          * then we need two split the read/write into two chunks.
 | |
|          */
 | |
|         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
 | |
|         break;
 | |
|     case 0x1a:	/* Program single/multiple spare area sector from buffer */
 | |
|         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
 | |
| 
 | |
|         SETBUF_S()
 | |
|         if (onenand_prog_spare(s, sec, s->count, buf))
 | |
|             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
 | |
| 
 | |
|         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
 | |
|          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
 | |
|          * then we need two split the read/write into two chunks.
 | |
|          */
 | |
|         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
 | |
|         break;
 | |
|     case 0x1b:	/* Copy-back program */
 | |
|         SETBUF_S()
 | |
| 
 | |
|         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
 | |
|         if (onenand_load_main(s, sec, s->count, buf))
 | |
|             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
 | |
| 
 | |
|         SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
 | |
|         if (onenand_prog_main(s, sec, s->count, buf))
 | |
|             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
 | |
| 
 | |
|         /* TODO: spare areas */
 | |
| 
 | |
|         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
 | |
|         break;
 | |
| 
 | |
|     case 0x23:	/* Unlock NAND array block(s) */
 | |
|         s->intstatus |= ONEN_INT;
 | |
| 
 | |
|         /* XXX the previous (?) area should be locked automatically */
 | |
|         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
 | |
|             if (b >= s->blocks) {
 | |
|                 s->status |= ONEN_ERR_CMD;
 | |
|                 break;
 | |
|             }
 | |
|             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
 | |
|                 break;
 | |
| 
 | |
|             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
 | |
|         }
 | |
|         break;
 | |
|     case 0x27:	/* Unlock All NAND array blocks */
 | |
|         s->intstatus |= ONEN_INT;
 | |
| 
 | |
|         for (b = 0; b < s->blocks; b ++) {
 | |
|             if (b >= s->blocks) {
 | |
|                 s->status |= ONEN_ERR_CMD;
 | |
|                 break;
 | |
|             }
 | |
|             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
 | |
|                 break;
 | |
| 
 | |
|             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case 0x2a:	/* Lock NAND array block(s) */
 | |
|         s->intstatus |= ONEN_INT;
 | |
| 
 | |
|         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
 | |
|             if (b >= s->blocks) {
 | |
|                 s->status |= ONEN_ERR_CMD;
 | |
|                 break;
 | |
|             }
 | |
|             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
 | |
|                 break;
 | |
| 
 | |
|             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
 | |
|         }
 | |
|         break;
 | |
|     case 0x2c:	/* Lock-tight NAND array block(s) */
 | |
|         s->intstatus |= ONEN_INT;
 | |
| 
 | |
|         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
 | |
|             if (b >= s->blocks) {
 | |
|                 s->status |= ONEN_ERR_CMD;
 | |
|                 break;
 | |
|             }
 | |
|             if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
 | |
|                 continue;
 | |
| 
 | |
|             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case 0x71:	/* Erase-Verify-Read */
 | |
|         s->intstatus |= ONEN_INT;
 | |
|         break;
 | |
|     case 0x95:	/* Multi-block erase */
 | |
|         qemu_irq_pulse(s->intr);
 | |
|         /* Fall through.  */
 | |
|     case 0x94:	/* Block erase */
 | |
|         sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
 | |
|                         (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
 | |
|                 << (BLOCK_SHIFT - 9);
 | |
|         if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
 | |
|             s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
 | |
| 
 | |
|         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
 | |
|         break;
 | |
|     case 0xb0:	/* Erase suspend */
 | |
|         break;
 | |
|     case 0x30:	/* Erase resume */
 | |
|         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
 | |
|         break;
 | |
| 
 | |
|     case 0xf0:	/* Reset NAND Flash core */
 | |
|         onenand_reset(s, 0);
 | |
|         break;
 | |
|     case 0xf3:	/* Reset OneNAND */
 | |
|         onenand_reset(s, 0);
 | |
|         break;
 | |
| 
 | |
|     case 0x65:	/* OTP Access */
 | |
|         s->intstatus |= ONEN_INT;
 | |
|         s->bdrv_cur = NULL;
 | |
|         s->current = s->otp;
 | |
|         s->secs_cur = 1 << (BLOCK_SHIFT - 9);
 | |
|         s->addr[ONEN_BUF_BLOCK] = 0;
 | |
|         s->otpmode = 1;
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         s->status |= ONEN_ERR_CMD;
 | |
|         s->intstatus |= ONEN_INT;
 | |
|         fprintf(stderr, "%s: unknown OneNAND command %x\n",
 | |
|                         __FUNCTION__, cmd);
 | |
|     }
 | |
| 
 | |
|     onenand_intr_update(s);
 | |
| }
 | |
| 
 | |
| static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     OneNANDState *s = (OneNANDState *) opaque;
 | |
|     int offset = addr >> s->shift;
 | |
| 
 | |
|     switch (offset) {
 | |
|     case 0x0000 ... 0xc000:
 | |
|         return lduw_le_p(s->boot[0] + addr);
 | |
| 
 | |
|     case 0xf000:	/* Manufacturer ID */
 | |
|         return (s->id >> 16) & 0xff;
 | |
|     case 0xf001:	/* Device ID */
 | |
|         return (s->id >>  8) & 0xff;
 | |
|     /* TODO: get the following values from a real chip!  */
 | |
|     case 0xf002:	/* Version ID */
 | |
|         return (s->id >>  0) & 0xff;
 | |
|     case 0xf003:	/* Data Buffer size */
 | |
|         return 1 << PAGE_SHIFT;
 | |
|     case 0xf004:	/* Boot Buffer size */
 | |
|         return 0x200;
 | |
|     case 0xf005:	/* Amount of buffers */
 | |
|         return 1 | (2 << 8);
 | |
|     case 0xf006:	/* Technology */
 | |
|         return 0;
 | |
| 
 | |
|     case 0xf100 ... 0xf107:	/* Start addresses */
 | |
|         return s->addr[offset - 0xf100];
 | |
| 
 | |
|     case 0xf200:	/* Start buffer */
 | |
|         return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
 | |
| 
 | |
|     case 0xf220:	/* Command */
 | |
|         return s->command;
 | |
|     case 0xf221:	/* System Configuration 1 */
 | |
|         return s->config[0] & 0xffe0;
 | |
|     case 0xf222:	/* System Configuration 2 */
 | |
|         return s->config[1];
 | |
| 
 | |
|     case 0xf240:	/* Controller Status */
 | |
|         return s->status;
 | |
|     case 0xf241:	/* Interrupt */
 | |
|         return s->intstatus;
 | |
|     case 0xf24c:	/* Unlock Start Block Address */
 | |
|         return s->unladdr[0];
 | |
|     case 0xf24d:	/* Unlock End Block Address */
 | |
|         return s->unladdr[1];
 | |
|     case 0xf24e:	/* Write Protection Status */
 | |
|         return s->wpstatus;
 | |
| 
 | |
|     case 0xff00:	/* ECC Status */
 | |
|         return 0x00;
 | |
|     case 0xff01:	/* ECC Result of main area data */
 | |
|     case 0xff02:	/* ECC Result of spare area data */
 | |
|     case 0xff03:	/* ECC Result of main area data */
 | |
|     case 0xff04:	/* ECC Result of spare area data */
 | |
|         hw_error("%s: imeplement ECC\n", __FUNCTION__);
 | |
|         return 0x0000;
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: unknown OneNAND register %x\n",
 | |
|                     __FUNCTION__, offset);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void onenand_write(void *opaque, target_phys_addr_t addr,
 | |
|                 uint32_t value)
 | |
| {
 | |
|     OneNANDState *s = (OneNANDState *) opaque;
 | |
|     int offset = addr >> s->shift;
 | |
|     int sec;
 | |
| 
 | |
|     switch (offset) {
 | |
|     case 0x0000 ... 0x01ff:
 | |
|     case 0x8000 ... 0x800f:
 | |
|         if (s->cycle) {
 | |
|             s->cycle = 0;
 | |
| 
 | |
|             if (value == 0x0000) {
 | |
|                 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
 | |
|                 onenand_load_main(s, sec,
 | |
|                                 1 << (PAGE_SHIFT - 9), s->data[0][0]);
 | |
|                 s->addr[ONEN_BUF_PAGE] += 4;
 | |
|                 s->addr[ONEN_BUF_PAGE] &= 0xff;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         switch (value) {
 | |
|         case 0x00f0:	/* Reset OneNAND */
 | |
|             onenand_reset(s, 0);
 | |
|             break;
 | |
| 
 | |
|         case 0x00e0:	/* Load Data into Buffer */
 | |
|             s->cycle = 1;
 | |
|             break;
 | |
| 
 | |
|         case 0x0090:	/* Read Identification Data */
 | |
|             memset(s->boot[0], 0, 3 << s->shift);
 | |
|             s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff;
 | |
|             s->boot[0][1 << s->shift] = (s->id >>  8) & 0xff;
 | |
|             s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
 | |
|                             __FUNCTION__, value);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case 0xf100 ... 0xf107:	/* Start addresses */
 | |
|         s->addr[offset - 0xf100] = value;
 | |
|         break;
 | |
| 
 | |
|     case 0xf200:	/* Start buffer */
 | |
|         s->bufaddr = (value >> 8) & 0xf;
 | |
|         if (PAGE_SHIFT == 11)
 | |
|             s->count = (value & 3) ?: 4;
 | |
|         else if (PAGE_SHIFT == 10)
 | |
|             s->count = (value & 1) ?: 2;
 | |
|         break;
 | |
| 
 | |
|     case 0xf220:	/* Command */
 | |
|         if (s->intstatus & (1 << 15))
 | |
|             break;
 | |
|         s->command = value;
 | |
|         onenand_command(s, s->command);
 | |
|         break;
 | |
|     case 0xf221:	/* System Configuration 1 */
 | |
|         s->config[0] = value;
 | |
|         onenand_intr_update(s);
 | |
|         qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
 | |
|         break;
 | |
|     case 0xf222:	/* System Configuration 2 */
 | |
|         s->config[1] = value;
 | |
|         break;
 | |
| 
 | |
|     case 0xf241:	/* Interrupt */
 | |
|         s->intstatus &= value;
 | |
|         if ((1 << 15) & ~s->intstatus)
 | |
|             s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
 | |
|                             ONEN_ERR_PROG | ONEN_ERR_LOAD);
 | |
|         onenand_intr_update(s);
 | |
|         break;
 | |
|     case 0xf24c:	/* Unlock Start Block Address */
 | |
|         s->unladdr[0] = value & (s->blocks - 1);
 | |
|         /* For some reason we have to set the end address to by default
 | |
|          * be same as start because the software forgets to write anything
 | |
|          * in there.  */
 | |
|         s->unladdr[1] = value & (s->blocks - 1);
 | |
|         break;
 | |
|     case 0xf24d:	/* Unlock End Block Address */
 | |
|         s->unladdr[1] = value & (s->blocks - 1);
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         fprintf(stderr, "%s: unknown OneNAND register %x\n",
 | |
|                         __FUNCTION__, offset);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc * const onenand_readfn[] = {
 | |
|     onenand_read,	/* TODO */
 | |
|     onenand_read,
 | |
|     onenand_read,
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc * const onenand_writefn[] = {
 | |
|     onenand_write,	/* TODO */
 | |
|     onenand_write,
 | |
|     onenand_write,
 | |
| };
 | |
| 
 | |
| void *onenand_init(uint32_t id, int regshift, qemu_irq irq)
 | |
| {
 | |
|     OneNANDState *s = (OneNANDState *) qemu_mallocz(sizeof(*s));
 | |
|     DriveInfo *dinfo = drive_get(IF_MTD, 0, 0);
 | |
|     uint32_t size = 1 << (24 + ((id >> 12) & 7));
 | |
|     void *ram;
 | |
| 
 | |
|     s->shift = regshift;
 | |
|     s->intr = irq;
 | |
|     s->rdy = NULL;
 | |
|     s->id = id;
 | |
|     s->blocks = size >> BLOCK_SHIFT;
 | |
|     s->secs = size >> 9;
 | |
|     s->blockwp = qemu_malloc(s->blocks);
 | |
|     s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0;
 | |
|     s->iomemtype = cpu_register_io_memory(onenand_readfn,
 | |
|                     onenand_writefn, s);
 | |
|     if (!dinfo)
 | |
|         s->image = memset(qemu_malloc(size + (size >> 5)),
 | |
|                         0xff, size + (size >> 5));
 | |
|     else
 | |
|         s->bdrv = dinfo->bdrv;
 | |
|     s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
 | |
|                     0xff, (64 + 2) << PAGE_SHIFT);
 | |
|     s->ram = qemu_ram_alloc(0xc000 << s->shift);
 | |
|     ram = qemu_get_ram_ptr(s->ram);
 | |
|     s->boot[0] = ram + (0x0000 << s->shift);
 | |
|     s->boot[1] = ram + (0x8000 << s->shift);
 | |
|     s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
 | |
|     s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
 | |
|     s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
 | |
|     s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
 | |
| 
 | |
|     onenand_reset(s, 1);
 | |
| 
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| void *onenand_raw_otp(void *opaque)
 | |
| {
 | |
|     OneNANDState *s = (OneNANDState *) opaque;
 | |
| 
 | |
|     return s->otp;
 | |
| }
 |