709 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			709 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * QEMU float support
 | |
|  *
 | |
|  * Derived from SoftFloat.
 | |
|  */
 | |
| 
 | |
| /*============================================================================
 | |
| 
 | |
| This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
 | |
| Package, Release 2b.
 | |
| 
 | |
| Written by John R. Hauser.  This work was made possible in part by the
 | |
| International Computer Science Institute, located at Suite 600, 1947 Center
 | |
| Street, Berkeley, California 94704.  Funding was partially provided by the
 | |
| National Science Foundation under grant MIP-9311980.  The original version
 | |
| of this code was written as part of a project to build a fixed-point vector
 | |
| processor in collaboration with the University of California at Berkeley,
 | |
| overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 | |
| is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
 | |
| arithmetic/SoftFloat.html'.
 | |
| 
 | |
| THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
 | |
| been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
 | |
| RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
 | |
| AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
 | |
| COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
 | |
| EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
 | |
| INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
 | |
| OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
 | |
| 
 | |
| Derivative works are acceptable, even for commercial purposes, so long as
 | |
| (1) the source code for the derivative work includes prominent notice that
 | |
| the work is derivative, and (2) the source code includes prominent notice with
 | |
| these four paragraphs for those parts of this code that are retained.
 | |
| 
 | |
| =============================================================================*/
 | |
| 
 | |
| #ifndef SOFTFLOAT_H
 | |
| #define SOFTFLOAT_H
 | |
| 
 | |
| #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
 | |
| #include <sunmath.h>
 | |
| #endif
 | |
| 
 | |
| #include <inttypes.h>
 | |
| #include "config.h"
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Each of the following `typedef's defines the most convenient type that holds
 | |
| | integers of at least as many bits as specified.  For example, `uint8' should
 | |
| | be the most convenient type that can hold unsigned integers of as many as
 | |
| | 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
 | |
| | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
 | |
| | to the same as `int'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| typedef uint8_t flag;
 | |
| typedef uint8_t uint8;
 | |
| typedef int8_t int8;
 | |
| #ifndef _AIX
 | |
| typedef int uint16;
 | |
| typedef int int16;
 | |
| #endif
 | |
| typedef unsigned int uint32;
 | |
| typedef signed int int32;
 | |
| typedef uint64_t uint64;
 | |
| typedef int64_t int64;
 | |
| 
 | |
| #define LIT64( a ) a##LL
 | |
| #define INLINE static inline
 | |
| 
 | |
| #if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
 | |
| #define SNAN_BIT_IS_ONE		1
 | |
| #else
 | |
| #define SNAN_BIT_IS_ONE		0
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | The macro `FLOATX80' must be defined to enable the extended double-precision
 | |
| | floating-point format `floatx80'.  If this macro is not defined, the
 | |
| | `floatx80' type will not be defined, and none of the functions that either
 | |
| | input or output the `floatx80' type will be defined.  The same applies to
 | |
| | the `FLOAT128' macro and the quadruple-precision format `float128'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #ifdef CONFIG_SOFTFLOAT
 | |
| /* bit exact soft float support */
 | |
| #define FLOATX80
 | |
| #define FLOAT128
 | |
| #else
 | |
| /* native float support */
 | |
| #if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
 | |
| #define FLOATX80
 | |
| #endif
 | |
| #endif /* !CONFIG_SOFTFLOAT */
 | |
| 
 | |
| #define STATUS_PARAM , float_status *status
 | |
| #define STATUS(field) status->field
 | |
| #define STATUS_VAR , status
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE floating-point ordering relations
 | |
| *----------------------------------------------------------------------------*/
 | |
| enum {
 | |
|     float_relation_less      = -1,
 | |
|     float_relation_equal     =  0,
 | |
|     float_relation_greater   =  1,
 | |
|     float_relation_unordered =  2
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SOFTFLOAT
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE floating-point types.
 | |
| *----------------------------------------------------------------------------*/
 | |
| /* Use structures for soft-float types.  This prevents accidentally mixing
 | |
|    them with native int/float types.  A sufficiently clever compiler and
 | |
|    sane ABI should be able to see though these structs.  However
 | |
|    x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
 | |
| //#define USE_SOFTFLOAT_STRUCT_TYPES
 | |
| #ifdef USE_SOFTFLOAT_STRUCT_TYPES
 | |
| typedef struct {
 | |
|     uint16_t v;
 | |
| } float16;
 | |
| #define float16_val(x) (((float16)(x)).v)
 | |
| #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
 | |
| #define const_float16(x) { x }
 | |
| typedef struct {
 | |
|     uint32_t v;
 | |
| } float32;
 | |
| /* The cast ensures an error if the wrong type is passed.  */
 | |
| #define float32_val(x) (((float32)(x)).v)
 | |
| #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
 | |
| #define const_float32(x) { x }
 | |
| typedef struct {
 | |
|     uint64_t v;
 | |
| } float64;
 | |
| #define float64_val(x) (((float64)(x)).v)
 | |
| #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
 | |
| #define const_float64(x) { x }
 | |
| #else
 | |
| typedef uint16_t float16;
 | |
| typedef uint32_t float32;
 | |
| typedef uint64_t float64;
 | |
| #define float16_val(x) (x)
 | |
| #define float32_val(x) (x)
 | |
| #define float64_val(x) (x)
 | |
| #define make_float16(x) (x)
 | |
| #define make_float32(x) (x)
 | |
| #define make_float64(x) (x)
 | |
| #define const_float16(x) (x)
 | |
| #define const_float32(x) (x)
 | |
| #define const_float64(x) (x)
 | |
| #endif
 | |
| #ifdef FLOATX80
 | |
| typedef struct {
 | |
|     uint64_t low;
 | |
|     uint16_t high;
 | |
| } floatx80;
 | |
| #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
 | |
| #endif
 | |
| #ifdef FLOAT128
 | |
| typedef struct {
 | |
| #ifdef HOST_WORDS_BIGENDIAN
 | |
|     uint64_t high, low;
 | |
| #else
 | |
|     uint64_t low, high;
 | |
| #endif
 | |
| } float128;
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE floating-point underflow tininess-detection mode.
 | |
| *----------------------------------------------------------------------------*/
 | |
| enum {
 | |
|     float_tininess_after_rounding  = 0,
 | |
|     float_tininess_before_rounding = 1
 | |
| };
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE floating-point rounding mode.
 | |
| *----------------------------------------------------------------------------*/
 | |
| enum {
 | |
|     float_round_nearest_even = 0,
 | |
|     float_round_down         = 1,
 | |
|     float_round_up           = 2,
 | |
|     float_round_to_zero      = 3
 | |
| };
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE floating-point exception flags.
 | |
| *----------------------------------------------------------------------------*/
 | |
| enum {
 | |
|     float_flag_invalid   =  1,
 | |
|     float_flag_divbyzero =  4,
 | |
|     float_flag_overflow  =  8,
 | |
|     float_flag_underflow = 16,
 | |
|     float_flag_inexact   = 32,
 | |
|     float_flag_input_denormal = 64,
 | |
|     float_flag_output_denormal = 128
 | |
| };
 | |
| 
 | |
| typedef struct float_status {
 | |
|     signed char float_detect_tininess;
 | |
|     signed char float_rounding_mode;
 | |
|     signed char float_exception_flags;
 | |
| #ifdef FLOATX80
 | |
|     signed char floatx80_rounding_precision;
 | |
| #endif
 | |
|     /* should denormalised results go to zero and set the inexact flag? */
 | |
|     flag flush_to_zero;
 | |
|     /* should denormalised inputs go to zero and set the input_denormal flag? */
 | |
|     flag flush_inputs_to_zero;
 | |
|     flag default_nan_mode;
 | |
| } float_status;
 | |
| 
 | |
| void set_float_rounding_mode(int val STATUS_PARAM);
 | |
| void set_float_exception_flags(int val STATUS_PARAM);
 | |
| INLINE void set_float_detect_tininess(int val STATUS_PARAM)
 | |
| {
 | |
|     STATUS(float_detect_tininess) = val;
 | |
| }
 | |
| INLINE void set_flush_to_zero(flag val STATUS_PARAM)
 | |
| {
 | |
|     STATUS(flush_to_zero) = val;
 | |
| }
 | |
| INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
 | |
| {
 | |
|     STATUS(flush_inputs_to_zero) = val;
 | |
| }
 | |
| INLINE void set_default_nan_mode(flag val STATUS_PARAM)
 | |
| {
 | |
|     STATUS(default_nan_mode) = val;
 | |
| }
 | |
| INLINE int get_float_exception_flags(float_status *status)
 | |
| {
 | |
|     return STATUS(float_exception_flags);
 | |
| }
 | |
| #ifdef FLOATX80
 | |
| void set_floatx80_rounding_precision(int val STATUS_PARAM);
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Routine to raise any or all of the software IEC/IEEE floating-point
 | |
| | exception flags.
 | |
| *----------------------------------------------------------------------------*/
 | |
| void float_raise( int8 flags STATUS_PARAM);
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE integer-to-floating-point conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float32 int32_to_float32( int32 STATUS_PARAM );
 | |
| float64 int32_to_float64( int32 STATUS_PARAM );
 | |
| float32 uint32_to_float32( unsigned int STATUS_PARAM );
 | |
| float64 uint32_to_float64( unsigned int STATUS_PARAM );
 | |
| #ifdef FLOATX80
 | |
| floatx80 int32_to_floatx80( int32 STATUS_PARAM );
 | |
| #endif
 | |
| #ifdef FLOAT128
 | |
| float128 int32_to_float128( int32 STATUS_PARAM );
 | |
| #endif
 | |
| float32 int64_to_float32( int64 STATUS_PARAM );
 | |
| float32 uint64_to_float32( uint64 STATUS_PARAM );
 | |
| float64 int64_to_float64( int64 STATUS_PARAM );
 | |
| float64 uint64_to_float64( uint64 STATUS_PARAM );
 | |
| #ifdef FLOATX80
 | |
| floatx80 int64_to_floatx80( int64 STATUS_PARAM );
 | |
| #endif
 | |
| #ifdef FLOAT128
 | |
| float128 int64_to_float128( int64 STATUS_PARAM );
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software half-precision conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float16 float32_to_float16( float32, flag STATUS_PARAM );
 | |
| float32 float16_to_float32( float16, flag STATUS_PARAM );
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software half-precision operations.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int float16_is_quiet_nan( float16 );
 | |
| int float16_is_signaling_nan( float16 );
 | |
| float16 float16_maybe_silence_nan( float16 );
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | The pattern for a default generated half-precision NaN.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #if defined(TARGET_ARM)
 | |
| #define float16_default_nan make_float16(0x7E00)
 | |
| #elif SNAN_BIT_IS_ONE
 | |
| #define float16_default_nan make_float16(0x7DFF)
 | |
| #else
 | |
| #define float16_default_nan make_float16(0xFE00)
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE single-precision conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
 | |
| unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
 | |
| int32 float32_to_int32( float32 STATUS_PARAM );
 | |
| int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
 | |
| uint32 float32_to_uint32( float32 STATUS_PARAM );
 | |
| uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
 | |
| int64 float32_to_int64( float32 STATUS_PARAM );
 | |
| int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
 | |
| float64 float32_to_float64( float32 STATUS_PARAM );
 | |
| #ifdef FLOATX80
 | |
| floatx80 float32_to_floatx80( float32 STATUS_PARAM );
 | |
| #endif
 | |
| #ifdef FLOAT128
 | |
| float128 float32_to_float128( float32 STATUS_PARAM );
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE single-precision operations.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float32 float32_round_to_int( float32 STATUS_PARAM );
 | |
| float32 float32_add( float32, float32 STATUS_PARAM );
 | |
| float32 float32_sub( float32, float32 STATUS_PARAM );
 | |
| float32 float32_mul( float32, float32 STATUS_PARAM );
 | |
| float32 float32_div( float32, float32 STATUS_PARAM );
 | |
| float32 float32_rem( float32, float32 STATUS_PARAM );
 | |
| float32 float32_sqrt( float32 STATUS_PARAM );
 | |
| float32 float32_exp2( float32 STATUS_PARAM );
 | |
| float32 float32_log2( float32 STATUS_PARAM );
 | |
| int float32_eq( float32, float32 STATUS_PARAM );
 | |
| int float32_le( float32, float32 STATUS_PARAM );
 | |
| int float32_lt( float32, float32 STATUS_PARAM );
 | |
| int float32_unordered( float32, float32 STATUS_PARAM );
 | |
| int float32_eq_quiet( float32, float32 STATUS_PARAM );
 | |
| int float32_le_quiet( float32, float32 STATUS_PARAM );
 | |
| int float32_lt_quiet( float32, float32 STATUS_PARAM );
 | |
| int float32_unordered_quiet( float32, float32 STATUS_PARAM );
 | |
| int float32_compare( float32, float32 STATUS_PARAM );
 | |
| int float32_compare_quiet( float32, float32 STATUS_PARAM );
 | |
| float32 float32_min(float32, float32 STATUS_PARAM);
 | |
| float32 float32_max(float32, float32 STATUS_PARAM);
 | |
| int float32_is_quiet_nan( float32 );
 | |
| int float32_is_signaling_nan( float32 );
 | |
| float32 float32_maybe_silence_nan( float32 );
 | |
| float32 float32_scalbn( float32, int STATUS_PARAM );
 | |
| 
 | |
| INLINE float32 float32_abs(float32 a)
 | |
| {
 | |
|     /* Note that abs does *not* handle NaN specially, nor does
 | |
|      * it flush denormal inputs to zero.
 | |
|      */
 | |
|     return make_float32(float32_val(a) & 0x7fffffff);
 | |
| }
 | |
| 
 | |
| INLINE float32 float32_chs(float32 a)
 | |
| {
 | |
|     /* Note that chs does *not* handle NaN specially, nor does
 | |
|      * it flush denormal inputs to zero.
 | |
|      */
 | |
|     return make_float32(float32_val(a) ^ 0x80000000);
 | |
| }
 | |
| 
 | |
| INLINE int float32_is_infinity(float32 a)
 | |
| {
 | |
|     return (float32_val(a) & 0x7fffffff) == 0x7f800000;
 | |
| }
 | |
| 
 | |
| INLINE int float32_is_neg(float32 a)
 | |
| {
 | |
|     return float32_val(a) >> 31;
 | |
| }
 | |
| 
 | |
| INLINE int float32_is_zero(float32 a)
 | |
| {
 | |
|     return (float32_val(a) & 0x7fffffff) == 0;
 | |
| }
 | |
| 
 | |
| INLINE int float32_is_any_nan(float32 a)
 | |
| {
 | |
|     return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
 | |
| }
 | |
| 
 | |
| INLINE int float32_is_zero_or_denormal(float32 a)
 | |
| {
 | |
|     return (float32_val(a) & 0x7f800000) == 0;
 | |
| }
 | |
| 
 | |
| INLINE float32 float32_set_sign(float32 a, int sign)
 | |
| {
 | |
|     return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
 | |
| }
 | |
| 
 | |
| #define float32_zero make_float32(0)
 | |
| #define float32_one make_float32(0x3f800000)
 | |
| #define float32_ln2 make_float32(0x3f317218)
 | |
| #define float32_pi make_float32(0x40490fdb)
 | |
| #define float32_half make_float32(0x3f000000)
 | |
| #define float32_infinity make_float32(0x7f800000)
 | |
| 
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | The pattern for a default generated single-precision NaN.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #if defined(TARGET_SPARC)
 | |
| #define float32_default_nan make_float32(0x7FFFFFFF)
 | |
| #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
 | |
| #define float32_default_nan make_float32(0x7FC00000)
 | |
| #elif SNAN_BIT_IS_ONE
 | |
| #define float32_default_nan make_float32(0x7FBFFFFF)
 | |
| #else
 | |
| #define float32_default_nan make_float32(0xFFC00000)
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE double-precision conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
 | |
| unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
 | |
| int32 float64_to_int32( float64 STATUS_PARAM );
 | |
| int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
 | |
| uint32 float64_to_uint32( float64 STATUS_PARAM );
 | |
| uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
 | |
| int64 float64_to_int64( float64 STATUS_PARAM );
 | |
| int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
 | |
| uint64 float64_to_uint64 (float64 a STATUS_PARAM);
 | |
| uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
 | |
| float32 float64_to_float32( float64 STATUS_PARAM );
 | |
| #ifdef FLOATX80
 | |
| floatx80 float64_to_floatx80( float64 STATUS_PARAM );
 | |
| #endif
 | |
| #ifdef FLOAT128
 | |
| float128 float64_to_float128( float64 STATUS_PARAM );
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE double-precision operations.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float64 float64_round_to_int( float64 STATUS_PARAM );
 | |
| float64 float64_trunc_to_int( float64 STATUS_PARAM );
 | |
| float64 float64_add( float64, float64 STATUS_PARAM );
 | |
| float64 float64_sub( float64, float64 STATUS_PARAM );
 | |
| float64 float64_mul( float64, float64 STATUS_PARAM );
 | |
| float64 float64_div( float64, float64 STATUS_PARAM );
 | |
| float64 float64_rem( float64, float64 STATUS_PARAM );
 | |
| float64 float64_sqrt( float64 STATUS_PARAM );
 | |
| float64 float64_log2( float64 STATUS_PARAM );
 | |
| int float64_eq( float64, float64 STATUS_PARAM );
 | |
| int float64_le( float64, float64 STATUS_PARAM );
 | |
| int float64_lt( float64, float64 STATUS_PARAM );
 | |
| int float64_unordered( float64, float64 STATUS_PARAM );
 | |
| int float64_eq_quiet( float64, float64 STATUS_PARAM );
 | |
| int float64_le_quiet( float64, float64 STATUS_PARAM );
 | |
| int float64_lt_quiet( float64, float64 STATUS_PARAM );
 | |
| int float64_unordered_quiet( float64, float64 STATUS_PARAM );
 | |
| int float64_compare( float64, float64 STATUS_PARAM );
 | |
| int float64_compare_quiet( float64, float64 STATUS_PARAM );
 | |
| float64 float64_min(float64, float64 STATUS_PARAM);
 | |
| float64 float64_max(float64, float64 STATUS_PARAM);
 | |
| int float64_is_quiet_nan( float64 a );
 | |
| int float64_is_signaling_nan( float64 );
 | |
| float64 float64_maybe_silence_nan( float64 );
 | |
| float64 float64_scalbn( float64, int STATUS_PARAM );
 | |
| 
 | |
| INLINE float64 float64_abs(float64 a)
 | |
| {
 | |
|     /* Note that abs does *not* handle NaN specially, nor does
 | |
|      * it flush denormal inputs to zero.
 | |
|      */
 | |
|     return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
 | |
| }
 | |
| 
 | |
| INLINE float64 float64_chs(float64 a)
 | |
| {
 | |
|     /* Note that chs does *not* handle NaN specially, nor does
 | |
|      * it flush denormal inputs to zero.
 | |
|      */
 | |
|     return make_float64(float64_val(a) ^ 0x8000000000000000LL);
 | |
| }
 | |
| 
 | |
| INLINE int float64_is_infinity(float64 a)
 | |
| {
 | |
|     return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
 | |
| }
 | |
| 
 | |
| INLINE int float64_is_neg(float64 a)
 | |
| {
 | |
|     return float64_val(a) >> 63;
 | |
| }
 | |
| 
 | |
| INLINE int float64_is_zero(float64 a)
 | |
| {
 | |
|     return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
 | |
| }
 | |
| 
 | |
| INLINE int float64_is_any_nan(float64 a)
 | |
| {
 | |
|     return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
 | |
| }
 | |
| 
 | |
| INLINE float64 float64_set_sign(float64 a, int sign)
 | |
| {
 | |
|     return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
 | |
|                         | ((int64_t)sign << 63));
 | |
| }
 | |
| 
 | |
| #define float64_zero make_float64(0)
 | |
| #define float64_one make_float64(0x3ff0000000000000LL)
 | |
| #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
 | |
| #define float64_pi make_float64(0x400921fb54442d18LL)
 | |
| #define float64_half make_float64(0x3fe0000000000000LL)
 | |
| #define float64_infinity make_float64(0x7ff0000000000000LL)
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | The pattern for a default generated double-precision NaN.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #if defined(TARGET_SPARC)
 | |
| #define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
 | |
| #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
 | |
| #define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
 | |
| #elif SNAN_BIT_IS_ONE
 | |
| #define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
 | |
| #else
 | |
| #define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE extended double-precision conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int32 floatx80_to_int32( floatx80 STATUS_PARAM );
 | |
| int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
 | |
| int64 floatx80_to_int64( floatx80 STATUS_PARAM );
 | |
| int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
 | |
| float32 floatx80_to_float32( floatx80 STATUS_PARAM );
 | |
| float64 floatx80_to_float64( floatx80 STATUS_PARAM );
 | |
| #ifdef FLOAT128
 | |
| float128 floatx80_to_float128( floatx80 STATUS_PARAM );
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE extended double-precision operations.
 | |
| *----------------------------------------------------------------------------*/
 | |
| floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
 | |
| floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
 | |
| floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
 | |
| floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
 | |
| floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
 | |
| floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
 | |
| floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
 | |
| int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
 | |
| int floatx80_le( floatx80, floatx80 STATUS_PARAM );
 | |
| int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
 | |
| int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
 | |
| int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
 | |
| int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
 | |
| int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
 | |
| int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
 | |
| int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
 | |
| int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
 | |
| int floatx80_is_quiet_nan( floatx80 );
 | |
| int floatx80_is_signaling_nan( floatx80 );
 | |
| floatx80 floatx80_maybe_silence_nan( floatx80 );
 | |
| floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
 | |
| 
 | |
| INLINE floatx80 floatx80_abs(floatx80 a)
 | |
| {
 | |
|     a.high &= 0x7fff;
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| INLINE floatx80 floatx80_chs(floatx80 a)
 | |
| {
 | |
|     a.high ^= 0x8000;
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| INLINE int floatx80_is_infinity(floatx80 a)
 | |
| {
 | |
|     return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
 | |
| }
 | |
| 
 | |
| INLINE int floatx80_is_neg(floatx80 a)
 | |
| {
 | |
|     return a.high >> 15;
 | |
| }
 | |
| 
 | |
| INLINE int floatx80_is_zero(floatx80 a)
 | |
| {
 | |
|     return (a.high & 0x7fff) == 0 && a.low == 0;
 | |
| }
 | |
| 
 | |
| INLINE int floatx80_is_any_nan(floatx80 a)
 | |
| {
 | |
|     return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
 | |
| }
 | |
| 
 | |
| #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
 | |
| #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
 | |
| #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
 | |
| #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
 | |
| #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
 | |
| #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | The pattern for a default generated extended double-precision NaN.  The
 | |
| | `high' and `low' values hold the most- and least-significant bits,
 | |
| | respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #if SNAN_BIT_IS_ONE
 | |
| #define floatx80_default_nan_high 0x7FFF
 | |
| #define floatx80_default_nan_low  LIT64( 0xBFFFFFFFFFFFFFFF )
 | |
| #else
 | |
| #define floatx80_default_nan_high 0xFFFF
 | |
| #define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE quadruple-precision conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int32 float128_to_int32( float128 STATUS_PARAM );
 | |
| int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
 | |
| int64 float128_to_int64( float128 STATUS_PARAM );
 | |
| int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
 | |
| float32 float128_to_float32( float128 STATUS_PARAM );
 | |
| float64 float128_to_float64( float128 STATUS_PARAM );
 | |
| #ifdef FLOATX80
 | |
| floatx80 float128_to_floatx80( float128 STATUS_PARAM );
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE quadruple-precision operations.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float128 float128_round_to_int( float128 STATUS_PARAM );
 | |
| float128 float128_add( float128, float128 STATUS_PARAM );
 | |
| float128 float128_sub( float128, float128 STATUS_PARAM );
 | |
| float128 float128_mul( float128, float128 STATUS_PARAM );
 | |
| float128 float128_div( float128, float128 STATUS_PARAM );
 | |
| float128 float128_rem( float128, float128 STATUS_PARAM );
 | |
| float128 float128_sqrt( float128 STATUS_PARAM );
 | |
| int float128_eq( float128, float128 STATUS_PARAM );
 | |
| int float128_le( float128, float128 STATUS_PARAM );
 | |
| int float128_lt( float128, float128 STATUS_PARAM );
 | |
| int float128_unordered( float128, float128 STATUS_PARAM );
 | |
| int float128_eq_quiet( float128, float128 STATUS_PARAM );
 | |
| int float128_le_quiet( float128, float128 STATUS_PARAM );
 | |
| int float128_lt_quiet( float128, float128 STATUS_PARAM );
 | |
| int float128_unordered_quiet( float128, float128 STATUS_PARAM );
 | |
| int float128_compare( float128, float128 STATUS_PARAM );
 | |
| int float128_compare_quiet( float128, float128 STATUS_PARAM );
 | |
| int float128_is_quiet_nan( float128 );
 | |
| int float128_is_signaling_nan( float128 );
 | |
| float128 float128_maybe_silence_nan( float128 );
 | |
| float128 float128_scalbn( float128, int STATUS_PARAM );
 | |
| 
 | |
| INLINE float128 float128_abs(float128 a)
 | |
| {
 | |
|     a.high &= 0x7fffffffffffffffLL;
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| INLINE float128 float128_chs(float128 a)
 | |
| {
 | |
|     a.high ^= 0x8000000000000000LL;
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| INLINE int float128_is_infinity(float128 a)
 | |
| {
 | |
|     return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
 | |
| }
 | |
| 
 | |
| INLINE int float128_is_neg(float128 a)
 | |
| {
 | |
|     return a.high >> 63;
 | |
| }
 | |
| 
 | |
| INLINE int float128_is_zero(float128 a)
 | |
| {
 | |
|     return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
 | |
| }
 | |
| 
 | |
| INLINE int float128_is_any_nan(float128 a)
 | |
| {
 | |
|     return ((a.high >> 48) & 0x7fff) == 0x7fff &&
 | |
|         ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | The pattern for a default generated quadruple-precision NaN.  The `high' and
 | |
| | `low' values hold the most- and least-significant bits, respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #if SNAN_BIT_IS_ONE
 | |
| #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
 | |
| #define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
 | |
| #else
 | |
| #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
 | |
| #define float128_default_nan_low  LIT64( 0x0000000000000000 )
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #else /* CONFIG_SOFTFLOAT */
 | |
| 
 | |
| #include "softfloat-native.h"
 | |
| 
 | |
| #endif /* !CONFIG_SOFTFLOAT */
 | |
| 
 | |
| #endif /* !SOFTFLOAT_H */
 |