530 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			530 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
/*
 | 
						|
 * ARM implementation of KVM hooks, 32 bit specific code.
 | 
						|
 *
 | 
						|
 * Copyright Christoffer Dall 2009-2010
 | 
						|
 *
 | 
						|
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | 
						|
 * See the COPYING file in the top-level directory.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include <sys/ioctl.h>
 | 
						|
 | 
						|
#include <linux/kvm.h>
 | 
						|
 | 
						|
#include "qemu-common.h"
 | 
						|
#include "cpu.h"
 | 
						|
#include "qemu/timer.h"
 | 
						|
#include "sysemu/sysemu.h"
 | 
						|
#include "sysemu/kvm.h"
 | 
						|
#include "kvm_arm.h"
 | 
						|
#include "internals.h"
 | 
						|
#include "hw/arm/arm.h"
 | 
						|
#include "qemu/log.h"
 | 
						|
 | 
						|
static inline void set_feature(uint64_t *features, int feature)
 | 
						|
{
 | 
						|
    *features |= 1ULL << feature;
 | 
						|
}
 | 
						|
 | 
						|
bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
 | 
						|
{
 | 
						|
    /* Identify the feature bits corresponding to the host CPU, and
 | 
						|
     * fill out the ARMHostCPUClass fields accordingly. To do this
 | 
						|
     * we have to create a scratch VM, create a single CPU inside it,
 | 
						|
     * and then query that CPU for the relevant ID registers.
 | 
						|
     */
 | 
						|
    int i, ret, fdarray[3];
 | 
						|
    uint32_t midr, id_pfr0, id_isar0, mvfr1;
 | 
						|
    uint64_t features = 0;
 | 
						|
    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
 | 
						|
     * we know these will only support creating one kind of guest CPU,
 | 
						|
     * which is its preferred CPU type.
 | 
						|
     */
 | 
						|
    static const uint32_t cpus_to_try[] = {
 | 
						|
        QEMU_KVM_ARM_TARGET_CORTEX_A15,
 | 
						|
        QEMU_KVM_ARM_TARGET_NONE
 | 
						|
    };
 | 
						|
    struct kvm_vcpu_init init;
 | 
						|
    struct kvm_one_reg idregs[] = {
 | 
						|
        {
 | 
						|
            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
 | 
						|
            | ENCODE_CP_REG(15, 0, 0, 0, 0, 0, 0),
 | 
						|
            .addr = (uintptr_t)&midr,
 | 
						|
        },
 | 
						|
        {
 | 
						|
            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
 | 
						|
            | ENCODE_CP_REG(15, 0, 0, 0, 1, 0, 0),
 | 
						|
            .addr = (uintptr_t)&id_pfr0,
 | 
						|
        },
 | 
						|
        {
 | 
						|
            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
 | 
						|
            | ENCODE_CP_REG(15, 0, 0, 0, 2, 0, 0),
 | 
						|
            .addr = (uintptr_t)&id_isar0,
 | 
						|
        },
 | 
						|
        {
 | 
						|
            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
 | 
						|
            | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1,
 | 
						|
            .addr = (uintptr_t)&mvfr1,
 | 
						|
        },
 | 
						|
    };
 | 
						|
 | 
						|
    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    ahcc->target = init.target;
 | 
						|
 | 
						|
    /* This is not strictly blessed by the device tree binding docs yet,
 | 
						|
     * but in practice the kernel does not care about this string so
 | 
						|
     * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
 | 
						|
     */
 | 
						|
    ahcc->dtb_compatible = "arm,arm-v7";
 | 
						|
 | 
						|
    for (i = 0; i < ARRAY_SIZE(idregs); i++) {
 | 
						|
        ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]);
 | 
						|
        if (ret) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    kvm_arm_destroy_scratch_host_vcpu(fdarray);
 | 
						|
 | 
						|
    if (ret) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Now we've retrieved all the register information we can
 | 
						|
     * set the feature bits based on the ID register fields.
 | 
						|
     * We can assume any KVM supporting CPU is at least a v7
 | 
						|
     * with VFPv3, LPAE and the generic timers; this in turn implies
 | 
						|
     * most of the other feature bits, but a few must be tested.
 | 
						|
     */
 | 
						|
    set_feature(&features, ARM_FEATURE_V7);
 | 
						|
    set_feature(&features, ARM_FEATURE_VFP3);
 | 
						|
    set_feature(&features, ARM_FEATURE_LPAE);
 | 
						|
    set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
 | 
						|
 | 
						|
    switch (extract32(id_isar0, 24, 4)) {
 | 
						|
    case 1:
 | 
						|
        set_feature(&features, ARM_FEATURE_THUMB_DIV);
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        set_feature(&features, ARM_FEATURE_ARM_DIV);
 | 
						|
        set_feature(&features, ARM_FEATURE_THUMB_DIV);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (extract32(id_pfr0, 12, 4) == 1) {
 | 
						|
        set_feature(&features, ARM_FEATURE_THUMB2EE);
 | 
						|
    }
 | 
						|
    if (extract32(mvfr1, 20, 4) == 1) {
 | 
						|
        set_feature(&features, ARM_FEATURE_VFP_FP16);
 | 
						|
    }
 | 
						|
    if (extract32(mvfr1, 12, 4) == 1) {
 | 
						|
        set_feature(&features, ARM_FEATURE_NEON);
 | 
						|
    }
 | 
						|
    if (extract32(mvfr1, 28, 4) == 1) {
 | 
						|
        /* FMAC support implies VFPv4 */
 | 
						|
        set_feature(&features, ARM_FEATURE_VFP4);
 | 
						|
    }
 | 
						|
 | 
						|
    ahcc->features = features;
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
 | 
						|
{
 | 
						|
    /* Return true if the regidx is a register we should synchronize
 | 
						|
     * via the cpreg_tuples array (ie is not a core reg we sync by
 | 
						|
     * hand in kvm_arch_get/put_registers())
 | 
						|
     */
 | 
						|
    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
 | 
						|
    case KVM_REG_ARM_CORE:
 | 
						|
    case KVM_REG_ARM_VFP:
 | 
						|
        return false;
 | 
						|
    default:
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
typedef struct CPRegStateLevel {
 | 
						|
    uint64_t regidx;
 | 
						|
    int level;
 | 
						|
} CPRegStateLevel;
 | 
						|
 | 
						|
/* All coprocessor registers not listed in the following table are assumed to
 | 
						|
 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
 | 
						|
 * often, you must add it to this table with a state of either
 | 
						|
 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
 | 
						|
 */
 | 
						|
static const CPRegStateLevel non_runtime_cpregs[] = {
 | 
						|
    { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
 | 
						|
};
 | 
						|
 | 
						|
int kvm_arm_cpreg_level(uint64_t regidx)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
 | 
						|
        const CPRegStateLevel *l = &non_runtime_cpregs[i];
 | 
						|
        if (l->regidx == regidx) {
 | 
						|
            return l->level;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return KVM_PUT_RUNTIME_STATE;
 | 
						|
}
 | 
						|
 | 
						|
#define ARM_CPU_ID_MPIDR       0, 0, 0, 5
 | 
						|
 | 
						|
int kvm_arch_init_vcpu(CPUState *cs)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    uint64_t v;
 | 
						|
    uint32_t mpidr;
 | 
						|
    struct kvm_one_reg r;
 | 
						|
    ARMCPU *cpu = ARM_CPU(cs);
 | 
						|
 | 
						|
    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
 | 
						|
        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
 | 
						|
        return -EINVAL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Determine init features for this CPU */
 | 
						|
    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
 | 
						|
    if (cpu->start_powered_off) {
 | 
						|
        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
 | 
						|
    }
 | 
						|
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
 | 
						|
        cpu->psci_version = 2;
 | 
						|
        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Do KVM_ARM_VCPU_INIT ioctl */
 | 
						|
    ret = kvm_arm_vcpu_init(cs);
 | 
						|
    if (ret) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Query the kernel to make sure it supports 32 VFP
 | 
						|
     * registers: QEMU's "cortex-a15" CPU is always a
 | 
						|
     * VFP-D32 core. The simplest way to do this is just
 | 
						|
     * to attempt to read register d31.
 | 
						|
     */
 | 
						|
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
 | 
						|
    r.addr = (uintptr_t)(&v);
 | 
						|
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 | 
						|
    if (ret == -ENOENT) {
 | 
						|
        return -EINVAL;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
 | 
						|
     * Currently KVM has its own idea about MPIDR assignment, so we
 | 
						|
     * override our defaults with what we get from KVM.
 | 
						|
     */
 | 
						|
    ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
 | 
						|
    if (ret) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
    cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK;
 | 
						|
 | 
						|
    return kvm_arm_init_cpreg_list(cpu);
 | 
						|
}
 | 
						|
 | 
						|
typedef struct Reg {
 | 
						|
    uint64_t id;
 | 
						|
    int offset;
 | 
						|
} Reg;
 | 
						|
 | 
						|
#define COREREG(KERNELNAME, QEMUFIELD)                       \
 | 
						|
    {                                                        \
 | 
						|
        KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
 | 
						|
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
 | 
						|
        offsetof(CPUARMState, QEMUFIELD)                     \
 | 
						|
    }
 | 
						|
 | 
						|
#define VFPSYSREG(R)                                       \
 | 
						|
    {                                                      \
 | 
						|
        KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
 | 
						|
        KVM_REG_ARM_VFP_##R,                               \
 | 
						|
        offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R])      \
 | 
						|
    }
 | 
						|
 | 
						|
/* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
 | 
						|
#define COREREG64(KERNELNAME, QEMUFIELD)                     \
 | 
						|
    {                                                        \
 | 
						|
        KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
 | 
						|
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
 | 
						|
        offsetoflow32(CPUARMState, QEMUFIELD)                \
 | 
						|
    }
 | 
						|
 | 
						|
static const Reg regs[] = {
 | 
						|
    /* R0_usr .. R14_usr */
 | 
						|
    COREREG(usr_regs.uregs[0], regs[0]),
 | 
						|
    COREREG(usr_regs.uregs[1], regs[1]),
 | 
						|
    COREREG(usr_regs.uregs[2], regs[2]),
 | 
						|
    COREREG(usr_regs.uregs[3], regs[3]),
 | 
						|
    COREREG(usr_regs.uregs[4], regs[4]),
 | 
						|
    COREREG(usr_regs.uregs[5], regs[5]),
 | 
						|
    COREREG(usr_regs.uregs[6], regs[6]),
 | 
						|
    COREREG(usr_regs.uregs[7], regs[7]),
 | 
						|
    COREREG(usr_regs.uregs[8], usr_regs[0]),
 | 
						|
    COREREG(usr_regs.uregs[9], usr_regs[1]),
 | 
						|
    COREREG(usr_regs.uregs[10], usr_regs[2]),
 | 
						|
    COREREG(usr_regs.uregs[11], usr_regs[3]),
 | 
						|
    COREREG(usr_regs.uregs[12], usr_regs[4]),
 | 
						|
    COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]),
 | 
						|
    COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]),
 | 
						|
    /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
 | 
						|
    COREREG(svc_regs[0], banked_r13[BANK_SVC]),
 | 
						|
    COREREG(svc_regs[1], banked_r14[BANK_SVC]),
 | 
						|
    COREREG64(svc_regs[2], banked_spsr[BANK_SVC]),
 | 
						|
    COREREG(abt_regs[0], banked_r13[BANK_ABT]),
 | 
						|
    COREREG(abt_regs[1], banked_r14[BANK_ABT]),
 | 
						|
    COREREG64(abt_regs[2], banked_spsr[BANK_ABT]),
 | 
						|
    COREREG(und_regs[0], banked_r13[BANK_UND]),
 | 
						|
    COREREG(und_regs[1], banked_r14[BANK_UND]),
 | 
						|
    COREREG64(und_regs[2], banked_spsr[BANK_UND]),
 | 
						|
    COREREG(irq_regs[0], banked_r13[BANK_IRQ]),
 | 
						|
    COREREG(irq_regs[1], banked_r14[BANK_IRQ]),
 | 
						|
    COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]),
 | 
						|
    /* R8_fiq .. R14_fiq and SPSR_fiq */
 | 
						|
    COREREG(fiq_regs[0], fiq_regs[0]),
 | 
						|
    COREREG(fiq_regs[1], fiq_regs[1]),
 | 
						|
    COREREG(fiq_regs[2], fiq_regs[2]),
 | 
						|
    COREREG(fiq_regs[3], fiq_regs[3]),
 | 
						|
    COREREG(fiq_regs[4], fiq_regs[4]),
 | 
						|
    COREREG(fiq_regs[5], banked_r13[BANK_FIQ]),
 | 
						|
    COREREG(fiq_regs[6], banked_r14[BANK_FIQ]),
 | 
						|
    COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]),
 | 
						|
    /* R15 */
 | 
						|
    COREREG(usr_regs.uregs[15], regs[15]),
 | 
						|
    /* VFP system registers */
 | 
						|
    VFPSYSREG(FPSID),
 | 
						|
    VFPSYSREG(MVFR1),
 | 
						|
    VFPSYSREG(MVFR0),
 | 
						|
    VFPSYSREG(FPEXC),
 | 
						|
    VFPSYSREG(FPINST),
 | 
						|
    VFPSYSREG(FPINST2),
 | 
						|
};
 | 
						|
 | 
						|
int kvm_arch_put_registers(CPUState *cs, int level)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = ARM_CPU(cs);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    struct kvm_one_reg r;
 | 
						|
    int mode, bn;
 | 
						|
    int ret, i;
 | 
						|
    uint32_t cpsr, fpscr;
 | 
						|
 | 
						|
    /* Make sure the banked regs are properly set */
 | 
						|
    mode = env->uncached_cpsr & CPSR_M;
 | 
						|
    bn = bank_number(mode);
 | 
						|
    if (mode == ARM_CPU_MODE_FIQ) {
 | 
						|
        memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
 | 
						|
    } else {
 | 
						|
        memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
 | 
						|
    }
 | 
						|
    env->banked_r13[bn] = env->regs[13];
 | 
						|
    env->banked_r14[bn] = env->regs[14];
 | 
						|
    env->banked_spsr[bn] = env->spsr;
 | 
						|
 | 
						|
    /* Now we can safely copy stuff down to the kernel */
 | 
						|
    for (i = 0; i < ARRAY_SIZE(regs); i++) {
 | 
						|
        r.id = regs[i].id;
 | 
						|
        r.addr = (uintptr_t)(env) + regs[i].offset;
 | 
						|
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 | 
						|
        if (ret) {
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Special cases which aren't a single CPUARMState field */
 | 
						|
    cpsr = cpsr_read(env);
 | 
						|
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
 | 
						|
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
 | 
						|
    r.addr = (uintptr_t)(&cpsr);
 | 
						|
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 | 
						|
    if (ret) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    /* VFP registers */
 | 
						|
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
 | 
						|
    for (i = 0; i < 32; i++) {
 | 
						|
        r.addr = (uintptr_t)(&env->vfp.regs[i]);
 | 
						|
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 | 
						|
        if (ret) {
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
        r.id++;
 | 
						|
    }
 | 
						|
 | 
						|
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
 | 
						|
        KVM_REG_ARM_VFP_FPSCR;
 | 
						|
    fpscr = vfp_get_fpscr(env);
 | 
						|
    r.addr = (uintptr_t)&fpscr;
 | 
						|
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 | 
						|
    if (ret) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Note that we do not call write_cpustate_to_list()
 | 
						|
     * here, so we are only writing the tuple list back to
 | 
						|
     * KVM. This is safe because nothing can change the
 | 
						|
     * CPUARMState cp15 fields (in particular gdb accesses cannot)
 | 
						|
     * and so there are no changes to sync. In fact syncing would
 | 
						|
     * be wrong at this point: for a constant register where TCG and
 | 
						|
     * KVM disagree about its value, the preceding write_list_to_cpustate()
 | 
						|
     * would not have had any effect on the CPUARMState value (since the
 | 
						|
     * register is read-only), and a write_cpustate_to_list() here would
 | 
						|
     * then try to write the TCG value back into KVM -- this would either
 | 
						|
     * fail or incorrectly change the value the guest sees.
 | 
						|
     *
 | 
						|
     * If we ever want to allow the user to modify cp15 registers via
 | 
						|
     * the gdb stub, we would need to be more clever here (for instance
 | 
						|
     * tracking the set of registers kvm_arch_get_registers() successfully
 | 
						|
     * managed to update the CPUARMState with, and only allowing those
 | 
						|
     * to be written back up into the kernel).
 | 
						|
     */
 | 
						|
    if (!write_list_to_kvmstate(cpu, level)) {
 | 
						|
        return EINVAL;
 | 
						|
    }
 | 
						|
 | 
						|
    kvm_arm_sync_mpstate_to_kvm(cpu);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_arch_get_registers(CPUState *cs)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = ARM_CPU(cs);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    struct kvm_one_reg r;
 | 
						|
    int mode, bn;
 | 
						|
    int ret, i;
 | 
						|
    uint32_t cpsr, fpscr;
 | 
						|
 | 
						|
    for (i = 0; i < ARRAY_SIZE(regs); i++) {
 | 
						|
        r.id = regs[i].id;
 | 
						|
        r.addr = (uintptr_t)(env) + regs[i].offset;
 | 
						|
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 | 
						|
        if (ret) {
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Special cases which aren't a single CPUARMState field */
 | 
						|
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
 | 
						|
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
 | 
						|
    r.addr = (uintptr_t)(&cpsr);
 | 
						|
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 | 
						|
    if (ret) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
    cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw);
 | 
						|
 | 
						|
    /* Make sure the current mode regs are properly set */
 | 
						|
    mode = env->uncached_cpsr & CPSR_M;
 | 
						|
    bn = bank_number(mode);
 | 
						|
    if (mode == ARM_CPU_MODE_FIQ) {
 | 
						|
        memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
 | 
						|
    } else {
 | 
						|
        memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
 | 
						|
    }
 | 
						|
    env->regs[13] = env->banked_r13[bn];
 | 
						|
    env->regs[14] = env->banked_r14[bn];
 | 
						|
    env->spsr = env->banked_spsr[bn];
 | 
						|
 | 
						|
    /* VFP registers */
 | 
						|
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
 | 
						|
    for (i = 0; i < 32; i++) {
 | 
						|
        r.addr = (uintptr_t)(&env->vfp.regs[i]);
 | 
						|
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 | 
						|
        if (ret) {
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
        r.id++;
 | 
						|
    }
 | 
						|
 | 
						|
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
 | 
						|
        KVM_REG_ARM_VFP_FPSCR;
 | 
						|
    r.addr = (uintptr_t)&fpscr;
 | 
						|
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 | 
						|
    if (ret) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
    vfp_set_fpscr(env, fpscr);
 | 
						|
 | 
						|
    if (!write_kvmstate_to_list(cpu)) {
 | 
						|
        return EINVAL;
 | 
						|
    }
 | 
						|
    /* Note that it's OK to have registers which aren't in CPUState,
 | 
						|
     * so we can ignore a failure return here.
 | 
						|
     */
 | 
						|
    write_list_to_cpustate(cpu);
 | 
						|
 | 
						|
    kvm_arm_sync_mpstate_to_qemu(cpu);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 | 
						|
{
 | 
						|
    qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
 | 
						|
    return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 | 
						|
{
 | 
						|
    qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
 | 
						|
    return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
 | 
						|
{
 | 
						|
    qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 | 
						|
                                  target_ulong len, int type)
 | 
						|
{
 | 
						|
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | 
						|
    return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 | 
						|
                                  target_ulong len, int type)
 | 
						|
{
 | 
						|
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | 
						|
    return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
void kvm_arch_remove_all_hw_breakpoints(void)
 | 
						|
{
 | 
						|
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | 
						|
}
 | 
						|
 | 
						|
void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
 | 
						|
{
 | 
						|
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | 
						|
}
 | 
						|
 | 
						|
bool kvm_arm_hw_debug_active(CPUState *cs)
 | 
						|
{
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_arm_pmu_create(CPUState *cs, int irq)
 | 
						|
{
 | 
						|
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | 
						|
    return 0;
 | 
						|
}
 |