446 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			446 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * QEMU throttling infrastructure
 | |
|  *
 | |
|  * Copyright (C) Nodalink, EURL. 2013-2014
 | |
|  * Copyright (C) Igalia, S.L. 2015
 | |
|  *
 | |
|  * Authors:
 | |
|  *   BenoƮt Canet <benoit.canet@nodalink.com>
 | |
|  *   Alberto Garcia <berto@igalia.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation; either version 2 or
 | |
|  * (at your option) version 3 of the License.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/throttle.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "block/aio.h"
 | |
| 
 | |
| /* This function make a bucket leak
 | |
|  *
 | |
|  * @bkt:   the bucket to make leak
 | |
|  * @delta_ns: the time delta
 | |
|  */
 | |
| void throttle_leak_bucket(LeakyBucket *bkt, int64_t delta_ns)
 | |
| {
 | |
|     double leak;
 | |
| 
 | |
|     /* compute how much to leak */
 | |
|     leak = (bkt->avg * (double) delta_ns) / NANOSECONDS_PER_SECOND;
 | |
| 
 | |
|     /* make the bucket leak */
 | |
|     bkt->level = MAX(bkt->level - leak, 0);
 | |
| }
 | |
| 
 | |
| /* Calculate the time delta since last leak and make proportionals leaks
 | |
|  *
 | |
|  * @now:      the current timestamp in ns
 | |
|  */
 | |
| static void throttle_do_leak(ThrottleState *ts, int64_t now)
 | |
| {
 | |
|     /* compute the time elapsed since the last leak */
 | |
|     int64_t delta_ns = now - ts->previous_leak;
 | |
|     int i;
 | |
| 
 | |
|     ts->previous_leak = now;
 | |
| 
 | |
|     if (delta_ns <= 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* make each bucket leak */
 | |
|     for (i = 0; i < BUCKETS_COUNT; i++) {
 | |
|         throttle_leak_bucket(&ts->cfg.buckets[i], delta_ns);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* do the real job of computing the time to wait
 | |
|  *
 | |
|  * @limit: the throttling limit
 | |
|  * @extra: the number of operation to delay
 | |
|  * @ret:   the time to wait in ns
 | |
|  */
 | |
| static int64_t throttle_do_compute_wait(double limit, double extra)
 | |
| {
 | |
|     double wait = extra * NANOSECONDS_PER_SECOND;
 | |
|     wait /= limit;
 | |
|     return wait;
 | |
| }
 | |
| 
 | |
| /* This function compute the wait time in ns that a leaky bucket should trigger
 | |
|  *
 | |
|  * @bkt: the leaky bucket we operate on
 | |
|  * @ret: the resulting wait time in ns or 0 if the operation can go through
 | |
|  */
 | |
| int64_t throttle_compute_wait(LeakyBucket *bkt)
 | |
| {
 | |
|     double extra; /* the number of extra units blocking the io */
 | |
| 
 | |
|     if (!bkt->avg) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     extra = bkt->level - bkt->max;
 | |
| 
 | |
|     if (extra <= 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return throttle_do_compute_wait(bkt->avg, extra);
 | |
| }
 | |
| 
 | |
| /* This function compute the time that must be waited while this IO
 | |
|  *
 | |
|  * @is_write:   true if the current IO is a write, false if it's a read
 | |
|  * @ret:        time to wait
 | |
|  */
 | |
| static int64_t throttle_compute_wait_for(ThrottleState *ts,
 | |
|                                          bool is_write)
 | |
| {
 | |
|     BucketType to_check[2][4] = { {THROTTLE_BPS_TOTAL,
 | |
|                                    THROTTLE_OPS_TOTAL,
 | |
|                                    THROTTLE_BPS_READ,
 | |
|                                    THROTTLE_OPS_READ},
 | |
|                                   {THROTTLE_BPS_TOTAL,
 | |
|                                    THROTTLE_OPS_TOTAL,
 | |
|                                    THROTTLE_BPS_WRITE,
 | |
|                                    THROTTLE_OPS_WRITE}, };
 | |
|     int64_t wait, max_wait = 0;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         BucketType index = to_check[is_write][i];
 | |
|         wait = throttle_compute_wait(&ts->cfg.buckets[index]);
 | |
|         if (wait > max_wait) {
 | |
|             max_wait = wait;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return max_wait;
 | |
| }
 | |
| 
 | |
| /* compute the timer for this type of operation
 | |
|  *
 | |
|  * @is_write:   the type of operation
 | |
|  * @now:        the current clock timestamp
 | |
|  * @next_timestamp: the resulting timer
 | |
|  * @ret:        true if a timer must be set
 | |
|  */
 | |
| bool throttle_compute_timer(ThrottleState *ts,
 | |
|                             bool is_write,
 | |
|                             int64_t now,
 | |
|                             int64_t *next_timestamp)
 | |
| {
 | |
|     int64_t wait;
 | |
| 
 | |
|     /* leak proportionally to the time elapsed */
 | |
|     throttle_do_leak(ts, now);
 | |
| 
 | |
|     /* compute the wait time if any */
 | |
|     wait = throttle_compute_wait_for(ts, is_write);
 | |
| 
 | |
|     /* if the code must wait compute when the next timer should fire */
 | |
|     if (wait) {
 | |
|         *next_timestamp = now + wait;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     /* else no need to wait at all */
 | |
|     *next_timestamp = now;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* Add timers to event loop */
 | |
| void throttle_timers_attach_aio_context(ThrottleTimers *tt,
 | |
|                                         AioContext *new_context)
 | |
| {
 | |
|     tt->timers[0] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
 | |
|                                   tt->read_timer_cb, tt->timer_opaque);
 | |
|     tt->timers[1] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
 | |
|                                   tt->write_timer_cb, tt->timer_opaque);
 | |
| }
 | |
| 
 | |
| /* To be called first on the ThrottleState */
 | |
| void throttle_init(ThrottleState *ts)
 | |
| {
 | |
|     memset(ts, 0, sizeof(ThrottleState));
 | |
| }
 | |
| 
 | |
| /* To be called first on the ThrottleTimers */
 | |
| void throttle_timers_init(ThrottleTimers *tt,
 | |
|                           AioContext *aio_context,
 | |
|                           QEMUClockType clock_type,
 | |
|                           QEMUTimerCB *read_timer_cb,
 | |
|                           QEMUTimerCB *write_timer_cb,
 | |
|                           void *timer_opaque)
 | |
| {
 | |
|     memset(tt, 0, sizeof(ThrottleTimers));
 | |
| 
 | |
|     tt->clock_type = clock_type;
 | |
|     tt->read_timer_cb = read_timer_cb;
 | |
|     tt->write_timer_cb = write_timer_cb;
 | |
|     tt->timer_opaque = timer_opaque;
 | |
|     throttle_timers_attach_aio_context(tt, aio_context);
 | |
| }
 | |
| 
 | |
| /* destroy a timer */
 | |
| static void throttle_timer_destroy(QEMUTimer **timer)
 | |
| {
 | |
|     assert(*timer != NULL);
 | |
| 
 | |
|     timer_del(*timer);
 | |
|     timer_free(*timer);
 | |
|     *timer = NULL;
 | |
| }
 | |
| 
 | |
| /* Remove timers from event loop */
 | |
| void throttle_timers_detach_aio_context(ThrottleTimers *tt)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 2; i++) {
 | |
|         throttle_timer_destroy(&tt->timers[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* To be called last on the ThrottleTimers */
 | |
| void throttle_timers_destroy(ThrottleTimers *tt)
 | |
| {
 | |
|     throttle_timers_detach_aio_context(tt);
 | |
| }
 | |
| 
 | |
| /* is any throttling timer configured */
 | |
| bool throttle_timers_are_initialized(ThrottleTimers *tt)
 | |
| {
 | |
|     if (tt->timers[0]) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* Does any throttling must be done
 | |
|  *
 | |
|  * @cfg: the throttling configuration to inspect
 | |
|  * @ret: true if throttling must be done else false
 | |
|  */
 | |
| bool throttle_enabled(ThrottleConfig *cfg)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < BUCKETS_COUNT; i++) {
 | |
|         if (cfg->buckets[i].avg > 0) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* return true if any two throttling parameters conflicts
 | |
|  *
 | |
|  * @cfg: the throttling configuration to inspect
 | |
|  * @ret: true if any conflict detected else false
 | |
|  */
 | |
| bool throttle_conflicting(ThrottleConfig *cfg)
 | |
| {
 | |
|     bool bps_flag, ops_flag;
 | |
|     bool bps_max_flag, ops_max_flag;
 | |
| 
 | |
|     bps_flag = cfg->buckets[THROTTLE_BPS_TOTAL].avg &&
 | |
|                (cfg->buckets[THROTTLE_BPS_READ].avg ||
 | |
|                 cfg->buckets[THROTTLE_BPS_WRITE].avg);
 | |
| 
 | |
|     ops_flag = cfg->buckets[THROTTLE_OPS_TOTAL].avg &&
 | |
|                (cfg->buckets[THROTTLE_OPS_READ].avg ||
 | |
|                 cfg->buckets[THROTTLE_OPS_WRITE].avg);
 | |
| 
 | |
|     bps_max_flag = cfg->buckets[THROTTLE_BPS_TOTAL].max &&
 | |
|                   (cfg->buckets[THROTTLE_BPS_READ].max  ||
 | |
|                    cfg->buckets[THROTTLE_BPS_WRITE].max);
 | |
| 
 | |
|     ops_max_flag = cfg->buckets[THROTTLE_OPS_TOTAL].max &&
 | |
|                    (cfg->buckets[THROTTLE_OPS_READ].max ||
 | |
|                    cfg->buckets[THROTTLE_OPS_WRITE].max);
 | |
| 
 | |
|     return bps_flag || ops_flag || bps_max_flag || ops_max_flag;
 | |
| }
 | |
| 
 | |
| /* check if a throttling configuration is valid
 | |
|  * @cfg: the throttling configuration to inspect
 | |
|  * @ret: true if valid else false
 | |
|  */
 | |
| bool throttle_is_valid(ThrottleConfig *cfg)
 | |
| {
 | |
|     bool invalid = false;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < BUCKETS_COUNT; i++) {
 | |
|         if (cfg->buckets[i].avg < 0) {
 | |
|             invalid = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < BUCKETS_COUNT; i++) {
 | |
|         if (cfg->buckets[i].max < 0) {
 | |
|             invalid = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return !invalid;
 | |
| }
 | |
| 
 | |
| /* check if bps_max/iops_max is used without bps/iops
 | |
|  * @cfg: the throttling configuration to inspect
 | |
|  */
 | |
| bool throttle_max_is_missing_limit(ThrottleConfig *cfg)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < BUCKETS_COUNT; i++) {
 | |
|         if (cfg->buckets[i].max && !cfg->buckets[i].avg) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* fix bucket parameters */
 | |
| static void throttle_fix_bucket(LeakyBucket *bkt)
 | |
| {
 | |
|     double min;
 | |
| 
 | |
|     /* zero bucket level */
 | |
|     bkt->level = 0;
 | |
| 
 | |
|     /* The following is done to cope with the Linux CFQ block scheduler
 | |
|      * which regroup reads and writes by block of 100ms in the guest.
 | |
|      * When they are two process one making reads and one making writes cfq
 | |
|      * make a pattern looking like the following:
 | |
|      * WWWWWWWWWWWRRRRRRRRRRRRRRWWWWWWWWWWWWWwRRRRRRRRRRRRRRRRR
 | |
|      * Having a max burst value of 100ms of the average will help smooth the
 | |
|      * throttling
 | |
|      */
 | |
|     min = bkt->avg / 10;
 | |
|     if (bkt->avg && !bkt->max) {
 | |
|         bkt->max = min;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* take care of canceling a timer */
 | |
| static void throttle_cancel_timer(QEMUTimer *timer)
 | |
| {
 | |
|     assert(timer != NULL);
 | |
| 
 | |
|     timer_del(timer);
 | |
| }
 | |
| 
 | |
| /* Used to configure the throttle
 | |
|  *
 | |
|  * @ts: the throttle state we are working on
 | |
|  * @tt: the throttle timers we use in this aio context
 | |
|  * @cfg: the config to set
 | |
|  */
 | |
| void throttle_config(ThrottleState *ts,
 | |
|                      ThrottleTimers *tt,
 | |
|                      ThrottleConfig *cfg)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     ts->cfg = *cfg;
 | |
| 
 | |
|     for (i = 0; i < BUCKETS_COUNT; i++) {
 | |
|         throttle_fix_bucket(&ts->cfg.buckets[i]);
 | |
|     }
 | |
| 
 | |
|     ts->previous_leak = qemu_clock_get_ns(tt->clock_type);
 | |
| 
 | |
|     for (i = 0; i < 2; i++) {
 | |
|         throttle_cancel_timer(tt->timers[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* used to get config
 | |
|  *
 | |
|  * @ts:  the throttle state we are working on
 | |
|  * @cfg: the config to write
 | |
|  */
 | |
| void throttle_get_config(ThrottleState *ts, ThrottleConfig *cfg)
 | |
| {
 | |
|     *cfg = ts->cfg;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Schedule the read or write timer if needed
 | |
|  *
 | |
|  * NOTE: this function is not unit tested due to it's usage of timer_mod
 | |
|  *
 | |
|  * @tt:       the timers structure
 | |
|  * @is_write: the type of operation (read/write)
 | |
|  * @ret:      true if the timer has been scheduled else false
 | |
|  */
 | |
| bool throttle_schedule_timer(ThrottleState *ts,
 | |
|                              ThrottleTimers *tt,
 | |
|                              bool is_write)
 | |
| {
 | |
|     int64_t now = qemu_clock_get_ns(tt->clock_type);
 | |
|     int64_t next_timestamp;
 | |
|     bool must_wait;
 | |
| 
 | |
|     must_wait = throttle_compute_timer(ts,
 | |
|                                        is_write,
 | |
|                                        now,
 | |
|                                        &next_timestamp);
 | |
| 
 | |
|     /* request not throttled */
 | |
|     if (!must_wait) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /* request throttled and timer pending -> do nothing */
 | |
|     if (timer_pending(tt->timers[is_write])) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     /* request throttled and timer not pending -> arm timer */
 | |
|     timer_mod(tt->timers[is_write], next_timestamp);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /* do the accounting for this operation
 | |
|  *
 | |
|  * @is_write: the type of operation (read/write)
 | |
|  * @size:     the size of the operation
 | |
|  */
 | |
| void throttle_account(ThrottleState *ts, bool is_write, uint64_t size)
 | |
| {
 | |
|     double units = 1.0;
 | |
| 
 | |
|     /* if cfg.op_size is defined and smaller than size we compute unit count */
 | |
|     if (ts->cfg.op_size && size > ts->cfg.op_size) {
 | |
|         units = (double) size / ts->cfg.op_size;
 | |
|     }
 | |
| 
 | |
|     ts->cfg.buckets[THROTTLE_BPS_TOTAL].level += size;
 | |
|     ts->cfg.buckets[THROTTLE_OPS_TOTAL].level += units;
 | |
| 
 | |
|     if (is_write) {
 | |
|         ts->cfg.buckets[THROTTLE_BPS_WRITE].level += size;
 | |
|         ts->cfg.buckets[THROTTLE_OPS_WRITE].level += units;
 | |
|     } else {
 | |
|         ts->cfg.buckets[THROTTLE_BPS_READ].level += size;
 | |
|         ts->cfg.buckets[THROTTLE_OPS_READ].level += units;
 | |
|     }
 | |
| }
 | |
| 
 |