1864 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1864 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * device quirks for PCI devices
 | |
|  *
 | |
|  * Copyright Red Hat, Inc. 2012-2015
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Alex Williamson <alex.williamson@redhat.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2.  See
 | |
|  * the COPYING file in the top-level directory.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "qemu/range.h"
 | |
| #include "qapi/error.h"
 | |
| #include "hw/nvram/fw_cfg.h"
 | |
| #include "pci.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
 | |
| static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
 | |
| {
 | |
|     return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
 | |
|            (device == PCI_ANY_ID || device == vdev->device_id);
 | |
| }
 | |
| 
 | |
| static bool vfio_is_vga(VFIOPCIDevice *vdev)
 | |
| {
 | |
|     PCIDevice *pdev = &vdev->pdev;
 | |
|     uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
 | |
| 
 | |
|     return class == PCI_CLASS_DISPLAY_VGA;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * List of device ids/vendor ids for which to disable
 | |
|  * option rom loading. This avoids the guest hangs during rom
 | |
|  * execution as noticed with the BCM 57810 card for lack of a
 | |
|  * more better way to handle such issues.
 | |
|  * The  user can still override by specifying a romfile or
 | |
|  * rombar=1.
 | |
|  * Please see https://bugs.launchpad.net/qemu/+bug/1284874
 | |
|  * for an analysis of the 57810 card hang. When adding
 | |
|  * a new vendor id/device id combination below, please also add
 | |
|  * your card/environment details and information that could
 | |
|  * help in debugging to the bug tracking this issue
 | |
|  */
 | |
| static const struct {
 | |
|     uint32_t vendor;
 | |
|     uint32_t device;
 | |
| } romblacklist[] = {
 | |
|     { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
 | |
| };
 | |
| 
 | |
| bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
 | |
|         if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
 | |
|             trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
 | |
|                                              romblacklist[i].vendor,
 | |
|                                              romblacklist[i].device);
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Device specific region quirks (mostly backdoors to PCI config space)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The generic window quirks operate on an address and data register,
 | |
|  * vfio_generic_window_address_quirk handles the address register and
 | |
|  * vfio_generic_window_data_quirk handles the data register.  These ops
 | |
|  * pass reads and writes through to hardware until a value matching the
 | |
|  * stored address match/mask is written.  When this occurs, the data
 | |
|  * register access emulated PCI config space for the device rather than
 | |
|  * passing through accesses.  This enables devices where PCI config space
 | |
|  * is accessible behind a window register to maintain the virtualization
 | |
|  * provided through vfio.
 | |
|  */
 | |
| typedef struct VFIOConfigWindowMatch {
 | |
|     uint32_t match;
 | |
|     uint32_t mask;
 | |
| } VFIOConfigWindowMatch;
 | |
| 
 | |
| typedef struct VFIOConfigWindowQuirk {
 | |
|     struct VFIOPCIDevice *vdev;
 | |
| 
 | |
|     uint32_t address_val;
 | |
| 
 | |
|     uint32_t address_offset;
 | |
|     uint32_t data_offset;
 | |
| 
 | |
|     bool window_enabled;
 | |
|     uint8_t bar;
 | |
| 
 | |
|     MemoryRegion *addr_mem;
 | |
|     MemoryRegion *data_mem;
 | |
| 
 | |
|     uint32_t nr_matches;
 | |
|     VFIOConfigWindowMatch matches[];
 | |
| } VFIOConfigWindowQuirk;
 | |
| 
 | |
| static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
 | |
|                                                        hwaddr addr,
 | |
|                                                        unsigned size)
 | |
| {
 | |
|     VFIOConfigWindowQuirk *window = opaque;
 | |
|     VFIOPCIDevice *vdev = window->vdev;
 | |
| 
 | |
|     return vfio_region_read(&vdev->bars[window->bar].region,
 | |
|                             addr + window->address_offset, size);
 | |
| }
 | |
| 
 | |
| static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
 | |
|                                                     uint64_t data,
 | |
|                                                     unsigned size)
 | |
| {
 | |
|     VFIOConfigWindowQuirk *window = opaque;
 | |
|     VFIOPCIDevice *vdev = window->vdev;
 | |
|     int i;
 | |
| 
 | |
|     window->window_enabled = false;
 | |
| 
 | |
|     vfio_region_write(&vdev->bars[window->bar].region,
 | |
|                       addr + window->address_offset, data, size);
 | |
| 
 | |
|     for (i = 0; i < window->nr_matches; i++) {
 | |
|         if ((data & ~window->matches[i].mask) == window->matches[i].match) {
 | |
|             window->window_enabled = true;
 | |
|             window->address_val = data & window->matches[i].mask;
 | |
|             trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
 | |
|                                     memory_region_name(window->addr_mem), data);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps vfio_generic_window_address_quirk = {
 | |
|     .read = vfio_generic_window_quirk_address_read,
 | |
|     .write = vfio_generic_window_quirk_address_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
 | |
|                                                     hwaddr addr, unsigned size)
 | |
| {
 | |
|     VFIOConfigWindowQuirk *window = opaque;
 | |
|     VFIOPCIDevice *vdev = window->vdev;
 | |
|     uint64_t data;
 | |
| 
 | |
|     /* Always read data reg, discard if window enabled */
 | |
|     data = vfio_region_read(&vdev->bars[window->bar].region,
 | |
|                             addr + window->data_offset, size);
 | |
| 
 | |
|     if (window->window_enabled) {
 | |
|         data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
 | |
|         trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
 | |
|                                     memory_region_name(window->data_mem), data);
 | |
|     }
 | |
| 
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
 | |
|                                                  uint64_t data, unsigned size)
 | |
| {
 | |
|     VFIOConfigWindowQuirk *window = opaque;
 | |
|     VFIOPCIDevice *vdev = window->vdev;
 | |
| 
 | |
|     if (window->window_enabled) {
 | |
|         vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
 | |
|         trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
 | |
|                                     memory_region_name(window->data_mem), data);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     vfio_region_write(&vdev->bars[window->bar].region,
 | |
|                       addr + window->data_offset, data, size);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps vfio_generic_window_data_quirk = {
 | |
|     .read = vfio_generic_window_quirk_data_read,
 | |
|     .write = vfio_generic_window_quirk_data_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The generic mirror quirk handles devices which expose PCI config space
 | |
|  * through a region within a BAR.  When enabled, reads and writes are
 | |
|  * redirected through to emulated PCI config space.  XXX if PCI config space
 | |
|  * used memory regions, this could just be an alias.
 | |
|  */
 | |
| typedef struct VFIOConfigMirrorQuirk {
 | |
|     struct VFIOPCIDevice *vdev;
 | |
|     uint32_t offset;
 | |
|     uint8_t bar;
 | |
|     MemoryRegion *mem;
 | |
| } VFIOConfigMirrorQuirk;
 | |
| 
 | |
| static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
 | |
|                                                hwaddr addr, unsigned size)
 | |
| {
 | |
|     VFIOConfigMirrorQuirk *mirror = opaque;
 | |
|     VFIOPCIDevice *vdev = mirror->vdev;
 | |
|     uint64_t data;
 | |
| 
 | |
|     /* Read and discard in case the hardware cares */
 | |
|     (void)vfio_region_read(&vdev->bars[mirror->bar].region,
 | |
|                            addr + mirror->offset, size);
 | |
| 
 | |
|     data = vfio_pci_read_config(&vdev->pdev, addr, size);
 | |
|     trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
 | |
|                                          memory_region_name(mirror->mem),
 | |
|                                          addr, data);
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
 | |
|                                             uint64_t data, unsigned size)
 | |
| {
 | |
|     VFIOConfigMirrorQuirk *mirror = opaque;
 | |
|     VFIOPCIDevice *vdev = mirror->vdev;
 | |
| 
 | |
|     vfio_pci_write_config(&vdev->pdev, addr, data, size);
 | |
|     trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
 | |
|                                           memory_region_name(mirror->mem),
 | |
|                                           addr, data);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps vfio_generic_mirror_quirk = {
 | |
|     .read = vfio_generic_quirk_mirror_read,
 | |
|     .write = vfio_generic_quirk_mirror_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
| };
 | |
| 
 | |
| /* Is range1 fully contained within range2?  */
 | |
| static bool vfio_range_contained(uint64_t first1, uint64_t len1,
 | |
|                                  uint64_t first2, uint64_t len2) {
 | |
|     return (first1 >= first2 && first1 + len1 <= first2 + len2);
 | |
| }
 | |
| 
 | |
| #define PCI_VENDOR_ID_ATI               0x1002
 | |
| 
 | |
| /*
 | |
|  * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
 | |
|  * through VGA register 0x3c3.  On newer cards, the I/O port BAR is always
 | |
|  * BAR4 (older cards like the X550 used BAR1, but we don't care to support
 | |
|  * those).  Note that on bare metal, a read of 0x3c3 doesn't always return the
 | |
|  * I/O port BAR address.  Originally this was coded to return the virtual BAR
 | |
|  * address only if the physical register read returns the actual BAR address,
 | |
|  * but users have reported greater success if we return the virtual address
 | |
|  * unconditionally.
 | |
|  */
 | |
| static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
 | |
|                                         hwaddr addr, unsigned size)
 | |
| {
 | |
|     VFIOPCIDevice *vdev = opaque;
 | |
|     uint64_t data = vfio_pci_read_config(&vdev->pdev,
 | |
|                                          PCI_BASE_ADDRESS_4 + 1, size);
 | |
| 
 | |
|     trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
 | |
| 
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps vfio_ati_3c3_quirk = {
 | |
|     .read = vfio_ati_3c3_quirk_read,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
 | |
| {
 | |
|     VFIOQuirk *quirk;
 | |
| 
 | |
|     /*
 | |
|      * As long as the BAR is >= 256 bytes it will be aligned such that the
 | |
|      * lower byte is always zero.  Filter out anything else, if it exists.
 | |
|      */
 | |
|     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
 | |
|         !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     quirk = g_malloc0(sizeof(*quirk));
 | |
|     quirk->mem = g_new0(MemoryRegion, 1);
 | |
|     quirk->nr_mem = 1;
 | |
| 
 | |
|     memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
 | |
|                           "vfio-ati-3c3-quirk", 1);
 | |
|     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
 | |
|                                 3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
 | |
| 
 | |
|     QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
 | |
|                       quirk, next);
 | |
| 
 | |
|     trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
 | |
|  * config space through MMIO BAR2 at offset 0x4000.  Nothing seems to access
 | |
|  * the MMIO space directly, but a window to this space is provided through
 | |
|  * I/O port BAR4.  Offset 0x0 is the address register and offset 0x4 is the
 | |
|  * data register.  When the address is programmed to a range of 0x4000-0x4fff
 | |
|  * PCI configuration space is available.  Experimentation seems to indicate
 | |
|  * that read-only may be provided by hardware.
 | |
|  */
 | |
| static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
 | |
| {
 | |
|     VFIOQuirk *quirk;
 | |
|     VFIOConfigWindowQuirk *window;
 | |
| 
 | |
|     /* This windows doesn't seem to be used except by legacy VGA code */
 | |
|     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
 | |
|         !vdev->vga || nr != 4) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     quirk = g_malloc0(sizeof(*quirk));
 | |
|     quirk->mem = g_new0(MemoryRegion, 2);
 | |
|     quirk->nr_mem = 2;
 | |
|     window = quirk->data = g_malloc0(sizeof(*window) +
 | |
|                                      sizeof(VFIOConfigWindowMatch));
 | |
|     window->vdev = vdev;
 | |
|     window->address_offset = 0;
 | |
|     window->data_offset = 4;
 | |
|     window->nr_matches = 1;
 | |
|     window->matches[0].match = 0x4000;
 | |
|     window->matches[0].mask = vdev->config_size - 1;
 | |
|     window->bar = nr;
 | |
|     window->addr_mem = &quirk->mem[0];
 | |
|     window->data_mem = &quirk->mem[1];
 | |
| 
 | |
|     memory_region_init_io(window->addr_mem, OBJECT(vdev),
 | |
|                           &vfio_generic_window_address_quirk, window,
 | |
|                           "vfio-ati-bar4-window-address-quirk", 4);
 | |
|     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 | |
|                                         window->address_offset,
 | |
|                                         window->addr_mem, 1);
 | |
| 
 | |
|     memory_region_init_io(window->data_mem, OBJECT(vdev),
 | |
|                           &vfio_generic_window_data_quirk, window,
 | |
|                           "vfio-ati-bar4-window-data-quirk", 4);
 | |
|     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 | |
|                                         window->data_offset,
 | |
|                                         window->data_mem, 1);
 | |
| 
 | |
|     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 | |
| 
 | |
|     trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Trap the BAR2 MMIO mirror to config space as well.
 | |
|  */
 | |
| static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
 | |
| {
 | |
|     VFIOQuirk *quirk;
 | |
|     VFIOConfigMirrorQuirk *mirror;
 | |
| 
 | |
|     /* Only enable on newer devices where BAR2 is 64bit */
 | |
|     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
 | |
|         !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     quirk = g_malloc0(sizeof(*quirk));
 | |
|     mirror = quirk->data = g_malloc0(sizeof(*mirror));
 | |
|     mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
 | |
|     quirk->nr_mem = 1;
 | |
|     mirror->vdev = vdev;
 | |
|     mirror->offset = 0x4000;
 | |
|     mirror->bar = nr;
 | |
| 
 | |
|     memory_region_init_io(mirror->mem, OBJECT(vdev),
 | |
|                           &vfio_generic_mirror_quirk, mirror,
 | |
|                           "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
 | |
|     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 | |
|                                         mirror->offset, mirror->mem, 1);
 | |
| 
 | |
|     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 | |
| 
 | |
|     trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Older ATI/AMD cards like the X550 have a similar window to that above.
 | |
|  * I/O port BAR1 provides a window to a mirror of PCI config space located
 | |
|  * in BAR2 at offset 0xf00.  We don't care to support such older cards, but
 | |
|  * note it for future reference.
 | |
|  */
 | |
| 
 | |
| #define PCI_VENDOR_ID_NVIDIA                    0x10de
 | |
| 
 | |
| /*
 | |
|  * Nvidia has several different methods to get to config space, the
 | |
|  * nouveu project has several of these documented here:
 | |
|  * https://github.com/pathscale/envytools/tree/master/hwdocs
 | |
|  *
 | |
|  * The first quirk is actually not documented in envytools and is found
 | |
|  * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]).  This is an
 | |
|  * NV46 chipset.  The backdoor uses the legacy VGA I/O ports to access
 | |
|  * the mirror of PCI config space found at BAR0 offset 0x1800.  The access
 | |
|  * sequence first writes 0x338 to I/O port 0x3d4.  The target offset is
 | |
|  * then written to 0x3d0.  Finally 0x538 is written for a read and 0x738
 | |
|  * is written for a write to 0x3d4.  The BAR0 offset is then accessible
 | |
|  * through 0x3d0.  This quirk doesn't seem to be necessary on newer cards
 | |
|  * that use the I/O port BAR5 window but it doesn't hurt to leave it.
 | |
|  */
 | |
| typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
 | |
| static const char *nv3d0_states[] = { "NONE", "SELECT",
 | |
|                                       "WINDOW", "READ", "WRITE" };
 | |
| 
 | |
| typedef struct VFIONvidia3d0Quirk {
 | |
|     VFIOPCIDevice *vdev;
 | |
|     VFIONvidia3d0State state;
 | |
|     uint32_t offset;
 | |
| } VFIONvidia3d0Quirk;
 | |
| 
 | |
| static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
 | |
|                                            hwaddr addr, unsigned size)
 | |
| {
 | |
|     VFIONvidia3d0Quirk *quirk = opaque;
 | |
|     VFIOPCIDevice *vdev = quirk->vdev;
 | |
| 
 | |
|     quirk->state = NONE;
 | |
| 
 | |
|     return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 | |
|                          addr + 0x14, size);
 | |
| }
 | |
| 
 | |
| static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
 | |
|                                         uint64_t data, unsigned size)
 | |
| {
 | |
|     VFIONvidia3d0Quirk *quirk = opaque;
 | |
|     VFIOPCIDevice *vdev = quirk->vdev;
 | |
|     VFIONvidia3d0State old_state = quirk->state;
 | |
| 
 | |
|     quirk->state = NONE;
 | |
| 
 | |
|     switch (data) {
 | |
|     case 0x338:
 | |
|         if (old_state == NONE) {
 | |
|             quirk->state = SELECT;
 | |
|             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 | |
|                                               nv3d0_states[quirk->state]);
 | |
|         }
 | |
|         break;
 | |
|     case 0x538:
 | |
|         if (old_state == WINDOW) {
 | |
|             quirk->state = READ;
 | |
|             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 | |
|                                               nv3d0_states[quirk->state]);
 | |
|         }
 | |
|         break;
 | |
|     case 0x738:
 | |
|         if (old_state == WINDOW) {
 | |
|             quirk->state = WRITE;
 | |
|             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 | |
|                                               nv3d0_states[quirk->state]);
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 | |
|                    addr + 0x14, data, size);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
 | |
|     .read = vfio_nvidia_3d4_quirk_read,
 | |
|     .write = vfio_nvidia_3d4_quirk_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
 | |
|                                            hwaddr addr, unsigned size)
 | |
| {
 | |
|     VFIONvidia3d0Quirk *quirk = opaque;
 | |
|     VFIOPCIDevice *vdev = quirk->vdev;
 | |
|     VFIONvidia3d0State old_state = quirk->state;
 | |
|     uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 | |
|                                   addr + 0x10, size);
 | |
| 
 | |
|     quirk->state = NONE;
 | |
| 
 | |
|     if (old_state == READ &&
 | |
|         (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
 | |
|         uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
 | |
| 
 | |
|         data = vfio_pci_read_config(&vdev->pdev, offset, size);
 | |
|         trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
 | |
|                                          offset, size, data);
 | |
|     }
 | |
| 
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
 | |
|                                         uint64_t data, unsigned size)
 | |
| {
 | |
|     VFIONvidia3d0Quirk *quirk = opaque;
 | |
|     VFIOPCIDevice *vdev = quirk->vdev;
 | |
|     VFIONvidia3d0State old_state = quirk->state;
 | |
| 
 | |
|     quirk->state = NONE;
 | |
| 
 | |
|     if (old_state == SELECT) {
 | |
|         quirk->offset = (uint32_t)data;
 | |
|         quirk->state = WINDOW;
 | |
|         trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 | |
|                                           nv3d0_states[quirk->state]);
 | |
|     } else if (old_state == WRITE) {
 | |
|         if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
 | |
|             uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
 | |
| 
 | |
|             vfio_pci_write_config(&vdev->pdev, offset, data, size);
 | |
|             trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
 | |
|                                               offset, data, size);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 | |
|                    addr + 0x10, data, size);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
 | |
|     .read = vfio_nvidia_3d0_quirk_read,
 | |
|     .write = vfio_nvidia_3d0_quirk_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
 | |
| {
 | |
|     VFIOQuirk *quirk;
 | |
|     VFIONvidia3d0Quirk *data;
 | |
| 
 | |
|     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
 | |
|         !vdev->bars[1].region.size) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     quirk = g_malloc0(sizeof(*quirk));
 | |
|     quirk->data = data = g_malloc0(sizeof(*data));
 | |
|     quirk->mem = g_new0(MemoryRegion, 2);
 | |
|     quirk->nr_mem = 2;
 | |
|     data->vdev = vdev;
 | |
| 
 | |
|     memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
 | |
|                           data, "vfio-nvidia-3d4-quirk", 2);
 | |
|     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
 | |
|                                 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
 | |
| 
 | |
|     memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
 | |
|                           data, "vfio-nvidia-3d0-quirk", 2);
 | |
|     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
 | |
|                                 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
 | |
| 
 | |
|     QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
 | |
|                       quirk, next);
 | |
| 
 | |
|     trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The second quirk is documented in envytools.  The I/O port BAR5 is just
 | |
|  * a set of address/data ports to the MMIO BARs.  The BAR we care about is
 | |
|  * again BAR0.  This backdoor is apparently a bit newer than the one above
 | |
|  * so we need to not only trap 256 bytes @0x1800, but all of PCI config
 | |
|  * space, including extended space is available at the 4k @0x88000.
 | |
|  */
 | |
| typedef struct VFIONvidiaBAR5Quirk {
 | |
|     uint32_t master;
 | |
|     uint32_t enable;
 | |
|     MemoryRegion *addr_mem;
 | |
|     MemoryRegion *data_mem;
 | |
|     bool enabled;
 | |
|     VFIOConfigWindowQuirk window; /* last for match data */
 | |
| } VFIONvidiaBAR5Quirk;
 | |
| 
 | |
| static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
 | |
| {
 | |
|     VFIOPCIDevice *vdev = bar5->window.vdev;
 | |
| 
 | |
|     if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bar5->enabled = !bar5->enabled;
 | |
|     trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
 | |
|                                        bar5->enabled ?  "Enable" : "Disable");
 | |
|     memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
 | |
|     memory_region_set_enabled(bar5->data_mem, bar5->enabled);
 | |
| }
 | |
| 
 | |
| static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
 | |
|                                                    hwaddr addr, unsigned size)
 | |
| {
 | |
|     VFIONvidiaBAR5Quirk *bar5 = opaque;
 | |
|     VFIOPCIDevice *vdev = bar5->window.vdev;
 | |
| 
 | |
|     return vfio_region_read(&vdev->bars[5].region, addr, size);
 | |
| }
 | |
| 
 | |
| static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
 | |
|                                                 uint64_t data, unsigned size)
 | |
| {
 | |
|     VFIONvidiaBAR5Quirk *bar5 = opaque;
 | |
|     VFIOPCIDevice *vdev = bar5->window.vdev;
 | |
| 
 | |
|     vfio_region_write(&vdev->bars[5].region, addr, data, size);
 | |
| 
 | |
|     bar5->master = data;
 | |
|     vfio_nvidia_bar5_enable(bar5);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
 | |
|     .read = vfio_nvidia_bar5_quirk_master_read,
 | |
|     .write = vfio_nvidia_bar5_quirk_master_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
 | |
|                                                    hwaddr addr, unsigned size)
 | |
| {
 | |
|     VFIONvidiaBAR5Quirk *bar5 = opaque;
 | |
|     VFIOPCIDevice *vdev = bar5->window.vdev;
 | |
| 
 | |
|     return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
 | |
| }
 | |
| 
 | |
| static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
 | |
|                                                 uint64_t data, unsigned size)
 | |
| {
 | |
|     VFIONvidiaBAR5Quirk *bar5 = opaque;
 | |
|     VFIOPCIDevice *vdev = bar5->window.vdev;
 | |
| 
 | |
|     vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
 | |
| 
 | |
|     bar5->enable = data;
 | |
|     vfio_nvidia_bar5_enable(bar5);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
 | |
|     .read = vfio_nvidia_bar5_quirk_enable_read,
 | |
|     .write = vfio_nvidia_bar5_quirk_enable_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
 | |
| {
 | |
|     VFIOQuirk *quirk;
 | |
|     VFIONvidiaBAR5Quirk *bar5;
 | |
|     VFIOConfigWindowQuirk *window;
 | |
| 
 | |
|     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
 | |
|         !vdev->vga || nr != 5) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     quirk = g_malloc0(sizeof(*quirk));
 | |
|     quirk->mem = g_new0(MemoryRegion, 4);
 | |
|     quirk->nr_mem = 4;
 | |
|     bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
 | |
|                                    (sizeof(VFIOConfigWindowMatch) * 2));
 | |
|     window = &bar5->window;
 | |
| 
 | |
|     window->vdev = vdev;
 | |
|     window->address_offset = 0x8;
 | |
|     window->data_offset = 0xc;
 | |
|     window->nr_matches = 2;
 | |
|     window->matches[0].match = 0x1800;
 | |
|     window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
 | |
|     window->matches[1].match = 0x88000;
 | |
|     window->matches[1].mask = vdev->config_size - 1;
 | |
|     window->bar = nr;
 | |
|     window->addr_mem = bar5->addr_mem = &quirk->mem[0];
 | |
|     window->data_mem = bar5->data_mem = &quirk->mem[1];
 | |
| 
 | |
|     memory_region_init_io(window->addr_mem, OBJECT(vdev),
 | |
|                           &vfio_generic_window_address_quirk, window,
 | |
|                           "vfio-nvidia-bar5-window-address-quirk", 4);
 | |
|     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 | |
|                                         window->address_offset,
 | |
|                                         window->addr_mem, 1);
 | |
|     memory_region_set_enabled(window->addr_mem, false);
 | |
| 
 | |
|     memory_region_init_io(window->data_mem, OBJECT(vdev),
 | |
|                           &vfio_generic_window_data_quirk, window,
 | |
|                           "vfio-nvidia-bar5-window-data-quirk", 4);
 | |
|     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 | |
|                                         window->data_offset,
 | |
|                                         window->data_mem, 1);
 | |
|     memory_region_set_enabled(window->data_mem, false);
 | |
| 
 | |
|     memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
 | |
|                           &vfio_nvidia_bar5_quirk_master, bar5,
 | |
|                           "vfio-nvidia-bar5-master-quirk", 4);
 | |
|     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 | |
|                                         0, &quirk->mem[2], 1);
 | |
| 
 | |
|     memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
 | |
|                           &vfio_nvidia_bar5_quirk_enable, bar5,
 | |
|                           "vfio-nvidia-bar5-enable-quirk", 4);
 | |
|     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 | |
|                                         4, &quirk->mem[3], 1);
 | |
| 
 | |
|     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 | |
| 
 | |
|     trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finally, BAR0 itself.  We want to redirect any accesses to either
 | |
|  * 0x1800 or 0x88000 through the PCI config space access functions.
 | |
|  */
 | |
| static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
 | |
|                                            uint64_t data, unsigned size)
 | |
| {
 | |
|     VFIOConfigMirrorQuirk *mirror = opaque;
 | |
|     VFIOPCIDevice *vdev = mirror->vdev;
 | |
|     PCIDevice *pdev = &vdev->pdev;
 | |
| 
 | |
|     vfio_generic_quirk_mirror_write(opaque, addr, data, size);
 | |
| 
 | |
|     /*
 | |
|      * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
 | |
|      * MSI capability ID register.  Both the ID and next register are
 | |
|      * read-only, so we allow writes covering either of those to real hw.
 | |
|      */
 | |
|     if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
 | |
|         vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
 | |
|         vfio_region_write(&vdev->bars[mirror->bar].region,
 | |
|                           addr + mirror->offset, data, size);
 | |
|         trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
 | |
|     .read = vfio_generic_quirk_mirror_read,
 | |
|     .write = vfio_nvidia_quirk_mirror_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
 | |
| {
 | |
|     VFIOQuirk *quirk;
 | |
|     VFIOConfigMirrorQuirk *mirror;
 | |
| 
 | |
|     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
 | |
|         !vfio_is_vga(vdev) || nr != 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     quirk = g_malloc0(sizeof(*quirk));
 | |
|     mirror = quirk->data = g_malloc0(sizeof(*mirror));
 | |
|     mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
 | |
|     quirk->nr_mem = 1;
 | |
|     mirror->vdev = vdev;
 | |
|     mirror->offset = 0x88000;
 | |
|     mirror->bar = nr;
 | |
| 
 | |
|     memory_region_init_io(mirror->mem, OBJECT(vdev),
 | |
|                           &vfio_nvidia_mirror_quirk, mirror,
 | |
|                           "vfio-nvidia-bar0-88000-mirror-quirk",
 | |
|                           vdev->config_size);
 | |
|     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 | |
|                                         mirror->offset, mirror->mem, 1);
 | |
| 
 | |
|     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 | |
| 
 | |
|     /* The 0x1800 offset mirror only seems to get used by legacy VGA */
 | |
|     if (vdev->vga) {
 | |
|         quirk = g_malloc0(sizeof(*quirk));
 | |
|         mirror = quirk->data = g_malloc0(sizeof(*mirror));
 | |
|         mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
 | |
|         quirk->nr_mem = 1;
 | |
|         mirror->vdev = vdev;
 | |
|         mirror->offset = 0x1800;
 | |
|         mirror->bar = nr;
 | |
| 
 | |
|         memory_region_init_io(mirror->mem, OBJECT(vdev),
 | |
|                               &vfio_nvidia_mirror_quirk, mirror,
 | |
|                               "vfio-nvidia-bar0-1800-mirror-quirk",
 | |
|                               PCI_CONFIG_SPACE_SIZE);
 | |
|         memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 | |
|                                             mirror->offset, mirror->mem, 1);
 | |
| 
 | |
|         QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 | |
|     }
 | |
| 
 | |
|     trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TODO - Some Nvidia devices provide config access to their companion HDA
 | |
|  * device and even to their parent bridge via these config space mirrors.
 | |
|  * Add quirks for those regions.
 | |
|  */
 | |
| 
 | |
| #define PCI_VENDOR_ID_REALTEK 0x10ec
 | |
| 
 | |
| /*
 | |
|  * RTL8168 devices have a backdoor that can access the MSI-X table.  At BAR2
 | |
|  * offset 0x70 there is a dword data register, offset 0x74 is a dword address
 | |
|  * register.  According to the Linux r8169 driver, the MSI-X table is addressed
 | |
|  * when the "type" portion of the address register is set to 0x1.  This appears
 | |
|  * to be bits 16:30.  Bit 31 is both a write indicator and some sort of
 | |
|  * "address latched" indicator.  Bits 12:15 are a mask field, which we can
 | |
|  * ignore because the MSI-X table should always be accessed as a dword (full
 | |
|  * mask).  Bits 0:11 is offset within the type.
 | |
|  *
 | |
|  * Example trace:
 | |
|  *
 | |
|  * Read from MSI-X table offset 0
 | |
|  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
 | |
|  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
 | |
|  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
 | |
|  *
 | |
|  * Write 0xfee00000 to MSI-X table offset 0
 | |
|  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
 | |
|  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
 | |
|  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
 | |
|  */
 | |
| typedef struct VFIOrtl8168Quirk {
 | |
|     VFIOPCIDevice *vdev;
 | |
|     uint32_t addr;
 | |
|     uint32_t data;
 | |
|     bool enabled;
 | |
| } VFIOrtl8168Quirk;
 | |
| 
 | |
| static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
 | |
|                                                 hwaddr addr, unsigned size)
 | |
| {
 | |
|     VFIOrtl8168Quirk *rtl = opaque;
 | |
|     VFIOPCIDevice *vdev = rtl->vdev;
 | |
|     uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
 | |
| 
 | |
|     if (rtl->enabled) {
 | |
|         data = rtl->addr ^ 0x80000000U; /* latch/complete */
 | |
|         trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
 | |
|     }
 | |
| 
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
 | |
|                                              uint64_t data, unsigned size)
 | |
| {
 | |
|     VFIOrtl8168Quirk *rtl = opaque;
 | |
|     VFIOPCIDevice *vdev = rtl->vdev;
 | |
| 
 | |
|     rtl->enabled = false;
 | |
| 
 | |
|     if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
 | |
|         rtl->enabled = true;
 | |
|         rtl->addr = (uint32_t)data;
 | |
| 
 | |
|         if (data & 0x80000000U) { /* Do write */
 | |
|             if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
 | |
|                 hwaddr offset = data & 0xfff;
 | |
|                 uint64_t val = rtl->data;
 | |
| 
 | |
|                 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
 | |
|                                                     (uint16_t)offset, val);
 | |
| 
 | |
|                 /* Write to the proper guest MSI-X table instead */
 | |
|                 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
 | |
|                                              offset, val, size,
 | |
|                                              MEMTXATTRS_UNSPECIFIED);
 | |
|             }
 | |
|             return; /* Do not write guest MSI-X data to hardware */
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps vfio_rtl_address_quirk = {
 | |
|     .read = vfio_rtl8168_quirk_address_read,
 | |
|     .write = vfio_rtl8168_quirk_address_write,
 | |
|     .valid = {
 | |
|         .min_access_size = 4,
 | |
|         .max_access_size = 4,
 | |
|         .unaligned = false,
 | |
|     },
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
 | |
|                                              hwaddr addr, unsigned size)
 | |
| {
 | |
|     VFIOrtl8168Quirk *rtl = opaque;
 | |
|     VFIOPCIDevice *vdev = rtl->vdev;
 | |
|     uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
 | |
| 
 | |
|     if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
 | |
|         hwaddr offset = rtl->addr & 0xfff;
 | |
|         memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
 | |
|                                     &data, size, MEMTXATTRS_UNSPECIFIED);
 | |
|         trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
 | |
|     }
 | |
| 
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
 | |
|                                           uint64_t data, unsigned size)
 | |
| {
 | |
|     VFIOrtl8168Quirk *rtl = opaque;
 | |
|     VFIOPCIDevice *vdev = rtl->vdev;
 | |
| 
 | |
|     rtl->data = (uint32_t)data;
 | |
| 
 | |
|     vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps vfio_rtl_data_quirk = {
 | |
|     .read = vfio_rtl8168_quirk_data_read,
 | |
|     .write = vfio_rtl8168_quirk_data_write,
 | |
|     .valid = {
 | |
|         .min_access_size = 4,
 | |
|         .max_access_size = 4,
 | |
|         .unaligned = false,
 | |
|     },
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
 | |
| {
 | |
|     VFIOQuirk *quirk;
 | |
|     VFIOrtl8168Quirk *rtl;
 | |
| 
 | |
|     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     quirk = g_malloc0(sizeof(*quirk));
 | |
|     quirk->mem = g_new0(MemoryRegion, 2);
 | |
|     quirk->nr_mem = 2;
 | |
|     quirk->data = rtl = g_malloc0(sizeof(*rtl));
 | |
|     rtl->vdev = vdev;
 | |
| 
 | |
|     memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
 | |
|                           &vfio_rtl_address_quirk, rtl,
 | |
|                           "vfio-rtl8168-window-address-quirk", 4);
 | |
|     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 | |
|                                         0x74, &quirk->mem[0], 1);
 | |
| 
 | |
|     memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
 | |
|                           &vfio_rtl_data_quirk, rtl,
 | |
|                           "vfio-rtl8168-window-data-quirk", 4);
 | |
|     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 | |
|                                         0x70, &quirk->mem[1], 1);
 | |
| 
 | |
|     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 | |
| 
 | |
|     trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Intel IGD support
 | |
|  *
 | |
|  * Obviously IGD is not a discrete device, this is evidenced not only by it
 | |
|  * being integrated into the CPU, but by the various chipset and BIOS
 | |
|  * dependencies that it brings along with it.  Intel is trying to move away
 | |
|  * from this and Broadwell and newer devices can run in what Intel calls
 | |
|  * "Universal Pass-Through" mode, or UPT.  Theoretically in UPT mode, nothing
 | |
|  * more is required beyond assigning the IGD device to a VM.  There are
 | |
|  * however support limitations to this mode.  It only supports IGD as a
 | |
|  * secondary graphics device in the VM and it doesn't officially support any
 | |
|  * physical outputs.
 | |
|  *
 | |
|  * The code here attempts to enable what we'll call legacy mode assignment,
 | |
|  * IGD retains most of the capabilities we expect for it to have on bare
 | |
|  * metal.  To enable this mode, the IGD device must be assigned to the VM
 | |
|  * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
 | |
|  * support, we must have VM BIOS support for reserving and populating some
 | |
|  * of the required tables, and we need to tweak the chipset with revisions
 | |
|  * and IDs and an LPC/ISA bridge device.  The intention is to make all of
 | |
|  * this happen automatically by installing the device at the correct VM PCI
 | |
|  * bus address.  If any of the conditions are not met, we cross our fingers
 | |
|  * and hope the user knows better.
 | |
|  *
 | |
|  * NB - It is possible to enable physical outputs in UPT mode by supplying
 | |
|  * an OpRegion table.  We don't do this by default because the guest driver
 | |
|  * behaves differently if an OpRegion is provided and no monitor is attached
 | |
|  * vs no OpRegion and a monitor being attached or not.  Effectively, if a
 | |
|  * headless setup is desired, the OpRegion gets in the way of that.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This presumes the device is already known to be an Intel VGA device, so we
 | |
|  * take liberties in which device ID bits match which generation.  This should
 | |
|  * not be taken as an indication that all the devices are supported, or even
 | |
|  * supportable, some of them don't even support VT-d.
 | |
|  * See linux:include/drm/i915_pciids.h for IDs.
 | |
|  */
 | |
| static int igd_gen(VFIOPCIDevice *vdev)
 | |
| {
 | |
|     if ((vdev->device_id & 0xfff) == 0xa84) {
 | |
|         return 8; /* Broxton */
 | |
|     }
 | |
| 
 | |
|     switch (vdev->device_id & 0xff00) {
 | |
|     /* Old, untested, unavailable, unknown */
 | |
|     case 0x0000:
 | |
|     case 0x2500:
 | |
|     case 0x2700:
 | |
|     case 0x2900:
 | |
|     case 0x2a00:
 | |
|     case 0x2e00:
 | |
|     case 0x3500:
 | |
|     case 0xa000:
 | |
|         return -1;
 | |
|     /* SandyBridge, IvyBridge, ValleyView, Haswell */
 | |
|     case 0x0100:
 | |
|     case 0x0400:
 | |
|     case 0x0a00:
 | |
|     case 0x0c00:
 | |
|     case 0x0d00:
 | |
|     case 0x0f00:
 | |
|         return 6;
 | |
|     /* BroadWell, CherryView, SkyLake, KabyLake */
 | |
|     case 0x1600:
 | |
|     case 0x1900:
 | |
|     case 0x2200:
 | |
|     case 0x5900:
 | |
|         return 8;
 | |
|     }
 | |
| 
 | |
|     return 8; /* Assume newer is compatible */
 | |
| }
 | |
| 
 | |
| typedef struct VFIOIGDQuirk {
 | |
|     struct VFIOPCIDevice *vdev;
 | |
|     uint32_t index;
 | |
|     uint32_t bdsm;
 | |
| } VFIOIGDQuirk;
 | |
| 
 | |
| #define IGD_GMCH 0x50 /* Graphics Control Register */
 | |
| #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
 | |
| #define IGD_ASLS 0xfc /* ASL Storage Register */
 | |
| 
 | |
| /*
 | |
|  * The OpRegion includes the Video BIOS Table, which seems important for
 | |
|  * telling the driver what sort of outputs it has.  Without this, the device
 | |
|  * may work in the guest, but we may not get output.  This also requires BIOS
 | |
|  * support to reserve and populate a section of guest memory sufficient for
 | |
|  * the table and to write the base address of that memory to the ASLS register
 | |
|  * of the IGD device.
 | |
|  */
 | |
| int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
 | |
|                                struct vfio_region_info *info, Error **errp)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     vdev->igd_opregion = g_malloc0(info->size);
 | |
|     ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
 | |
|                 info->size, info->offset);
 | |
|     if (ret != info->size) {
 | |
|         error_setg(errp, "failed to read IGD OpRegion");
 | |
|         g_free(vdev->igd_opregion);
 | |
|         vdev->igd_opregion = NULL;
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
 | |
|      * allocate 32bit reserved memory for, copy these contents into, and write
 | |
|      * the reserved memory base address to the device ASLS register at 0xFC.
 | |
|      * Alignment of this reserved region seems flexible, but using a 4k page
 | |
|      * alignment seems to work well.  This interface assumes a single IGD
 | |
|      * device, which may be at VM address 00:02.0 in legacy mode or another
 | |
|      * address in UPT mode.
 | |
|      *
 | |
|      * NB, there may be future use cases discovered where the VM should have
 | |
|      * direct interaction with the host OpRegion, in which case the write to
 | |
|      * the ASLS register would trigger MemoryRegion setup to enable that.
 | |
|      */
 | |
|     fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
 | |
|                     vdev->igd_opregion, info->size);
 | |
| 
 | |
|     trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
 | |
| 
 | |
|     pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
 | |
|     pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
 | |
|     pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The rather short list of registers that we copy from the host devices.
 | |
|  * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
 | |
|  * host bridge values may or may not be needed depending on the guest OS.
 | |
|  * Since we're only munging revision and subsystem values on the host bridge,
 | |
|  * we don't require our own device.  The LPC/ISA bridge needs to be our very
 | |
|  * own though.
 | |
|  */
 | |
| typedef struct {
 | |
|     uint8_t offset;
 | |
|     uint8_t len;
 | |
| } IGDHostInfo;
 | |
| 
 | |
| static const IGDHostInfo igd_host_bridge_infos[] = {
 | |
|     {PCI_REVISION_ID,         2},
 | |
|     {PCI_SUBSYSTEM_VENDOR_ID, 2},
 | |
|     {PCI_SUBSYSTEM_ID,        2},
 | |
| };
 | |
| 
 | |
| static const IGDHostInfo igd_lpc_bridge_infos[] = {
 | |
|     {PCI_VENDOR_ID,           2},
 | |
|     {PCI_DEVICE_ID,           2},
 | |
|     {PCI_REVISION_ID,         2},
 | |
|     {PCI_SUBSYSTEM_VENDOR_ID, 2},
 | |
|     {PCI_SUBSYSTEM_ID,        2},
 | |
| };
 | |
| 
 | |
| static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev,
 | |
|                              struct vfio_region_info *info,
 | |
|                              const IGDHostInfo *list, int len)
 | |
| {
 | |
|     int i, ret;
 | |
| 
 | |
|     for (i = 0; i < len; i++) {
 | |
|         ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset,
 | |
|                     list[i].len, info->offset + list[i].offset);
 | |
|         if (ret != list[i].len) {
 | |
|             error_report("IGD copy failed: %m");
 | |
|             return -errno;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stuff a few values into the host bridge.
 | |
|  */
 | |
| static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev,
 | |
|                                   struct vfio_region_info *info)
 | |
| {
 | |
|     PCIBus *bus;
 | |
|     PCIDevice *host_bridge;
 | |
|     int ret;
 | |
| 
 | |
|     bus = pci_device_root_bus(&vdev->pdev);
 | |
|     host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0));
 | |
| 
 | |
|     if (!host_bridge) {
 | |
|         error_report("Can't find host bridge");
 | |
|         return -ENODEV;
 | |
|     }
 | |
| 
 | |
|     ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos,
 | |
|                             ARRAY_SIZE(igd_host_bridge_infos));
 | |
|     if (!ret) {
 | |
|         trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IGD LPC/ISA bridge support code.  The vBIOS needs this, but we can't write
 | |
|  * arbitrary values into just any bridge, so we must create our own.  We try
 | |
|  * to handle if the user has created it for us, which they might want to do
 | |
|  * to enable multifunction so we don't occupy the whole PCI slot.
 | |
|  */
 | |
| static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp)
 | |
| {
 | |
|     if (pdev->devfn != PCI_DEVFN(0x1f, 0)) {
 | |
|         error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data)
 | |
| {
 | |
|     DeviceClass *dc = DEVICE_CLASS(klass);
 | |
|     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
 | |
| 
 | |
|     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
 | |
|     dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment";
 | |
|     dc->hotpluggable = false;
 | |
|     k->realize = vfio_pci_igd_lpc_bridge_realize;
 | |
|     k->class_id = PCI_CLASS_BRIDGE_ISA;
 | |
| }
 | |
| 
 | |
| static TypeInfo vfio_pci_igd_lpc_bridge_info = {
 | |
|     .name = "vfio-pci-igd-lpc-bridge",
 | |
|     .parent = TYPE_PCI_DEVICE,
 | |
|     .class_init = vfio_pci_igd_lpc_bridge_class_init,
 | |
| };
 | |
| 
 | |
| static void vfio_pci_igd_register_types(void)
 | |
| {
 | |
|     type_register_static(&vfio_pci_igd_lpc_bridge_info);
 | |
| }
 | |
| 
 | |
| type_init(vfio_pci_igd_register_types)
 | |
| 
 | |
| static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev,
 | |
|                                  struct vfio_region_info *info)
 | |
| {
 | |
|     PCIDevice *lpc_bridge;
 | |
|     int ret;
 | |
| 
 | |
|     lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
 | |
|                                  0, PCI_DEVFN(0x1f, 0));
 | |
|     if (!lpc_bridge) {
 | |
|         lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev),
 | |
|                                  PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
 | |
|     }
 | |
| 
 | |
|     ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos,
 | |
|                             ARRAY_SIZE(igd_lpc_bridge_infos));
 | |
|     if (!ret) {
 | |
|         trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
 | |
|  * entry, older IGDs use 2MB and 32bit.  Each PTE maps a 4k page.  Therefore
 | |
|  * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
 | |
|  * for programming the GTT.
 | |
|  *
 | |
|  * See linux:include/drm/i915_drm.h for shift and mask values.
 | |
|  */
 | |
| static int vfio_igd_gtt_max(VFIOPCIDevice *vdev)
 | |
| {
 | |
|     uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
 | |
|     int ggms, gen = igd_gen(vdev);
 | |
| 
 | |
|     gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
 | |
|     ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
 | |
|     if (gen > 6) {
 | |
|         ggms = 1 << ggms;
 | |
|     }
 | |
| 
 | |
|     ggms *= 1024 * 1024;
 | |
| 
 | |
|     return (ggms / (4 * 1024)) * (gen < 8 ? 4 : 8);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
 | |
|  * Somehow the host stolen memory range is used for this, but how the ROM gets
 | |
|  * it is a mystery, perhaps it's hardcoded into the ROM.  Thankfully though, it
 | |
|  * reprograms the GTT through the IOBAR where we can trap it and transpose the
 | |
|  * programming to the VM allocated buffer.  That buffer gets reserved by the VM
 | |
|  * firmware via the fw_cfg entry added below.  Here we're just monitoring the
 | |
|  * IOBAR address and data registers to detect a write sequence targeting the
 | |
|  * GTTADR.  This code is developed by observed behavior and doesn't have a
 | |
|  * direct spec reference, unfortunately.
 | |
|  */
 | |
| static uint64_t vfio_igd_quirk_data_read(void *opaque,
 | |
|                                          hwaddr addr, unsigned size)
 | |
| {
 | |
|     VFIOIGDQuirk *igd = opaque;
 | |
|     VFIOPCIDevice *vdev = igd->vdev;
 | |
| 
 | |
|     igd->index = ~0;
 | |
| 
 | |
|     return vfio_region_read(&vdev->bars[4].region, addr + 4, size);
 | |
| }
 | |
| 
 | |
| static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr,
 | |
|                                       uint64_t data, unsigned size)
 | |
| {
 | |
|     VFIOIGDQuirk *igd = opaque;
 | |
|     VFIOPCIDevice *vdev = igd->vdev;
 | |
|     uint64_t val = data;
 | |
|     int gen = igd_gen(vdev);
 | |
| 
 | |
|     /*
 | |
|      * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
 | |
|      * 0x1, 0x5, 0x9, 0xd,...).  For pre-Gen8 each 4-byte write is a whole PTE
 | |
|      * entry, with 0th bit enable set.  For Gen8 and up, PTEs are 64bit, so
 | |
|      * entries 0x5 & 0xd are the high dword, in our case zero.  Each PTE points
 | |
|      * to a 4k page, which we translate to a page from the VM allocated region,
 | |
|      * pointed to by the BDSM register.  If this is not set, we fail.
 | |
|      *
 | |
|      * We trap writes to the full configured GTT size, but we typically only
 | |
|      * see the vBIOS writing up to (nearly) the 1MB barrier.  In fact it often
 | |
|      * seems to miss the last entry for an even 1MB GTT.  Doing a gratuitous
 | |
|      * write of that last entry does work, but is hopefully unnecessary since
 | |
|      * we clear the previous GTT on initialization.
 | |
|      */
 | |
|     if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) {
 | |
|         if (gen < 8 || (igd->index % 8 == 1)) {
 | |
|             uint32_t base;
 | |
| 
 | |
|             base = pci_get_long(vdev->pdev.config + IGD_BDSM);
 | |
|             if (!base) {
 | |
|                 hw_error("vfio-igd: Guest attempted to program IGD GTT before "
 | |
|                          "BIOS reserved stolen memory.  Unsupported BIOS?");
 | |
|             }
 | |
| 
 | |
|             val = data - igd->bdsm + base;
 | |
|         } else {
 | |
|             val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */
 | |
|         }
 | |
| 
 | |
|         trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name,
 | |
|                                       igd->index, data, val);
 | |
|     }
 | |
| 
 | |
|     vfio_region_write(&vdev->bars[4].region, addr + 4, val, size);
 | |
| 
 | |
|     igd->index = ~0;
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps vfio_igd_data_quirk = {
 | |
|     .read = vfio_igd_quirk_data_read,
 | |
|     .write = vfio_igd_quirk_data_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static uint64_t vfio_igd_quirk_index_read(void *opaque,
 | |
|                                           hwaddr addr, unsigned size)
 | |
| {
 | |
|     VFIOIGDQuirk *igd = opaque;
 | |
|     VFIOPCIDevice *vdev = igd->vdev;
 | |
| 
 | |
|     igd->index = ~0;
 | |
| 
 | |
|     return vfio_region_read(&vdev->bars[4].region, addr, size);
 | |
| }
 | |
| 
 | |
| static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr,
 | |
|                                        uint64_t data, unsigned size)
 | |
| {
 | |
|     VFIOIGDQuirk *igd = opaque;
 | |
|     VFIOPCIDevice *vdev = igd->vdev;
 | |
| 
 | |
|     igd->index = data;
 | |
| 
 | |
|     vfio_region_write(&vdev->bars[4].region, addr, data, size);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps vfio_igd_index_quirk = {
 | |
|     .read = vfio_igd_quirk_index_read,
 | |
|     .write = vfio_igd_quirk_index_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr)
 | |
| {
 | |
|     struct vfio_region_info *rom = NULL, *opregion = NULL,
 | |
|                             *host = NULL, *lpc = NULL;
 | |
|     VFIOQuirk *quirk;
 | |
|     VFIOIGDQuirk *igd;
 | |
|     PCIDevice *lpc_bridge;
 | |
|     int i, ret, ggms_mb, gms_mb = 0, gen;
 | |
|     uint64_t *bdsm_size;
 | |
|     uint32_t gmch;
 | |
|     uint16_t cmd_orig, cmd;
 | |
|     Error *err = NULL;
 | |
| 
 | |
|     /* This must be an Intel VGA device. */
 | |
|     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) ||
 | |
|         !vfio_is_vga(vdev) || nr != 4) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * IGD is not a standard, they like to change their specs often.  We
 | |
|      * only attempt to support back to SandBridge and we hope that newer
 | |
|      * devices maintain compatibility with generation 8.
 | |
|      */
 | |
|     gen = igd_gen(vdev);
 | |
|     if (gen != 6 && gen != 8) {
 | |
|         error_report("IGD device %s is unsupported by IGD quirks, "
 | |
|                      "try SandyBridge or newer", vdev->vbasedev.name);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Regardless of running in UPT or legacy mode, the guest graphics
 | |
|      * driver may attempt to use stolen memory, however only legacy mode
 | |
|      * has BIOS support for reserving stolen memory in the guest VM.
 | |
|      * Emulate the GMCH register in all cases and zero out the stolen
 | |
|      * memory size here. Legacy mode may request allocation and re-write
 | |
|      * this below.
 | |
|      */
 | |
|     gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4);
 | |
|     gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8));
 | |
| 
 | |
|     /* GMCH is read-only, emulated */
 | |
|     pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
 | |
|     pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0);
 | |
|     pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0);
 | |
| 
 | |
|     /*
 | |
|      * This must be at address 00:02.0 for us to even onsider enabling
 | |
|      * legacy mode.  The vBIOS has dependencies on the PCI bus address.
 | |
|      */
 | |
|     if (&vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev),
 | |
|                                        0, PCI_DEVFN(0x2, 0))) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
 | |
|      * can stuff host values into, so if there's already one there and it's not
 | |
|      * one we can hack on, legacy mode is no-go.  Sorry Q35.
 | |
|      */
 | |
|     lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
 | |
|                                  0, PCI_DEVFN(0x1f, 0));
 | |
|     if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge),
 | |
|                                            "vfio-pci-igd-lpc-bridge")) {
 | |
|         error_report("IGD device %s cannot support legacy mode due to existing "
 | |
|                      "devices at address 1f.0", vdev->vbasedev.name);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Most of what we're doing here is to enable the ROM to run, so if
 | |
|      * there's no ROM, there's no point in setting up this quirk.
 | |
|      * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
 | |
|      */
 | |
|     ret = vfio_get_region_info(&vdev->vbasedev,
 | |
|                                VFIO_PCI_ROM_REGION_INDEX, &rom);
 | |
|     if ((ret || !rom->size) && !vdev->pdev.romfile) {
 | |
|         error_report("IGD device %s has no ROM, legacy mode disabled",
 | |
|                      vdev->vbasedev.name);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Ignore the hotplug corner case, mark the ROM failed, we can't
 | |
|      * create the devices we need for legacy mode in the hotplug scenario.
 | |
|      */
 | |
|     if (vdev->pdev.qdev.hotplugged) {
 | |
|         error_report("IGD device %s hotplugged, ROM disabled, "
 | |
|                      "legacy mode disabled", vdev->vbasedev.name);
 | |
|         vdev->rom_read_failed = true;
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Check whether we have all the vfio device specific regions to
 | |
|      * support legacy mode (added in Linux v4.6).  If not, bail.
 | |
|      */
 | |
|     ret = vfio_get_dev_region_info(&vdev->vbasedev,
 | |
|                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
 | |
|                         VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
 | |
|     if (ret) {
 | |
|         error_report("IGD device %s does not support OpRegion access,"
 | |
|                      "legacy mode disabled", vdev->vbasedev.name);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     ret = vfio_get_dev_region_info(&vdev->vbasedev,
 | |
|                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
 | |
|                         VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host);
 | |
|     if (ret) {
 | |
|         error_report("IGD device %s does not support host bridge access,"
 | |
|                      "legacy mode disabled", vdev->vbasedev.name);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     ret = vfio_get_dev_region_info(&vdev->vbasedev,
 | |
|                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
 | |
|                         VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc);
 | |
|     if (ret) {
 | |
|         error_report("IGD device %s does not support LPC bridge access,"
 | |
|                      "legacy mode disabled", vdev->vbasedev.name);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
 | |
|      * try to enable it.  Probably shouldn't be using legacy mode without VGA,
 | |
|      * but also no point in us enabling VGA if disabled in hardware.
 | |
|      */
 | |
|     if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) {
 | |
|         error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
 | |
|         error_report("IGD device %s failed to enable VGA access, "
 | |
|                      "legacy mode disabled", vdev->vbasedev.name);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /* Create our LPC/ISA bridge */
 | |
|     ret = vfio_pci_igd_lpc_init(vdev, lpc);
 | |
|     if (ret) {
 | |
|         error_report("IGD device %s failed to create LPC bridge, "
 | |
|                      "legacy mode disabled", vdev->vbasedev.name);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /* Stuff some host values into the VM PCI host bridge */
 | |
|     ret = vfio_pci_igd_host_init(vdev, host);
 | |
|     if (ret) {
 | |
|         error_report("IGD device %s failed to modify host bridge, "
 | |
|                      "legacy mode disabled", vdev->vbasedev.name);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /* Setup OpRegion access */
 | |
|     ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
 | |
|     if (ret) {
 | |
|         error_append_hint(&err, "IGD legacy mode disabled\n");
 | |
|         error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
 | |
|     quirk = g_malloc0(sizeof(*quirk));
 | |
|     quirk->mem = g_new0(MemoryRegion, 2);
 | |
|     quirk->nr_mem = 2;
 | |
|     igd = quirk->data = g_malloc0(sizeof(*igd));
 | |
|     igd->vdev = vdev;
 | |
|     igd->index = ~0;
 | |
|     igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4);
 | |
|     igd->bdsm &= ~((1 << 20) - 1); /* 1MB aligned */
 | |
| 
 | |
|     memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk,
 | |
|                           igd, "vfio-igd-index-quirk", 4);
 | |
|     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 | |
|                                         0, &quirk->mem[0], 1);
 | |
| 
 | |
|     memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk,
 | |
|                           igd, "vfio-igd-data-quirk", 4);
 | |
|     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 | |
|                                         4, &quirk->mem[1], 1);
 | |
| 
 | |
|     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 | |
| 
 | |
|     /* Determine the size of stolen memory needed for GTT */
 | |
|     ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
 | |
|     if (gen > 6) {
 | |
|         ggms_mb = 1 << ggms_mb;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Assume we have no GMS memory, but allow it to be overrided by device
 | |
|      * option (experimental).  The spec doesn't actually allow zero GMS when
 | |
|      * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
 | |
|      * so let's not waste VM memory for it.
 | |
|      */
 | |
|     if (vdev->igd_gms) {
 | |
|         if (vdev->igd_gms <= 0x10) {
 | |
|             gms_mb = vdev->igd_gms * 32;
 | |
|             gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8);
 | |
|             pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
 | |
|         } else {
 | |
|             error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms);
 | |
|             vdev->igd_gms = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Request reserved memory for stolen memory via fw_cfg.  VM firmware
 | |
|      * must allocate a 1MB aligned reserved memory region below 4GB with
 | |
|      * the requested size (in bytes) for use by the Intel PCI class VGA
 | |
|      * device at VM address 00:02.0.  The base address of this reserved
 | |
|      * memory region must be written to the device BDSM regsiter at PCI
 | |
|      * config offset 0x5C.
 | |
|      */
 | |
|     bdsm_size = g_malloc(sizeof(*bdsm_size));
 | |
|     *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * 1024 * 1024);
 | |
|     fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
 | |
|                     bdsm_size, sizeof(*bdsm_size));
 | |
| 
 | |
|     /* BDSM is read-write, emulated.  The BIOS needs to be able to write it */
 | |
|     pci_set_long(vdev->pdev.config + IGD_BDSM, 0);
 | |
|     pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0);
 | |
|     pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0);
 | |
| 
 | |
|     /*
 | |
|      * This IOBAR gives us access to GTTADR, which allows us to write to
 | |
|      * the GTT itself.  So let's go ahead and write zero to all the GTT
 | |
|      * entries to avoid spurious DMA faults.  Be sure I/O access is enabled
 | |
|      * before talking to the device.
 | |
|      */
 | |
|     if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
 | |
|               vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
 | |
|         error_report("IGD device %s - failed to read PCI command register",
 | |
|                      vdev->vbasedev.name);
 | |
|     }
 | |
| 
 | |
|     cmd = cmd_orig | PCI_COMMAND_IO;
 | |
| 
 | |
|     if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd),
 | |
|                vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) {
 | |
|         error_report("IGD device %s - failed to write PCI command register",
 | |
|                      vdev->vbasedev.name);
 | |
|     }
 | |
| 
 | |
|     for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) {
 | |
|         vfio_region_write(&vdev->bars[4].region, 0, i, 4);
 | |
|         vfio_region_write(&vdev->bars[4].region, 4, 0, 4);
 | |
|     }
 | |
| 
 | |
|     if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
 | |
|                vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
 | |
|         error_report("IGD device %s - failed to restore PCI command register",
 | |
|                      vdev->vbasedev.name);
 | |
|     }
 | |
| 
 | |
|     trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb);
 | |
| 
 | |
| out:
 | |
|     g_free(rom);
 | |
|     g_free(opregion);
 | |
|     g_free(host);
 | |
|     g_free(lpc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Common quirk probe entry points.
 | |
|  */
 | |
| void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
 | |
| {
 | |
|     vfio_vga_probe_ati_3c3_quirk(vdev);
 | |
|     vfio_vga_probe_nvidia_3d0_quirk(vdev);
 | |
| }
 | |
| 
 | |
| void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
 | |
| {
 | |
|     VFIOQuirk *quirk;
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
 | |
|         QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
 | |
|             for (j = 0; j < quirk->nr_mem; j++) {
 | |
|                 memory_region_del_subregion(&vdev->vga->region[i].mem,
 | |
|                                             &quirk->mem[j]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
 | |
|         while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
 | |
|             VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
 | |
|             QLIST_REMOVE(quirk, next);
 | |
|             for (j = 0; j < quirk->nr_mem; j++) {
 | |
|                 object_unparent(OBJECT(&quirk->mem[j]));
 | |
|             }
 | |
|             g_free(quirk->mem);
 | |
|             g_free(quirk->data);
 | |
|             g_free(quirk);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
 | |
| {
 | |
|     vfio_probe_ati_bar4_quirk(vdev, nr);
 | |
|     vfio_probe_ati_bar2_quirk(vdev, nr);
 | |
|     vfio_probe_nvidia_bar5_quirk(vdev, nr);
 | |
|     vfio_probe_nvidia_bar0_quirk(vdev, nr);
 | |
|     vfio_probe_rtl8168_bar2_quirk(vdev, nr);
 | |
|     vfio_probe_igd_bar4_quirk(vdev, nr);
 | |
| }
 | |
| 
 | |
| void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
 | |
| {
 | |
|     VFIOBAR *bar = &vdev->bars[nr];
 | |
|     VFIOQuirk *quirk;
 | |
|     int i;
 | |
| 
 | |
|     QLIST_FOREACH(quirk, &bar->quirks, next) {
 | |
|         for (i = 0; i < quirk->nr_mem; i++) {
 | |
|             memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
 | |
| {
 | |
|     VFIOBAR *bar = &vdev->bars[nr];
 | |
|     int i;
 | |
| 
 | |
|     while (!QLIST_EMPTY(&bar->quirks)) {
 | |
|         VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
 | |
|         QLIST_REMOVE(quirk, next);
 | |
|         for (i = 0; i < quirk->nr_mem; i++) {
 | |
|             object_unparent(OBJECT(&quirk->mem[i]));
 | |
|         }
 | |
|         g_free(quirk->mem);
 | |
|         g_free(quirk->data);
 | |
|         g_free(quirk);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reset quirks
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * AMD Radeon PCI config reset, based on Linux:
 | |
|  *   drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
 | |
|  *   drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
 | |
|  *   drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
 | |
|  *   drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
 | |
|  * IDs: include/drm/drm_pciids.h
 | |
|  * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
 | |
|  *
 | |
|  * Bonaire and Hawaii GPUs do not respond to a bus reset.  This is a bug in the
 | |
|  * hardware that should be fixed on future ASICs.  The symptom of this is that
 | |
|  * once the accerlated driver loads, Windows guests will bsod on subsequent
 | |
|  * attmpts to load the driver, such as after VM reset or shutdown/restart.  To
 | |
|  * work around this, we do an AMD specific PCI config reset, followed by an SMC
 | |
|  * reset.  The PCI config reset only works if SMC firmware is running, so we
 | |
|  * have a dependency on the state of the device as to whether this reset will
 | |
|  * be effective.  There are still cases where we won't be able to kick the
 | |
|  * device into working, but this greatly improves the usability overall.  The
 | |
|  * config reset magic is relatively common on AMD GPUs, but the setup and SMC
 | |
|  * poking is largely ASIC specific.
 | |
|  */
 | |
| static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
 | |
| {
 | |
|     uint32_t clk, pc_c;
 | |
| 
 | |
|     /*
 | |
|      * Registers 200h and 204h are index and data registers for accessing
 | |
|      * indirect configuration registers within the device.
 | |
|      */
 | |
|     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
 | |
|     clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
 | |
|     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
 | |
|     pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
 | |
| 
 | |
|     return (!(clk & 1) && (0x20100 <= pc_c));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The scope of a config reset is controlled by a mode bit in the misc register
 | |
|  * and a fuse, exposed as a bit in another register.  The fuse is the default
 | |
|  * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
 | |
|  * scope = !(misc ^ fuse), where the resulting scope is defined the same as
 | |
|  * the fuse.  A truth table therefore tells us that if misc == fuse, we need
 | |
|  * to flip the value of the bit in the misc register.
 | |
|  */
 | |
| static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
 | |
| {
 | |
|     uint32_t misc, fuse;
 | |
|     bool a, b;
 | |
| 
 | |
|     vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
 | |
|     fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
 | |
|     b = fuse & 64;
 | |
| 
 | |
|     vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
 | |
|     misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
 | |
|     a = misc & 2;
 | |
| 
 | |
|     if (a == b) {
 | |
|         vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
 | |
|         vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int vfio_radeon_reset(VFIOPCIDevice *vdev)
 | |
| {
 | |
|     PCIDevice *pdev = &vdev->pdev;
 | |
|     int i, ret = 0;
 | |
|     uint32_t data;
 | |
| 
 | |
|     /* Defer to a kernel implemented reset */
 | |
|     if (vdev->vbasedev.reset_works) {
 | |
|         trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
 | |
|         return -ENODEV;
 | |
|     }
 | |
| 
 | |
|     /* Enable only memory BAR access */
 | |
|     vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
 | |
| 
 | |
|     /* Reset only works if SMC firmware is loaded and running */
 | |
|     if (!vfio_radeon_smc_is_running(vdev)) {
 | |
|         ret = -EINVAL;
 | |
|         trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /* Make sure only the GFX function is reset */
 | |
|     vfio_radeon_set_gfx_only_reset(vdev);
 | |
| 
 | |
|     /* AMD PCI config reset */
 | |
|     vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
 | |
|     usleep(100);
 | |
| 
 | |
|     /* Read back the memory size to make sure we're out of reset */
 | |
|     for (i = 0; i < 100000; i++) {
 | |
|         if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
 | |
|             goto reset_smc;
 | |
|         }
 | |
|         usleep(1);
 | |
|     }
 | |
| 
 | |
|     trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
 | |
| 
 | |
| reset_smc:
 | |
|     /* Reset SMC */
 | |
|     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
 | |
|     data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
 | |
|     data |= 1;
 | |
|     vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
 | |
| 
 | |
|     /* Disable SMC clock */
 | |
|     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
 | |
|     data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
 | |
|     data |= 1;
 | |
|     vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
 | |
| 
 | |
|     trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
 | |
| 
 | |
| out:
 | |
|     /* Restore PCI command register */
 | |
|     vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
 | |
| {
 | |
|     switch (vdev->vendor_id) {
 | |
|     case 0x1002:
 | |
|         switch (vdev->device_id) {
 | |
|         /* Bonaire */
 | |
|         case 0x6649: /* Bonaire [FirePro W5100] */
 | |
|         case 0x6650:
 | |
|         case 0x6651:
 | |
|         case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
 | |
|         case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
 | |
|         case 0x665d: /* Bonaire [Radeon R7 200 Series] */
 | |
|         /* Hawaii */
 | |
|         case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
 | |
|         case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
 | |
|         case 0x67A2:
 | |
|         case 0x67A8:
 | |
|         case 0x67A9:
 | |
|         case 0x67AA:
 | |
|         case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
 | |
|         case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
 | |
|         case 0x67B8:
 | |
|         case 0x67B9:
 | |
|         case 0x67BA:
 | |
|         case 0x67BE:
 | |
|             vdev->resetfn = vfio_radeon_reset;
 | |
|             trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| }
 |