678 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			678 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
/*
 | 
						|
 *  M68K helper routines
 | 
						|
 *
 | 
						|
 *  Copyright (c) 2007 CodeSourcery
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "cpu.h"
 | 
						|
#include "exec/helper-proto.h"
 | 
						|
#include "exec/exec-all.h"
 | 
						|
#include "exec/cpu_ldst.h"
 | 
						|
#include "exec/semihost.h"
 | 
						|
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
 | 
						|
void m68k_cpu_do_interrupt(CPUState *cs)
 | 
						|
{
 | 
						|
    cs->exception_index = -1;
 | 
						|
}
 | 
						|
 | 
						|
static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
/* Try to fill the TLB and return an exception if error. If retaddr is
 | 
						|
   NULL, it means that the function was called in C code (i.e. not
 | 
						|
   from generated code or from helper.c) */
 | 
						|
void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
 | 
						|
              int mmu_idx, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
 | 
						|
    ret = m68k_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
 | 
						|
    if (unlikely(ret)) {
 | 
						|
        if (retaddr) {
 | 
						|
            /* now we have a real cpu fault */
 | 
						|
            cpu_restore_state(cs, retaddr);
 | 
						|
        }
 | 
						|
        cpu_loop_exit(cs);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void do_rte(CPUM68KState *env)
 | 
						|
{
 | 
						|
    uint32_t sp;
 | 
						|
    uint32_t fmt;
 | 
						|
 | 
						|
    sp = env->aregs[7];
 | 
						|
    fmt = cpu_ldl_kernel(env, sp);
 | 
						|
    env->pc = cpu_ldl_kernel(env, sp + 4);
 | 
						|
    sp |= (fmt >> 28) & 3;
 | 
						|
    env->aregs[7] = sp + 8;
 | 
						|
 | 
						|
    helper_set_sr(env, fmt);
 | 
						|
}
 | 
						|
 | 
						|
static void do_interrupt_all(CPUM68KState *env, int is_hw)
 | 
						|
{
 | 
						|
    CPUState *cs = CPU(m68k_env_get_cpu(env));
 | 
						|
    uint32_t sp;
 | 
						|
    uint32_t fmt;
 | 
						|
    uint32_t retaddr;
 | 
						|
    uint32_t vector;
 | 
						|
 | 
						|
    fmt = 0;
 | 
						|
    retaddr = env->pc;
 | 
						|
 | 
						|
    if (!is_hw) {
 | 
						|
        switch (cs->exception_index) {
 | 
						|
        case EXCP_RTE:
 | 
						|
            /* Return from an exception.  */
 | 
						|
            do_rte(env);
 | 
						|
            return;
 | 
						|
        case EXCP_HALT_INSN:
 | 
						|
            if (semihosting_enabled()
 | 
						|
                    && (env->sr & SR_S) != 0
 | 
						|
                    && (env->pc & 3) == 0
 | 
						|
                    && cpu_lduw_code(env, env->pc - 4) == 0x4e71
 | 
						|
                    && cpu_ldl_code(env, env->pc) == 0x4e7bf000) {
 | 
						|
                env->pc += 4;
 | 
						|
                do_m68k_semihosting(env, env->dregs[0]);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            cs->halted = 1;
 | 
						|
            cs->exception_index = EXCP_HLT;
 | 
						|
            cpu_loop_exit(cs);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if (cs->exception_index >= EXCP_TRAP0
 | 
						|
            && cs->exception_index <= EXCP_TRAP15) {
 | 
						|
            /* Move the PC after the trap instruction.  */
 | 
						|
            retaddr += 2;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    vector = cs->exception_index << 2;
 | 
						|
 | 
						|
    fmt |= 0x40000000;
 | 
						|
    fmt |= vector << 16;
 | 
						|
    fmt |= env->sr;
 | 
						|
    fmt |= cpu_m68k_get_ccr(env);
 | 
						|
 | 
						|
    env->sr |= SR_S;
 | 
						|
    if (is_hw) {
 | 
						|
        env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
 | 
						|
        env->sr &= ~SR_M;
 | 
						|
    }
 | 
						|
    m68k_switch_sp(env);
 | 
						|
    sp = env->aregs[7];
 | 
						|
    fmt |= (sp & 3) << 28;
 | 
						|
 | 
						|
    /* ??? This could cause MMU faults.  */
 | 
						|
    sp &= ~3;
 | 
						|
    sp -= 4;
 | 
						|
    cpu_stl_kernel(env, sp, retaddr);
 | 
						|
    sp -= 4;
 | 
						|
    cpu_stl_kernel(env, sp, fmt);
 | 
						|
    env->aregs[7] = sp;
 | 
						|
    /* Jump to vector.  */
 | 
						|
    env->pc = cpu_ldl_kernel(env, env->vbr + vector);
 | 
						|
}
 | 
						|
 | 
						|
void m68k_cpu_do_interrupt(CPUState *cs)
 | 
						|
{
 | 
						|
    M68kCPU *cpu = M68K_CPU(cs);
 | 
						|
    CPUM68KState *env = &cpu->env;
 | 
						|
 | 
						|
    do_interrupt_all(env, 0);
 | 
						|
}
 | 
						|
 | 
						|
static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
 | 
						|
{
 | 
						|
    do_interrupt_all(env, 1);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 | 
						|
{
 | 
						|
    M68kCPU *cpu = M68K_CPU(cs);
 | 
						|
    CPUM68KState *env = &cpu->env;
 | 
						|
 | 
						|
    if (interrupt_request & CPU_INTERRUPT_HARD
 | 
						|
        && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) {
 | 
						|
        /* Real hardware gets the interrupt vector via an IACK cycle
 | 
						|
           at this point.  Current emulated hardware doesn't rely on
 | 
						|
           this, so we provide/save the vector when the interrupt is
 | 
						|
           first signalled.  */
 | 
						|
        cs->exception_index = env->pending_vector;
 | 
						|
        do_interrupt_m68k_hardirq(env);
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
 | 
						|
{
 | 
						|
    CPUState *cs = CPU(m68k_env_get_cpu(env));
 | 
						|
 | 
						|
    cs->exception_index = tt;
 | 
						|
    cpu_loop_exit_restore(cs, raddr);
 | 
						|
}
 | 
						|
 | 
						|
static void raise_exception(CPUM68KState *env, int tt)
 | 
						|
{
 | 
						|
    raise_exception_ra(env, tt, 0);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt)
 | 
						|
{
 | 
						|
    raise_exception(env, tt);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den)
 | 
						|
{
 | 
						|
    uint32_t num = env->dregs[destr];
 | 
						|
    uint32_t quot, rem;
 | 
						|
 | 
						|
    if (den == 0) {
 | 
						|
        raise_exception_ra(env, EXCP_DIV0, GETPC());
 | 
						|
    }
 | 
						|
    quot = num / den;
 | 
						|
    rem = num % den;
 | 
						|
 | 
						|
    env->cc_c = 0; /* always cleared, even if overflow */
 | 
						|
    if (quot > 0xffff) {
 | 
						|
        env->cc_v = -1;
 | 
						|
        /* real 68040 keeps N and unset Z on overflow,
 | 
						|
         * whereas documentation says "undefined"
 | 
						|
         */
 | 
						|
        env->cc_z = 1;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    env->dregs[destr] = deposit32(quot, 16, 16, rem);
 | 
						|
    env->cc_z = (int16_t)quot;
 | 
						|
    env->cc_n = (int16_t)quot;
 | 
						|
    env->cc_v = 0;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den)
 | 
						|
{
 | 
						|
    int32_t num = env->dregs[destr];
 | 
						|
    uint32_t quot, rem;
 | 
						|
 | 
						|
    if (den == 0) {
 | 
						|
        raise_exception_ra(env, EXCP_DIV0, GETPC());
 | 
						|
    }
 | 
						|
    quot = num / den;
 | 
						|
    rem = num % den;
 | 
						|
 | 
						|
    env->cc_c = 0; /* always cleared, even if overflow */
 | 
						|
    if (quot != (int16_t)quot) {
 | 
						|
        env->cc_v = -1;
 | 
						|
        /* nothing else is modified */
 | 
						|
        /* real 68040 keeps N and unset Z on overflow,
 | 
						|
         * whereas documentation says "undefined"
 | 
						|
         */
 | 
						|
        env->cc_z = 1;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    env->dregs[destr] = deposit32(quot, 16, 16, rem);
 | 
						|
    env->cc_z = (int16_t)quot;
 | 
						|
    env->cc_n = (int16_t)quot;
 | 
						|
    env->cc_v = 0;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(divul)(CPUM68KState *env, int numr, int regr, uint32_t den)
 | 
						|
{
 | 
						|
    uint32_t num = env->dregs[numr];
 | 
						|
    uint32_t quot, rem;
 | 
						|
 | 
						|
    if (den == 0) {
 | 
						|
        raise_exception_ra(env, EXCP_DIV0, GETPC());
 | 
						|
    }
 | 
						|
    quot = num / den;
 | 
						|
    rem = num % den;
 | 
						|
 | 
						|
    env->cc_c = 0;
 | 
						|
    env->cc_z = quot;
 | 
						|
    env->cc_n = quot;
 | 
						|
    env->cc_v = 0;
 | 
						|
 | 
						|
    if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
 | 
						|
        if (numr == regr) {
 | 
						|
            env->dregs[numr] = quot;
 | 
						|
        } else {
 | 
						|
            env->dregs[regr] = rem;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        env->dregs[regr] = rem;
 | 
						|
        env->dregs[numr] = quot;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(divsl)(CPUM68KState *env, int numr, int regr, int32_t den)
 | 
						|
{
 | 
						|
    int32_t num = env->dregs[numr];
 | 
						|
    int32_t quot, rem;
 | 
						|
 | 
						|
    if (den == 0) {
 | 
						|
        raise_exception_ra(env, EXCP_DIV0, GETPC());
 | 
						|
    }
 | 
						|
    quot = num / den;
 | 
						|
    rem = num % den;
 | 
						|
 | 
						|
    env->cc_c = 0;
 | 
						|
    env->cc_z = quot;
 | 
						|
    env->cc_n = quot;
 | 
						|
    env->cc_v = 0;
 | 
						|
 | 
						|
    if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
 | 
						|
        if (numr == regr) {
 | 
						|
            env->dregs[numr] = quot;
 | 
						|
        } else {
 | 
						|
            env->dregs[regr] = rem;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        env->dregs[regr] = rem;
 | 
						|
        env->dregs[numr] = quot;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den)
 | 
						|
{
 | 
						|
    uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
 | 
						|
    uint64_t quot;
 | 
						|
    uint32_t rem;
 | 
						|
 | 
						|
    if (den == 0) {
 | 
						|
        raise_exception_ra(env, EXCP_DIV0, GETPC());
 | 
						|
    }
 | 
						|
    quot = num / den;
 | 
						|
    rem = num % den;
 | 
						|
 | 
						|
    env->cc_c = 0; /* always cleared, even if overflow */
 | 
						|
    if (quot > 0xffffffffULL) {
 | 
						|
        env->cc_v = -1;
 | 
						|
        /* real 68040 keeps N and unset Z on overflow,
 | 
						|
         * whereas documentation says "undefined"
 | 
						|
         */
 | 
						|
        env->cc_z = 1;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    env->cc_z = quot;
 | 
						|
    env->cc_n = quot;
 | 
						|
    env->cc_v = 0;
 | 
						|
 | 
						|
    /*
 | 
						|
     * If Dq and Dr are the same, the quotient is returned.
 | 
						|
     * therefore we set Dq last.
 | 
						|
     */
 | 
						|
 | 
						|
    env->dregs[regr] = rem;
 | 
						|
    env->dregs[numr] = quot;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den)
 | 
						|
{
 | 
						|
    int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
 | 
						|
    int64_t quot;
 | 
						|
    int32_t rem;
 | 
						|
 | 
						|
    if (den == 0) {
 | 
						|
        raise_exception_ra(env, EXCP_DIV0, GETPC());
 | 
						|
    }
 | 
						|
    quot = num / den;
 | 
						|
    rem = num % den;
 | 
						|
 | 
						|
    env->cc_c = 0; /* always cleared, even if overflow */
 | 
						|
    if (quot != (int32_t)quot) {
 | 
						|
        env->cc_v = -1;
 | 
						|
        /* real 68040 keeps N and unset Z on overflow,
 | 
						|
         * whereas documentation says "undefined"
 | 
						|
         */
 | 
						|
        env->cc_z = 1;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    env->cc_z = quot;
 | 
						|
    env->cc_n = quot;
 | 
						|
    env->cc_v = 0;
 | 
						|
 | 
						|
    /*
 | 
						|
     * If Dq and Dr are the same, the quotient is returned.
 | 
						|
     * therefore we set Dq last.
 | 
						|
     */
 | 
						|
 | 
						|
    env->dregs[regr] = rem;
 | 
						|
    env->dregs[numr] = quot;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
 | 
						|
{
 | 
						|
    uint32_t Dc1 = extract32(regs, 9, 3);
 | 
						|
    uint32_t Dc2 = extract32(regs, 6, 3);
 | 
						|
    uint32_t Du1 = extract32(regs, 3, 3);
 | 
						|
    uint32_t Du2 = extract32(regs, 0, 3);
 | 
						|
    int16_t c1 = env->dregs[Dc1];
 | 
						|
    int16_t c2 = env->dregs[Dc2];
 | 
						|
    int16_t u1 = env->dregs[Du1];
 | 
						|
    int16_t u2 = env->dregs[Du2];
 | 
						|
    int16_t l1, l2;
 | 
						|
    uintptr_t ra = GETPC();
 | 
						|
 | 
						|
    if (parallel_cpus) {
 | 
						|
        /* Tell the main loop we need to serialize this insn.  */
 | 
						|
        cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
 | 
						|
    } else {
 | 
						|
        /* We're executing in a serial context -- no need to be atomic.  */
 | 
						|
        l1 = cpu_lduw_data_ra(env, a1, ra);
 | 
						|
        l2 = cpu_lduw_data_ra(env, a2, ra);
 | 
						|
        if (l1 == c1 && l2 == c2) {
 | 
						|
            cpu_stw_data_ra(env, a1, u1, ra);
 | 
						|
            cpu_stw_data_ra(env, a2, u2, ra);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (c1 != l1) {
 | 
						|
        env->cc_n = l1;
 | 
						|
        env->cc_v = c1;
 | 
						|
    } else {
 | 
						|
        env->cc_n = l2;
 | 
						|
        env->cc_v = c2;
 | 
						|
    }
 | 
						|
    env->cc_op = CC_OP_CMPW;
 | 
						|
    env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1);
 | 
						|
    env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
 | 
						|
{
 | 
						|
    uint32_t Dc1 = extract32(regs, 9, 3);
 | 
						|
    uint32_t Dc2 = extract32(regs, 6, 3);
 | 
						|
    uint32_t Du1 = extract32(regs, 3, 3);
 | 
						|
    uint32_t Du2 = extract32(regs, 0, 3);
 | 
						|
    uint32_t c1 = env->dregs[Dc1];
 | 
						|
    uint32_t c2 = env->dregs[Dc2];
 | 
						|
    uint32_t u1 = env->dregs[Du1];
 | 
						|
    uint32_t u2 = env->dregs[Du2];
 | 
						|
    uint32_t l1, l2;
 | 
						|
    uintptr_t ra = GETPC();
 | 
						|
#if defined(CONFIG_ATOMIC64) && !defined(CONFIG_USER_ONLY)
 | 
						|
    int mmu_idx = cpu_mmu_index(env, 0);
 | 
						|
    TCGMemOpIdx oi;
 | 
						|
#endif
 | 
						|
 | 
						|
    if (parallel_cpus) {
 | 
						|
        /* We're executing in a parallel context -- must be atomic.  */
 | 
						|
#ifdef CONFIG_ATOMIC64
 | 
						|
        uint64_t c, u, l;
 | 
						|
        if ((a1 & 7) == 0 && a2 == a1 + 4) {
 | 
						|
            c = deposit64(c2, 32, 32, c1);
 | 
						|
            u = deposit64(u2, 32, 32, u1);
 | 
						|
#ifdef CONFIG_USER_ONLY
 | 
						|
            l = helper_atomic_cmpxchgq_be(env, a1, c, u);
 | 
						|
#else
 | 
						|
            oi = make_memop_idx(MO_BEQ, mmu_idx);
 | 
						|
            l = helper_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra);
 | 
						|
#endif
 | 
						|
            l1 = l >> 32;
 | 
						|
            l2 = l;
 | 
						|
        } else if ((a2 & 7) == 0 && a1 == a2 + 4) {
 | 
						|
            c = deposit64(c1, 32, 32, c2);
 | 
						|
            u = deposit64(u1, 32, 32, u2);
 | 
						|
#ifdef CONFIG_USER_ONLY
 | 
						|
            l = helper_atomic_cmpxchgq_be(env, a2, c, u);
 | 
						|
#else
 | 
						|
            oi = make_memop_idx(MO_BEQ, mmu_idx);
 | 
						|
            l = helper_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra);
 | 
						|
#endif
 | 
						|
            l2 = l >> 32;
 | 
						|
            l1 = l;
 | 
						|
        } else
 | 
						|
#endif
 | 
						|
        {
 | 
						|
            /* Tell the main loop we need to serialize this insn.  */
 | 
						|
            cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* We're executing in a serial context -- no need to be atomic.  */
 | 
						|
        l1 = cpu_ldl_data_ra(env, a1, ra);
 | 
						|
        l2 = cpu_ldl_data_ra(env, a2, ra);
 | 
						|
        if (l1 == c1 && l2 == c2) {
 | 
						|
            cpu_stl_data_ra(env, a1, u1, ra);
 | 
						|
            cpu_stl_data_ra(env, a2, u2, ra);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (c1 != l1) {
 | 
						|
        env->cc_n = l1;
 | 
						|
        env->cc_v = c1;
 | 
						|
    } else {
 | 
						|
        env->cc_n = l2;
 | 
						|
        env->cc_v = c2;
 | 
						|
    }
 | 
						|
    env->cc_op = CC_OP_CMPL;
 | 
						|
    env->dregs[Dc1] = l1;
 | 
						|
    env->dregs[Dc2] = l2;
 | 
						|
}
 | 
						|
 | 
						|
struct bf_data {
 | 
						|
    uint32_t addr;
 | 
						|
    uint32_t bofs;
 | 
						|
    uint32_t blen;
 | 
						|
    uint32_t len;
 | 
						|
};
 | 
						|
 | 
						|
static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len)
 | 
						|
{
 | 
						|
    int bofs, blen;
 | 
						|
 | 
						|
    /* Bound length; map 0 to 32.  */
 | 
						|
    len = ((len - 1) & 31) + 1;
 | 
						|
 | 
						|
    /* Note that ofs is signed.  */
 | 
						|
    addr += ofs / 8;
 | 
						|
    bofs = ofs % 8;
 | 
						|
    if (bofs < 0) {
 | 
						|
        bofs += 8;
 | 
						|
        addr -= 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Compute the number of bytes required (minus one) to
 | 
						|
       satisfy the bitfield.  */
 | 
						|
    blen = (bofs + len - 1) / 8;
 | 
						|
 | 
						|
    /* Canonicalize the bit offset for data loaded into a 64-bit big-endian
 | 
						|
       word.  For the cases where BLEN is not a power of 2, adjust ADDR so
 | 
						|
       that we can use the next power of two sized load without crossing a
 | 
						|
       page boundary, unless the field itself crosses the boundary.  */
 | 
						|
    switch (blen) {
 | 
						|
    case 0:
 | 
						|
        bofs += 56;
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        bofs += 48;
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        if (addr & 1) {
 | 
						|
            bofs += 8;
 | 
						|
            addr -= 1;
 | 
						|
        }
 | 
						|
        /* fallthru */
 | 
						|
    case 3:
 | 
						|
        bofs += 32;
 | 
						|
        break;
 | 
						|
    case 4:
 | 
						|
        if (addr & 3) {
 | 
						|
            bofs += 8 * (addr & 3);
 | 
						|
            addr &= -4;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
 | 
						|
    return (struct bf_data){
 | 
						|
        .addr = addr,
 | 
						|
        .bofs = bofs,
 | 
						|
        .blen = blen,
 | 
						|
        .len = len,
 | 
						|
    };
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen,
 | 
						|
                        uintptr_t ra)
 | 
						|
{
 | 
						|
    switch (blen) {
 | 
						|
    case 0:
 | 
						|
        return cpu_ldub_data_ra(env, addr, ra);
 | 
						|
    case 1:
 | 
						|
        return cpu_lduw_data_ra(env, addr, ra);
 | 
						|
    case 2:
 | 
						|
    case 3:
 | 
						|
        return cpu_ldl_data_ra(env, addr, ra);
 | 
						|
    case 4:
 | 
						|
        return cpu_ldq_data_ra(env, addr, ra);
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void bf_store(CPUM68KState *env, uint32_t addr, int blen,
 | 
						|
                     uint64_t data, uintptr_t ra)
 | 
						|
{
 | 
						|
    switch (blen) {
 | 
						|
    case 0:
 | 
						|
        cpu_stb_data_ra(env, addr, data, ra);
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        cpu_stw_data_ra(env, addr, data, ra);
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
    case 3:
 | 
						|
        cpu_stl_data_ra(env, addr, data, ra);
 | 
						|
        break;
 | 
						|
    case 4:
 | 
						|
        cpu_stq_data_ra(env, addr, data, ra);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr,
 | 
						|
                            int32_t ofs, uint32_t len)
 | 
						|
{
 | 
						|
    uintptr_t ra = GETPC();
 | 
						|
    struct bf_data d = bf_prep(addr, ofs, len);
 | 
						|
    uint64_t data = bf_load(env, d.addr, d.blen, ra);
 | 
						|
 | 
						|
    return (int64_t)(data << d.bofs) >> (64 - d.len);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr,
 | 
						|
                            int32_t ofs, uint32_t len)
 | 
						|
{
 | 
						|
    uintptr_t ra = GETPC();
 | 
						|
    struct bf_data d = bf_prep(addr, ofs, len);
 | 
						|
    uint64_t data = bf_load(env, d.addr, d.blen, ra);
 | 
						|
 | 
						|
    /* Put CC_N at the top of the high word; put the zero-extended value
 | 
						|
       at the bottom of the low word.  */
 | 
						|
    data <<= d.bofs;
 | 
						|
    data >>= 64 - d.len;
 | 
						|
    data |= data << (64 - d.len);
 | 
						|
 | 
						|
    return data;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val,
 | 
						|
                           int32_t ofs, uint32_t len)
 | 
						|
{
 | 
						|
    uintptr_t ra = GETPC();
 | 
						|
    struct bf_data d = bf_prep(addr, ofs, len);
 | 
						|
    uint64_t data = bf_load(env, d.addr, d.blen, ra);
 | 
						|
    uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
 | 
						|
 | 
						|
    data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs);
 | 
						|
 | 
						|
    bf_store(env, d.addr, d.blen, data, ra);
 | 
						|
 | 
						|
    /* The field at the top of the word is also CC_N for CC_OP_LOGIC.  */
 | 
						|
    return val << (32 - d.len);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr,
 | 
						|
                           int32_t ofs, uint32_t len)
 | 
						|
{
 | 
						|
    uintptr_t ra = GETPC();
 | 
						|
    struct bf_data d = bf_prep(addr, ofs, len);
 | 
						|
    uint64_t data = bf_load(env, d.addr, d.blen, ra);
 | 
						|
    uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
 | 
						|
 | 
						|
    bf_store(env, d.addr, d.blen, data ^ mask, ra);
 | 
						|
 | 
						|
    return ((data & mask) << d.bofs) >> 32;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr,
 | 
						|
                           int32_t ofs, uint32_t len)
 | 
						|
{
 | 
						|
    uintptr_t ra = GETPC();
 | 
						|
    struct bf_data d = bf_prep(addr, ofs, len);
 | 
						|
    uint64_t data = bf_load(env, d.addr, d.blen, ra);
 | 
						|
    uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
 | 
						|
 | 
						|
    bf_store(env, d.addr, d.blen, data & ~mask, ra);
 | 
						|
 | 
						|
    return ((data & mask) << d.bofs) >> 32;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr,
 | 
						|
                           int32_t ofs, uint32_t len)
 | 
						|
{
 | 
						|
    uintptr_t ra = GETPC();
 | 
						|
    struct bf_data d = bf_prep(addr, ofs, len);
 | 
						|
    uint64_t data = bf_load(env, d.addr, d.blen, ra);
 | 
						|
    uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
 | 
						|
 | 
						|
    bf_store(env, d.addr, d.blen, data | mask, ra);
 | 
						|
 | 
						|
    return ((data & mask) << d.bofs) >> 32;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len)
 | 
						|
{
 | 
						|
    return (n ? clz32(n) : len) + ofs;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr,
 | 
						|
                           int32_t ofs, uint32_t len)
 | 
						|
{
 | 
						|
    uintptr_t ra = GETPC();
 | 
						|
    struct bf_data d = bf_prep(addr, ofs, len);
 | 
						|
    uint64_t data = bf_load(env, d.addr, d.blen, ra);
 | 
						|
    uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
 | 
						|
    uint64_t n = (data & mask) << d.bofs;
 | 
						|
    uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len);
 | 
						|
 | 
						|
    /* Return FFO in the low word and N in the high word.
 | 
						|
       Note that because of MASK and the shift, the low word
 | 
						|
       is already zero.  */
 | 
						|
    return n | ffo;
 | 
						|
}
 |