567 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			567 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Device model for Cadence UART
 | |
|  *
 | |
|  * Reference: Xilinx Zynq 7000 reference manual
 | |
|  *   - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
 | |
|  *   - Chapter 19 UART Controller
 | |
|  *   - Appendix B for Register details
 | |
|  *
 | |
|  * Copyright (c) 2010 Xilinx Inc.
 | |
|  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
 | |
|  * Copyright (c) 2012 PetaLogix Pty Ltd.
 | |
|  * Written by Haibing Ma
 | |
|  *            M.Habib
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along
 | |
|  * with this program; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "hw/sysbus.h"
 | |
| #include "chardev/char-fe.h"
 | |
| #include "chardev/char-serial.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "qemu/log.h"
 | |
| #include "hw/char/cadence_uart.h"
 | |
| 
 | |
| #ifdef CADENCE_UART_ERR_DEBUG
 | |
| #define DB_PRINT(...) do { \
 | |
|     fprintf(stderr,  ": %s: ", __func__); \
 | |
|     fprintf(stderr, ## __VA_ARGS__); \
 | |
|     } while (0);
 | |
| #else
 | |
|     #define DB_PRINT(...)
 | |
| #endif
 | |
| 
 | |
| #define UART_SR_INTR_RTRIG     0x00000001
 | |
| #define UART_SR_INTR_REMPTY    0x00000002
 | |
| #define UART_SR_INTR_RFUL      0x00000004
 | |
| #define UART_SR_INTR_TEMPTY    0x00000008
 | |
| #define UART_SR_INTR_TFUL      0x00000010
 | |
| /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
 | |
| #define UART_SR_TTRIG          0x00002000
 | |
| #define UART_INTR_TTRIG        0x00000400
 | |
| /* bits fields in CSR that correlate to CISR. If any of these bits are set in
 | |
|  * SR, then the same bit in CISR is set high too */
 | |
| #define UART_SR_TO_CISR_MASK   0x0000001F
 | |
| 
 | |
| #define UART_INTR_ROVR         0x00000020
 | |
| #define UART_INTR_FRAME        0x00000040
 | |
| #define UART_INTR_PARE         0x00000080
 | |
| #define UART_INTR_TIMEOUT      0x00000100
 | |
| #define UART_INTR_DMSI         0x00000200
 | |
| #define UART_INTR_TOVR         0x00001000
 | |
| 
 | |
| #define UART_SR_RACTIVE    0x00000400
 | |
| #define UART_SR_TACTIVE    0x00000800
 | |
| #define UART_SR_FDELT      0x00001000
 | |
| 
 | |
| #define UART_CR_RXRST       0x00000001
 | |
| #define UART_CR_TXRST       0x00000002
 | |
| #define UART_CR_RX_EN       0x00000004
 | |
| #define UART_CR_RX_DIS      0x00000008
 | |
| #define UART_CR_TX_EN       0x00000010
 | |
| #define UART_CR_TX_DIS      0x00000020
 | |
| #define UART_CR_RST_TO      0x00000040
 | |
| #define UART_CR_STARTBRK    0x00000080
 | |
| #define UART_CR_STOPBRK     0x00000100
 | |
| 
 | |
| #define UART_MR_CLKS            0x00000001
 | |
| #define UART_MR_CHRL            0x00000006
 | |
| #define UART_MR_CHRL_SH         1
 | |
| #define UART_MR_PAR             0x00000038
 | |
| #define UART_MR_PAR_SH          3
 | |
| #define UART_MR_NBSTOP          0x000000C0
 | |
| #define UART_MR_NBSTOP_SH       6
 | |
| #define UART_MR_CHMODE          0x00000300
 | |
| #define UART_MR_CHMODE_SH       8
 | |
| #define UART_MR_UCLKEN          0x00000400
 | |
| #define UART_MR_IRMODE          0x00000800
 | |
| 
 | |
| #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
 | |
| #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
 | |
| #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
 | |
| #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
 | |
| #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
 | |
| #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
 | |
| #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
 | |
| #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
 | |
| #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
 | |
| #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
 | |
| 
 | |
| #define UART_INPUT_CLK         50000000
 | |
| 
 | |
| #define R_CR       (0x00/4)
 | |
| #define R_MR       (0x04/4)
 | |
| #define R_IER      (0x08/4)
 | |
| #define R_IDR      (0x0C/4)
 | |
| #define R_IMR      (0x10/4)
 | |
| #define R_CISR     (0x14/4)
 | |
| #define R_BRGR     (0x18/4)
 | |
| #define R_RTOR     (0x1C/4)
 | |
| #define R_RTRIG    (0x20/4)
 | |
| #define R_MCR      (0x24/4)
 | |
| #define R_MSR      (0x28/4)
 | |
| #define R_SR       (0x2C/4)
 | |
| #define R_TX_RX    (0x30/4)
 | |
| #define R_BDIV     (0x34/4)
 | |
| #define R_FDEL     (0x38/4)
 | |
| #define R_PMIN     (0x3C/4)
 | |
| #define R_PWID     (0x40/4)
 | |
| #define R_TTRIG    (0x44/4)
 | |
| 
 | |
| 
 | |
| static void uart_update_status(CadenceUARTState *s)
 | |
| {
 | |
|     s->r[R_SR] = 0;
 | |
| 
 | |
|     s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
 | |
|                                                            : 0;
 | |
|     s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
 | |
|     s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
 | |
| 
 | |
|     s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
 | |
|                                                            : 0;
 | |
|     s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
 | |
|     s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
 | |
| 
 | |
|     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
 | |
|     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
 | |
|     qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
 | |
| }
 | |
| 
 | |
| static void fifo_trigger_update(void *opaque)
 | |
| {
 | |
|     CadenceUARTState *s = opaque;
 | |
| 
 | |
|     if (s->r[R_RTOR]) {
 | |
|         s->r[R_CISR] |= UART_INTR_TIMEOUT;
 | |
|         uart_update_status(s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void uart_rx_reset(CadenceUARTState *s)
 | |
| {
 | |
|     s->rx_wpos = 0;
 | |
|     s->rx_count = 0;
 | |
|     qemu_chr_fe_accept_input(&s->chr);
 | |
| }
 | |
| 
 | |
| static void uart_tx_reset(CadenceUARTState *s)
 | |
| {
 | |
|     s->tx_count = 0;
 | |
| }
 | |
| 
 | |
| static void uart_send_breaks(CadenceUARTState *s)
 | |
| {
 | |
|     int break_enabled = 1;
 | |
| 
 | |
|     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
 | |
|                       &break_enabled);
 | |
| }
 | |
| 
 | |
| static void uart_parameters_setup(CadenceUARTState *s)
 | |
| {
 | |
|     QEMUSerialSetParams ssp;
 | |
|     unsigned int baud_rate, packet_size;
 | |
| 
 | |
|     baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
 | |
|             UART_INPUT_CLK / 8 : UART_INPUT_CLK;
 | |
| 
 | |
|     ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
 | |
|     packet_size = 1;
 | |
| 
 | |
|     switch (s->r[R_MR] & UART_MR_PAR) {
 | |
|     case UART_PARITY_EVEN:
 | |
|         ssp.parity = 'E';
 | |
|         packet_size++;
 | |
|         break;
 | |
|     case UART_PARITY_ODD:
 | |
|         ssp.parity = 'O';
 | |
|         packet_size++;
 | |
|         break;
 | |
|     default:
 | |
|         ssp.parity = 'N';
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     switch (s->r[R_MR] & UART_MR_CHRL) {
 | |
|     case UART_DATA_BITS_6:
 | |
|         ssp.data_bits = 6;
 | |
|         break;
 | |
|     case UART_DATA_BITS_7:
 | |
|         ssp.data_bits = 7;
 | |
|         break;
 | |
|     default:
 | |
|         ssp.data_bits = 8;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     switch (s->r[R_MR] & UART_MR_NBSTOP) {
 | |
|     case UART_STOP_BITS_1:
 | |
|         ssp.stop_bits = 1;
 | |
|         break;
 | |
|     default:
 | |
|         ssp.stop_bits = 2;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     packet_size += ssp.data_bits + ssp.stop_bits;
 | |
|     s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
 | |
|     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
 | |
| }
 | |
| 
 | |
| static int uart_can_receive(void *opaque)
 | |
| {
 | |
|     CadenceUARTState *s = opaque;
 | |
|     int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
 | |
|     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
 | |
| 
 | |
|     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
 | |
|         ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
 | |
|     }
 | |
|     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
 | |
|         ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void uart_ctrl_update(CadenceUARTState *s)
 | |
| {
 | |
|     if (s->r[R_CR] & UART_CR_TXRST) {
 | |
|         uart_tx_reset(s);
 | |
|     }
 | |
| 
 | |
|     if (s->r[R_CR] & UART_CR_RXRST) {
 | |
|         uart_rx_reset(s);
 | |
|     }
 | |
| 
 | |
|     s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
 | |
| 
 | |
|     if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
 | |
|         uart_send_breaks(s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
 | |
| {
 | |
|     CadenceUARTState *s = opaque;
 | |
|     uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | |
|     int i;
 | |
| 
 | |
|     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
 | |
|         s->r[R_CISR] |= UART_INTR_ROVR;
 | |
|     } else {
 | |
|         for (i = 0; i < size; i++) {
 | |
|             s->rx_fifo[s->rx_wpos] = buf[i];
 | |
|             s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
 | |
|             s->rx_count++;
 | |
|         }
 | |
|         timer_mod(s->fifo_trigger_handle, new_rx_time +
 | |
|                                                 (s->char_tx_time * 4));
 | |
|     }
 | |
|     uart_update_status(s);
 | |
| }
 | |
| 
 | |
| static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
 | |
|                                   void *opaque)
 | |
| {
 | |
|     CadenceUARTState *s = opaque;
 | |
|     int ret;
 | |
| 
 | |
|     /* instant drain the fifo when there's no back-end */
 | |
|     if (!qemu_chr_fe_get_driver(&s->chr)) {
 | |
|         s->tx_count = 0;
 | |
|         return FALSE;
 | |
|     }
 | |
| 
 | |
|     if (!s->tx_count) {
 | |
|         return FALSE;
 | |
|     }
 | |
| 
 | |
|     ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
 | |
| 
 | |
|     if (ret >= 0) {
 | |
|         s->tx_count -= ret;
 | |
|         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
 | |
|     }
 | |
| 
 | |
|     if (s->tx_count) {
 | |
|         guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
 | |
|                                         cadence_uart_xmit, s);
 | |
|         if (!r) {
 | |
|             s->tx_count = 0;
 | |
|             return FALSE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     uart_update_status(s);
 | |
|     return FALSE;
 | |
| }
 | |
| 
 | |
| static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
 | |
|                                int size)
 | |
| {
 | |
|     if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
 | |
|         size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
 | |
|         /*
 | |
|          * This can only be a guest error via a bad tx fifo register push,
 | |
|          * as can_receive() should stop remote loop and echo modes ever getting
 | |
|          * us to here.
 | |
|          */
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
 | |
|         s->r[R_CISR] |= UART_INTR_ROVR;
 | |
|     }
 | |
| 
 | |
|     memcpy(s->tx_fifo + s->tx_count, buf, size);
 | |
|     s->tx_count += size;
 | |
| 
 | |
|     cadence_uart_xmit(NULL, G_IO_OUT, s);
 | |
| }
 | |
| 
 | |
| static void uart_receive(void *opaque, const uint8_t *buf, int size)
 | |
| {
 | |
|     CadenceUARTState *s = opaque;
 | |
|     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
 | |
| 
 | |
|     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
 | |
|         uart_write_rx_fifo(opaque, buf, size);
 | |
|     }
 | |
|     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
 | |
|         uart_write_tx_fifo(s, buf, size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void uart_event(void *opaque, int event)
 | |
| {
 | |
|     CadenceUARTState *s = opaque;
 | |
|     uint8_t buf = '\0';
 | |
| 
 | |
|     if (event == CHR_EVENT_BREAK) {
 | |
|         uart_write_rx_fifo(opaque, &buf, 1);
 | |
|     }
 | |
| 
 | |
|     uart_update_status(s);
 | |
| }
 | |
| 
 | |
| static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
 | |
| {
 | |
|     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (s->rx_count) {
 | |
|         uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
 | |
|                             s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
 | |
|         *c = s->rx_fifo[rx_rpos];
 | |
|         s->rx_count--;
 | |
| 
 | |
|         qemu_chr_fe_accept_input(&s->chr);
 | |
|     } else {
 | |
|         *c = 0;
 | |
|     }
 | |
| 
 | |
|     uart_update_status(s);
 | |
| }
 | |
| 
 | |
| static void uart_write(void *opaque, hwaddr offset,
 | |
|                           uint64_t value, unsigned size)
 | |
| {
 | |
|     CadenceUARTState *s = opaque;
 | |
| 
 | |
|     DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
 | |
|     offset >>= 2;
 | |
|     if (offset >= CADENCE_UART_R_MAX) {
 | |
|         return;
 | |
|     }
 | |
|     switch (offset) {
 | |
|     case R_IER: /* ier (wts imr) */
 | |
|         s->r[R_IMR] |= value;
 | |
|         break;
 | |
|     case R_IDR: /* idr (wtc imr) */
 | |
|         s->r[R_IMR] &= ~value;
 | |
|         break;
 | |
|     case R_IMR: /* imr (read only) */
 | |
|         break;
 | |
|     case R_CISR: /* cisr (wtc) */
 | |
|         s->r[R_CISR] &= ~value;
 | |
|         break;
 | |
|     case R_TX_RX: /* UARTDR */
 | |
|         switch (s->r[R_MR] & UART_MR_CHMODE) {
 | |
|         case NORMAL_MODE:
 | |
|             uart_write_tx_fifo(s, (uint8_t *) &value, 1);
 | |
|             break;
 | |
|         case LOCAL_LOOPBACK:
 | |
|             uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case R_BRGR: /* Baud rate generator */
 | |
|         if (value >= 0x01) {
 | |
|             s->r[offset] = value & 0xFFFF;
 | |
|         }
 | |
|         break;
 | |
|     case R_BDIV:    /* Baud rate divider */
 | |
|         if (value >= 0x04) {
 | |
|             s->r[offset] = value & 0xFF;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         s->r[offset] = value;
 | |
|     }
 | |
| 
 | |
|     switch (offset) {
 | |
|     case R_CR:
 | |
|         uart_ctrl_update(s);
 | |
|         break;
 | |
|     case R_MR:
 | |
|         uart_parameters_setup(s);
 | |
|         break;
 | |
|     }
 | |
|     uart_update_status(s);
 | |
| }
 | |
| 
 | |
| static uint64_t uart_read(void *opaque, hwaddr offset,
 | |
|         unsigned size)
 | |
| {
 | |
|     CadenceUARTState *s = opaque;
 | |
|     uint32_t c = 0;
 | |
| 
 | |
|     offset >>= 2;
 | |
|     if (offset >= CADENCE_UART_R_MAX) {
 | |
|         c = 0;
 | |
|     } else if (offset == R_TX_RX) {
 | |
|         uart_read_rx_fifo(s, &c);
 | |
|     } else {
 | |
|        c = s->r[offset];
 | |
|     }
 | |
| 
 | |
|     DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps uart_ops = {
 | |
|     .read = uart_read,
 | |
|     .write = uart_write,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static void cadence_uart_reset(DeviceState *dev)
 | |
| {
 | |
|     CadenceUARTState *s = CADENCE_UART(dev);
 | |
| 
 | |
|     s->r[R_CR] = 0x00000128;
 | |
|     s->r[R_IMR] = 0;
 | |
|     s->r[R_CISR] = 0;
 | |
|     s->r[R_RTRIG] = 0x00000020;
 | |
|     s->r[R_BRGR] = 0x0000028B;
 | |
|     s->r[R_BDIV] = 0x0000000F;
 | |
|     s->r[R_TTRIG] = 0x00000020;
 | |
| 
 | |
|     uart_rx_reset(s);
 | |
|     uart_tx_reset(s);
 | |
| 
 | |
|     uart_update_status(s);
 | |
| }
 | |
| 
 | |
| static void cadence_uart_realize(DeviceState *dev, Error **errp)
 | |
| {
 | |
|     CadenceUARTState *s = CADENCE_UART(dev);
 | |
| 
 | |
|     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
 | |
|                                           fifo_trigger_update, s);
 | |
| 
 | |
|     qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
 | |
|                              uart_event, s, NULL, true);
 | |
| }
 | |
| 
 | |
| static void cadence_uart_init(Object *obj)
 | |
| {
 | |
|     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 | |
|     CadenceUARTState *s = CADENCE_UART(obj);
 | |
| 
 | |
|     memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
 | |
|     sysbus_init_mmio(sbd, &s->iomem);
 | |
|     sysbus_init_irq(sbd, &s->irq);
 | |
| 
 | |
|     s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
 | |
| }
 | |
| 
 | |
| static int cadence_uart_post_load(void *opaque, int version_id)
 | |
| {
 | |
|     CadenceUARTState *s = opaque;
 | |
| 
 | |
|     /* Ensure these two aren't invalid numbers */
 | |
|     if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
 | |
|         s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
 | |
|         /* Value is invalid, abort */
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     uart_parameters_setup(s);
 | |
|     uart_update_status(s);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_cadence_uart = {
 | |
|     .name = "cadence_uart",
 | |
|     .version_id = 2,
 | |
|     .minimum_version_id = 2,
 | |
|     .post_load = cadence_uart_post_load,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
 | |
|         VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
 | |
|                             CADENCE_UART_RX_FIFO_SIZE),
 | |
|         VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
 | |
|                             CADENCE_UART_TX_FIFO_SIZE),
 | |
|         VMSTATE_UINT32(rx_count, CadenceUARTState),
 | |
|         VMSTATE_UINT32(tx_count, CadenceUARTState),
 | |
|         VMSTATE_UINT32(rx_wpos, CadenceUARTState),
 | |
|         VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static Property cadence_uart_properties[] = {
 | |
|     DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
 | |
|     DEFINE_PROP_END_OF_LIST(),
 | |
| };
 | |
| 
 | |
| static void cadence_uart_class_init(ObjectClass *klass, void *data)
 | |
| {
 | |
|     DeviceClass *dc = DEVICE_CLASS(klass);
 | |
| 
 | |
|     dc->realize = cadence_uart_realize;
 | |
|     dc->vmsd = &vmstate_cadence_uart;
 | |
|     dc->reset = cadence_uart_reset;
 | |
|     dc->props = cadence_uart_properties;
 | |
|   }
 | |
| 
 | |
| static const TypeInfo cadence_uart_info = {
 | |
|     .name          = TYPE_CADENCE_UART,
 | |
|     .parent        = TYPE_SYS_BUS_DEVICE,
 | |
|     .instance_size = sizeof(CadenceUARTState),
 | |
|     .instance_init = cadence_uart_init,
 | |
|     .class_init    = cadence_uart_class_init,
 | |
| };
 | |
| 
 | |
| static void cadence_uart_register_types(void)
 | |
| {
 | |
|     type_register_static(&cadence_uart_info);
 | |
| }
 | |
| 
 | |
| type_init(cadence_uart_register_types)
 |