4007 lines
		
	
	
		
			127 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			4007 lines
		
	
	
		
			127 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 | |
|  *
 | |
|  * Copyright (c) 2004-2007 Fabrice Bellard
 | |
|  * Copyright (c) 2007 Jocelyn Mayer
 | |
|  * Copyright (c) 2010 David Gibson, IBM Corporation.
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qapi/visitor.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "sysemu/numa.h"
 | |
| #include "hw/hw.h"
 | |
| #include "qemu/log.h"
 | |
| #include "hw/fw-path-provider.h"
 | |
| #include "elf.h"
 | |
| #include "net/net.h"
 | |
| #include "sysemu/device_tree.h"
 | |
| #include "sysemu/block-backend.h"
 | |
| #include "sysemu/cpus.h"
 | |
| #include "sysemu/hw_accel.h"
 | |
| #include "kvm_ppc.h"
 | |
| #include "migration/misc.h"
 | |
| #include "migration/global_state.h"
 | |
| #include "migration/register.h"
 | |
| #include "mmu-hash64.h"
 | |
| #include "mmu-book3s-v3.h"
 | |
| #include "qom/cpu.h"
 | |
| 
 | |
| #include "hw/boards.h"
 | |
| #include "hw/ppc/ppc.h"
 | |
| #include "hw/loader.h"
 | |
| 
 | |
| #include "hw/ppc/fdt.h"
 | |
| #include "hw/ppc/spapr.h"
 | |
| #include "hw/ppc/spapr_vio.h"
 | |
| #include "hw/pci-host/spapr.h"
 | |
| #include "hw/ppc/xics.h"
 | |
| #include "hw/pci/msi.h"
 | |
| 
 | |
| #include "hw/pci/pci.h"
 | |
| #include "hw/scsi/scsi.h"
 | |
| #include "hw/virtio/virtio-scsi.h"
 | |
| #include "hw/virtio/vhost-scsi-common.h"
 | |
| 
 | |
| #include "exec/address-spaces.h"
 | |
| #include "hw/usb.h"
 | |
| #include "qemu/config-file.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "trace.h"
 | |
| #include "hw/nmi.h"
 | |
| #include "hw/intc/intc.h"
 | |
| 
 | |
| #include "hw/compat.h"
 | |
| #include "qemu/cutils.h"
 | |
| #include "hw/ppc/spapr_cpu_core.h"
 | |
| #include "qmp-commands.h"
 | |
| 
 | |
| #include <libfdt.h>
 | |
| 
 | |
| /* SLOF memory layout:
 | |
|  *
 | |
|  * SLOF raw image loaded at 0, copies its romfs right below the flat
 | |
|  * device-tree, then position SLOF itself 31M below that
 | |
|  *
 | |
|  * So we set FW_OVERHEAD to 40MB which should account for all of that
 | |
|  * and more
 | |
|  *
 | |
|  * We load our kernel at 4M, leaving space for SLOF initial image
 | |
|  */
 | |
| #define FDT_MAX_SIZE            0x100000
 | |
| #define RTAS_MAX_SIZE           0x10000
 | |
| #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
 | |
| #define FW_MAX_SIZE             0x400000
 | |
| #define FW_FILE_NAME            "slof.bin"
 | |
| #define FW_OVERHEAD             0x2800000
 | |
| #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
 | |
| 
 | |
| #define MIN_RMA_SLOF            128UL
 | |
| 
 | |
| #define PHANDLE_XICP            0x00001111
 | |
| 
 | |
| static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
 | |
|                                   const char *type_ics,
 | |
|                                   int nr_irqs, Error **errp)
 | |
| {
 | |
|     Error *local_err = NULL;
 | |
|     Object *obj;
 | |
| 
 | |
|     obj = object_new(type_ics);
 | |
|     object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
 | |
|     object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
 | |
|                                    &error_abort);
 | |
|     object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
 | |
|     if (local_err) {
 | |
|         goto error;
 | |
|     }
 | |
|     object_property_set_bool(obj, true, "realized", &local_err);
 | |
|     if (local_err) {
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     return ICS_SIMPLE(obj);
 | |
| 
 | |
| error:
 | |
|     error_propagate(errp, local_err);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
 | |
| {
 | |
|     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
 | |
|      * and newer QEMUs don't even have them. In both cases, we don't want
 | |
|      * to send anything on the wire.
 | |
|      */
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
 | |
|     .name = "icp/server",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = pre_2_10_vmstate_dummy_icp_needed,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UNUSED(4), /* uint32_t xirr */
 | |
|         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
 | |
|         VMSTATE_UNUSED(1), /* uint8_t mfrr */
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| static void pre_2_10_vmstate_register_dummy_icp(int i)
 | |
| {
 | |
|     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
 | |
|                      (void *)(uintptr_t) i);
 | |
| }
 | |
| 
 | |
| static void pre_2_10_vmstate_unregister_dummy_icp(int i)
 | |
| {
 | |
|     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
 | |
|                        (void *)(uintptr_t) i);
 | |
| }
 | |
| 
 | |
| static inline int xics_max_server_number(void)
 | |
| {
 | |
|     return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
 | |
| }
 | |
| 
 | |
| static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
 | |
|     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         if (machine_kernel_irqchip_allowed(machine) &&
 | |
|             !xics_kvm_init(spapr, errp)) {
 | |
|             spapr->icp_type = TYPE_KVM_ICP;
 | |
|             spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
 | |
|         }
 | |
|         if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
 | |
|             error_prepend(errp, "kernel_irqchip requested but unavailable: ");
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!spapr->ics) {
 | |
|         xics_spapr_init(spapr);
 | |
|         spapr->icp_type = TYPE_ICP;
 | |
|         spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
 | |
|         if (!spapr->ics) {
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (smc->pre_2_10_has_unused_icps) {
 | |
|         int i;
 | |
| 
 | |
|         for (i = 0; i < xics_max_server_number(); i++) {
 | |
|             /* Dummy entries get deregistered when real ICPState objects
 | |
|              * are registered during CPU core hotplug.
 | |
|              */
 | |
|             pre_2_10_vmstate_register_dummy_icp(i);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 | |
|                                   int smt_threads)
 | |
| {
 | |
|     int i, ret = 0;
 | |
|     uint32_t servers_prop[smt_threads];
 | |
|     uint32_t gservers_prop[smt_threads * 2];
 | |
|     int index = spapr_vcpu_id(cpu);
 | |
| 
 | |
|     if (cpu->compat_pvr) {
 | |
|         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
 | |
|         if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Build interrupt servers and gservers properties */
 | |
|     for (i = 0; i < smt_threads; i++) {
 | |
|         servers_prop[i] = cpu_to_be32(index + i);
 | |
|         /* Hack, direct the group queues back to cpu 0 */
 | |
|         gservers_prop[i*2] = cpu_to_be32(index + i);
 | |
|         gservers_prop[i*2 + 1] = 0;
 | |
|     }
 | |
|     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 | |
|                       servers_prop, sizeof(servers_prop));
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 | |
|                       gservers_prop, sizeof(gservers_prop));
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
 | |
| {
 | |
|     int index = spapr_vcpu_id(cpu);
 | |
|     uint32_t associativity[] = {cpu_to_be32(0x5),
 | |
|                                 cpu_to_be32(0x0),
 | |
|                                 cpu_to_be32(0x0),
 | |
|                                 cpu_to_be32(0x0),
 | |
|                                 cpu_to_be32(cpu->node_id),
 | |
|                                 cpu_to_be32(index)};
 | |
| 
 | |
|     /* Advertise NUMA via ibm,associativity */
 | |
|     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 | |
|                           sizeof(associativity));
 | |
| }
 | |
| 
 | |
| /* Populate the "ibm,pa-features" property */
 | |
| static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
 | |
|                                       bool legacy_guest)
 | |
| {
 | |
|     uint8_t pa_features_206[] = { 6, 0,
 | |
|         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 | |
|     uint8_t pa_features_207[] = { 24, 0,
 | |
|         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 | |
|         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
|         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 | |
|         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 | |
|     uint8_t pa_features_300[] = { 66, 0,
 | |
|         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
 | |
|         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
 | |
|         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
 | |
|         /* 6: DS207 */
 | |
|         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
 | |
|         /* 16: Vector */
 | |
|         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
 | |
|         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
 | |
|         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
 | |
|         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
 | |
|         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
 | |
|         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
 | |
|         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
 | |
|         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
 | |
|         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
 | |
|         /* 42: PM, 44: PC RA, 46: SC vec'd */
 | |
|         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
 | |
|         /* 48: SIMD, 50: QP BFP, 52: String */
 | |
|         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
 | |
|         /* 54: DecFP, 56: DecI, 58: SHA */
 | |
|         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
 | |
|         /* 60: NM atomic, 62: RNG */
 | |
|         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
 | |
|     };
 | |
|     uint8_t *pa_features;
 | |
|     size_t pa_size;
 | |
| 
 | |
|     switch (POWERPC_MMU_VER(env->mmu_model)) {
 | |
|     case POWERPC_MMU_VER_2_06:
 | |
|         pa_features = pa_features_206;
 | |
|         pa_size = sizeof(pa_features_206);
 | |
|         break;
 | |
|     case POWERPC_MMU_VER_2_07:
 | |
|         pa_features = pa_features_207;
 | |
|         pa_size = sizeof(pa_features_207);
 | |
|         break;
 | |
|     case POWERPC_MMU_VER_3_00:
 | |
|         pa_features = pa_features_300;
 | |
|         pa_size = sizeof(pa_features_300);
 | |
|         break;
 | |
|     default:
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (env->ci_large_pages) {
 | |
|         /*
 | |
|          * Note: we keep CI large pages off by default because a 64K capable
 | |
|          * guest provisioned with large pages might otherwise try to map a qemu
 | |
|          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 | |
|          * even if that qemu runs on a 4k host.
 | |
|          * We dd this bit back here if we are confident this is not an issue
 | |
|          */
 | |
|         pa_features[3] |= 0x20;
 | |
|     }
 | |
|     if (kvmppc_has_cap_htm() && pa_size > 24) {
 | |
|         pa_features[24] |= 0x80;    /* Transactional memory support */
 | |
|     }
 | |
|     if (legacy_guest && pa_size > 40) {
 | |
|         /* Workaround for broken kernels that attempt (guest) radix
 | |
|          * mode when they can't handle it, if they see the radix bit set
 | |
|          * in pa-features. So hide it from them. */
 | |
|         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
 | |
|     }
 | |
| 
 | |
|     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 | |
| }
 | |
| 
 | |
| static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
 | |
| {
 | |
|     int ret = 0, offset, cpus_offset;
 | |
|     CPUState *cs;
 | |
|     char cpu_model[32];
 | |
|     int smt = kvmppc_smt_threads();
 | |
|     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 | |
| 
 | |
|     CPU_FOREACH(cs) {
 | |
|         PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|         CPUPPCState *env = &cpu->env;
 | |
|         DeviceClass *dc = DEVICE_GET_CLASS(cs);
 | |
|         int index = spapr_vcpu_id(cpu);
 | |
|         int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
 | |
| 
 | |
|         if ((index % smt) != 0) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
 | |
| 
 | |
|         cpus_offset = fdt_path_offset(fdt, "/cpus");
 | |
|         if (cpus_offset < 0) {
 | |
|             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
 | |
|                                           "cpus");
 | |
|             if (cpus_offset < 0) {
 | |
|                 return cpus_offset;
 | |
|             }
 | |
|         }
 | |
|         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
 | |
|         if (offset < 0) {
 | |
|             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
 | |
|             if (offset < 0) {
 | |
|                 return offset;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
 | |
|                           pft_size_prop, sizeof(pft_size_prop));
 | |
|         if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         if (nb_numa_nodes > 1) {
 | |
|             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
 | |
|             if (ret < 0) {
 | |
|                 return ret;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
 | |
|         if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         spapr_populate_pa_features(env, fdt, offset,
 | |
|                                          spapr->cas_legacy_guest_workaround);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static hwaddr spapr_node0_size(MachineState *machine)
 | |
| {
 | |
|     if (nb_numa_nodes) {
 | |
|         int i;
 | |
|         for (i = 0; i < nb_numa_nodes; ++i) {
 | |
|             if (numa_info[i].node_mem) {
 | |
|                 return MIN(pow2floor(numa_info[i].node_mem),
 | |
|                            machine->ram_size);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return machine->ram_size;
 | |
| }
 | |
| 
 | |
| static void add_str(GString *s, const gchar *s1)
 | |
| {
 | |
|     g_string_append_len(s, s1, strlen(s1) + 1);
 | |
| }
 | |
| 
 | |
| static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
 | |
|                                        hwaddr size)
 | |
| {
 | |
|     uint32_t associativity[] = {
 | |
|         cpu_to_be32(0x4), /* length */
 | |
|         cpu_to_be32(0x0), cpu_to_be32(0x0),
 | |
|         cpu_to_be32(0x0), cpu_to_be32(nodeid)
 | |
|     };
 | |
|     char mem_name[32];
 | |
|     uint64_t mem_reg_property[2];
 | |
|     int off;
 | |
| 
 | |
|     mem_reg_property[0] = cpu_to_be64(start);
 | |
|     mem_reg_property[1] = cpu_to_be64(size);
 | |
| 
 | |
|     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
 | |
|     off = fdt_add_subnode(fdt, 0, mem_name);
 | |
|     _FDT(off);
 | |
|     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 | |
|     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 | |
|                       sizeof(mem_reg_property))));
 | |
|     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 | |
|                       sizeof(associativity))));
 | |
|     return off;
 | |
| }
 | |
| 
 | |
| static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     hwaddr mem_start, node_size;
 | |
|     int i, nb_nodes = nb_numa_nodes;
 | |
|     NodeInfo *nodes = numa_info;
 | |
|     NodeInfo ramnode;
 | |
| 
 | |
|     /* No NUMA nodes, assume there is just one node with whole RAM */
 | |
|     if (!nb_numa_nodes) {
 | |
|         nb_nodes = 1;
 | |
|         ramnode.node_mem = machine->ram_size;
 | |
|         nodes = &ramnode;
 | |
|     }
 | |
| 
 | |
|     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 | |
|         if (!nodes[i].node_mem) {
 | |
|             continue;
 | |
|         }
 | |
|         if (mem_start >= machine->ram_size) {
 | |
|             node_size = 0;
 | |
|         } else {
 | |
|             node_size = nodes[i].node_mem;
 | |
|             if (node_size > machine->ram_size - mem_start) {
 | |
|                 node_size = machine->ram_size - mem_start;
 | |
|             }
 | |
|         }
 | |
|         if (!mem_start) {
 | |
|             /* ppc_spapr_init() checks for rma_size <= node0_size already */
 | |
|             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
 | |
|             mem_start += spapr->rma_size;
 | |
|             node_size -= spapr->rma_size;
 | |
|         }
 | |
|         for ( ; node_size; ) {
 | |
|             hwaddr sizetmp = pow2floor(node_size);
 | |
| 
 | |
|             /* mem_start != 0 here */
 | |
|             if (ctzl(mem_start) < ctzl(sizetmp)) {
 | |
|                 sizetmp = 1ULL << ctzl(mem_start);
 | |
|             }
 | |
| 
 | |
|             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
 | |
|             node_size -= sizetmp;
 | |
|             mem_start += sizetmp;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
 | |
|                                   sPAPRMachineState *spapr)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 | |
|     int index = spapr_vcpu_id(cpu);
 | |
|     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 | |
|                        0xffffffff, 0xffffffff};
 | |
|     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 | |
|         : SPAPR_TIMEBASE_FREQ;
 | |
|     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 | |
|     uint32_t page_sizes_prop[64];
 | |
|     size_t page_sizes_prop_size;
 | |
|     uint32_t vcpus_per_socket = smp_threads * smp_cores;
 | |
|     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 | |
|     int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
 | |
|     sPAPRDRConnector *drc;
 | |
|     int drc_index;
 | |
|     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
 | |
|     int i;
 | |
| 
 | |
|     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
 | |
|     if (drc) {
 | |
|         drc_index = spapr_drc_index(drc);
 | |
|         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 | |
|     }
 | |
| 
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 | |
|     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 | |
| 
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 | |
|                            env->dcache_line_size)));
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 | |
|                            env->dcache_line_size)));
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 | |
|                            env->icache_line_size)));
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 | |
|                            env->icache_line_size)));
 | |
| 
 | |
|     if (pcc->l1_dcache_size) {
 | |
|         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 | |
|                                pcc->l1_dcache_size)));
 | |
|     } else {
 | |
|         warn_report("Unknown L1 dcache size for cpu");
 | |
|     }
 | |
|     if (pcc->l1_icache_size) {
 | |
|         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 | |
|                                pcc->l1_icache_size)));
 | |
|     } else {
 | |
|         warn_report("Unknown L1 icache size for cpu");
 | |
|     }
 | |
| 
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
 | |
|     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 | |
|     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 | |
| 
 | |
|     if (env->spr_cb[SPR_PURR].oea_read) {
 | |
|         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
 | |
|     }
 | |
| 
 | |
|     if (env->mmu_model & POWERPC_MMU_1TSEG) {
 | |
|         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 | |
|                           segs, sizeof(segs))));
 | |
|     }
 | |
| 
 | |
|     /* Advertise VMX/VSX (vector extensions) if available
 | |
|      *   0 / no property == no vector extensions
 | |
|      *   1               == VMX / Altivec available
 | |
|      *   2               == VSX available */
 | |
|     if (env->insns_flags & PPC_ALTIVEC) {
 | |
|         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
 | |
| 
 | |
|         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
 | |
|     }
 | |
| 
 | |
|     /* Advertise DFP (Decimal Floating Point) if available
 | |
|      *   0 / no property == no DFP
 | |
|      *   1               == DFP available */
 | |
|     if (env->insns_flags2 & PPC2_DFP) {
 | |
|         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 | |
|     }
 | |
| 
 | |
|     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
 | |
|                                                   sizeof(page_sizes_prop));
 | |
|     if (page_sizes_prop_size) {
 | |
|         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 | |
|                           page_sizes_prop, page_sizes_prop_size)));
 | |
|     }
 | |
| 
 | |
|     spapr_populate_pa_features(env, fdt, offset, false);
 | |
| 
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 | |
|                            cs->cpu_index / vcpus_per_socket)));
 | |
| 
 | |
|     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 | |
|                       pft_size_prop, sizeof(pft_size_prop))));
 | |
| 
 | |
|     if (nb_numa_nodes > 1) {
 | |
|         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
 | |
|     }
 | |
| 
 | |
|     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
 | |
| 
 | |
|     if (pcc->radix_page_info) {
 | |
|         for (i = 0; i < pcc->radix_page_info->count; i++) {
 | |
|             radix_AP_encodings[i] =
 | |
|                 cpu_to_be32(pcc->radix_page_info->entries[i]);
 | |
|         }
 | |
|         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
 | |
|                           radix_AP_encodings,
 | |
|                           pcc->radix_page_info->count *
 | |
|                           sizeof(radix_AP_encodings[0]))));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
 | |
| {
 | |
|     CPUState *cs;
 | |
|     int cpus_offset;
 | |
|     char *nodename;
 | |
|     int smt = kvmppc_smt_threads();
 | |
| 
 | |
|     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 | |
|     _FDT(cpus_offset);
 | |
|     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 | |
|     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 | |
| 
 | |
|     /*
 | |
|      * We walk the CPUs in reverse order to ensure that CPU DT nodes
 | |
|      * created by fdt_add_subnode() end up in the right order in FDT
 | |
|      * for the guest kernel the enumerate the CPUs correctly.
 | |
|      */
 | |
|     CPU_FOREACH_REVERSE(cs) {
 | |
|         PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|         int index = spapr_vcpu_id(cpu);
 | |
|         DeviceClass *dc = DEVICE_GET_CLASS(cs);
 | |
|         int offset;
 | |
| 
 | |
|         if ((index % smt) != 0) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 | |
|         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 | |
|         g_free(nodename);
 | |
|         _FDT(offset);
 | |
|         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adds ibm,dynamic-reconfiguration-memory node.
 | |
|  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 | |
|  * of this device tree node.
 | |
|  */
 | |
| static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     int ret, i, offset;
 | |
|     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
 | |
|     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
 | |
|     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
 | |
|                        memory_region_size(&spapr->hotplug_memory.mr)) /
 | |
|                        lmb_size;
 | |
|     uint32_t *int_buf, *cur_index, buf_len;
 | |
|     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 | |
| 
 | |
|     /*
 | |
|      * Don't create the node if there is no hotpluggable memory
 | |
|      */
 | |
|     if (machine->ram_size == machine->maxram_size) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Allocate enough buffer size to fit in ibm,dynamic-memory
 | |
|      * or ibm,associativity-lookup-arrays
 | |
|      */
 | |
|     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
 | |
|               * sizeof(uint32_t);
 | |
|     cur_index = int_buf = g_malloc0(buf_len);
 | |
| 
 | |
|     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 | |
| 
 | |
|     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 | |
|                     sizeof(prop_lmb_size));
 | |
|     if (ret < 0) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 | |
|     if (ret < 0) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 | |
|     if (ret < 0) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /* ibm,dynamic-memory */
 | |
|     int_buf[0] = cpu_to_be32(nr_lmbs);
 | |
|     cur_index++;
 | |
|     for (i = 0; i < nr_lmbs; i++) {
 | |
|         uint64_t addr = i * lmb_size;
 | |
|         uint32_t *dynamic_memory = cur_index;
 | |
| 
 | |
|         if (i >= hotplug_lmb_start) {
 | |
|             sPAPRDRConnector *drc;
 | |
| 
 | |
|             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
 | |
|             g_assert(drc);
 | |
| 
 | |
|             dynamic_memory[0] = cpu_to_be32(addr >> 32);
 | |
|             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 | |
|             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
 | |
|             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 | |
|             dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
 | |
|             if (memory_region_present(get_system_memory(), addr)) {
 | |
|                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 | |
|             } else {
 | |
|                 dynamic_memory[5] = cpu_to_be32(0);
 | |
|             }
 | |
|         } else {
 | |
|             /*
 | |
|              * LMB information for RMA, boot time RAM and gap b/n RAM and
 | |
|              * hotplug memory region -- all these are marked as reserved
 | |
|              * and as having no valid DRC.
 | |
|              */
 | |
|             dynamic_memory[0] = cpu_to_be32(addr >> 32);
 | |
|             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 | |
|             dynamic_memory[2] = cpu_to_be32(0);
 | |
|             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 | |
|             dynamic_memory[4] = cpu_to_be32(-1);
 | |
|             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 | |
|                                             SPAPR_LMB_FLAGS_DRC_INVALID);
 | |
|         }
 | |
| 
 | |
|         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 | |
|     }
 | |
|     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 | |
|     if (ret < 0) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /* ibm,associativity-lookup-arrays */
 | |
|     cur_index = int_buf;
 | |
|     int_buf[0] = cpu_to_be32(nr_nodes);
 | |
|     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
 | |
|     cur_index += 2;
 | |
|     for (i = 0; i < nr_nodes; i++) {
 | |
|         uint32_t associativity[] = {
 | |
|             cpu_to_be32(0x0),
 | |
|             cpu_to_be32(0x0),
 | |
|             cpu_to_be32(0x0),
 | |
|             cpu_to_be32(i)
 | |
|         };
 | |
|         memcpy(cur_index, associativity, sizeof(associativity));
 | |
|         cur_index += 4;
 | |
|     }
 | |
|     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 | |
|             (cur_index - int_buf) * sizeof(uint32_t));
 | |
| out:
 | |
|     g_free(int_buf);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
 | |
|                                 sPAPROptionVector *ov5_updates)
 | |
| {
 | |
|     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 | |
|     int ret = 0, offset;
 | |
| 
 | |
|     /* Generate ibm,dynamic-reconfiguration-memory node if required */
 | |
|     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
 | |
|         g_assert(smc->dr_lmb_enabled);
 | |
|         ret = spapr_populate_drconf_memory(spapr, fdt);
 | |
|         if (ret) {
 | |
|             goto out;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     offset = fdt_path_offset(fdt, "/chosen");
 | |
|     if (offset < 0) {
 | |
|         offset = fdt_add_subnode(fdt, 0, "chosen");
 | |
|         if (offset < 0) {
 | |
|             return offset;
 | |
|         }
 | |
|     }
 | |
|     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
 | |
|                                  "ibm,architecture-vec-5");
 | |
| 
 | |
| out:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static bool spapr_hotplugged_dev_before_cas(void)
 | |
| {
 | |
|     Object *drc_container, *obj;
 | |
|     ObjectProperty *prop;
 | |
|     ObjectPropertyIterator iter;
 | |
| 
 | |
|     drc_container = container_get(object_get_root(), "/dr-connector");
 | |
|     object_property_iter_init(&iter, drc_container);
 | |
|     while ((prop = object_property_iter_next(&iter))) {
 | |
|         if (!strstart(prop->type, "link<", NULL)) {
 | |
|             continue;
 | |
|         }
 | |
|         obj = object_property_get_link(drc_container, prop->name, NULL);
 | |
|         if (spapr_drc_needed(obj)) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
 | |
|                                  target_ulong addr, target_ulong size,
 | |
|                                  sPAPROptionVector *ov5_updates)
 | |
| {
 | |
|     void *fdt, *fdt_skel;
 | |
|     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
 | |
| 
 | |
|     if (spapr_hotplugged_dev_before_cas()) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     size -= sizeof(hdr);
 | |
| 
 | |
|     /* Create skeleton */
 | |
|     fdt_skel = g_malloc0(size);
 | |
|     _FDT((fdt_create(fdt_skel, size)));
 | |
|     _FDT((fdt_begin_node(fdt_skel, "")));
 | |
|     _FDT((fdt_end_node(fdt_skel)));
 | |
|     _FDT((fdt_finish(fdt_skel)));
 | |
|     fdt = g_malloc0(size);
 | |
|     _FDT((fdt_open_into(fdt_skel, fdt, size)));
 | |
|     g_free(fdt_skel);
 | |
| 
 | |
|     /* Fixup cpu nodes */
 | |
|     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
 | |
| 
 | |
|     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* Pack resulting tree */
 | |
|     _FDT((fdt_pack(fdt)));
 | |
| 
 | |
|     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
 | |
|         trace_spapr_cas_failed(size);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
 | |
|     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
 | |
|     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
 | |
|     g_free(fdt);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
 | |
| {
 | |
|     int rtas;
 | |
|     GString *hypertas = g_string_sized_new(256);
 | |
|     GString *qemu_hypertas = g_string_sized_new(256);
 | |
|     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
 | |
|     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
 | |
|         memory_region_size(&spapr->hotplug_memory.mr);
 | |
|     uint32_t lrdr_capacity[] = {
 | |
|         cpu_to_be32(max_hotplug_addr >> 32),
 | |
|         cpu_to_be32(max_hotplug_addr & 0xffffffff),
 | |
|         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
 | |
|         cpu_to_be32(max_cpus / smp_threads),
 | |
|     };
 | |
| 
 | |
|     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
 | |
| 
 | |
|     /* hypertas */
 | |
|     add_str(hypertas, "hcall-pft");
 | |
|     add_str(hypertas, "hcall-term");
 | |
|     add_str(hypertas, "hcall-dabr");
 | |
|     add_str(hypertas, "hcall-interrupt");
 | |
|     add_str(hypertas, "hcall-tce");
 | |
|     add_str(hypertas, "hcall-vio");
 | |
|     add_str(hypertas, "hcall-splpar");
 | |
|     add_str(hypertas, "hcall-bulk");
 | |
|     add_str(hypertas, "hcall-set-mode");
 | |
|     add_str(hypertas, "hcall-sprg0");
 | |
|     add_str(hypertas, "hcall-copy");
 | |
|     add_str(hypertas, "hcall-debug");
 | |
|     add_str(qemu_hypertas, "hcall-memop1");
 | |
| 
 | |
|     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
 | |
|         add_str(hypertas, "hcall-multi-tce");
 | |
|     }
 | |
| 
 | |
|     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
 | |
|         add_str(hypertas, "hcall-hpt-resize");
 | |
|     }
 | |
| 
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
 | |
|                      hypertas->str, hypertas->len));
 | |
|     g_string_free(hypertas, TRUE);
 | |
|     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
 | |
|                      qemu_hypertas->str, qemu_hypertas->len));
 | |
|     g_string_free(qemu_hypertas, TRUE);
 | |
| 
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
 | |
|                      refpoints, sizeof(refpoints)));
 | |
| 
 | |
|     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
 | |
|                           RTAS_ERROR_LOG_MAX));
 | |
|     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
 | |
|                           RTAS_EVENT_SCAN_RATE));
 | |
| 
 | |
|     if (msi_nonbroken) {
 | |
|         _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * According to PAPR, rtas ibm,os-term does not guarantee a return
 | |
|      * back to the guest cpu.
 | |
|      *
 | |
|      * While an additional ibm,extended-os-term property indicates
 | |
|      * that rtas call return will always occur. Set this property.
 | |
|      */
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
 | |
| 
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
 | |
|                      lrdr_capacity, sizeof(lrdr_capacity)));
 | |
| 
 | |
|     spapr_dt_rtas_tokens(fdt, rtas);
 | |
| }
 | |
| 
 | |
| /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
 | |
|  * that the guest may request and thus the valid values for bytes 24..26 of
 | |
|  * option vector 5: */
 | |
| static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
 | |
| {
 | |
|     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
 | |
| 
 | |
|     char val[2 * 4] = {
 | |
|         23, 0x00, /* Xive mode, filled in below. */
 | |
|         24, 0x00, /* Hash/Radix, filled in below. */
 | |
|         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
 | |
|         26, 0x40, /* Radix options: GTSE == yes. */
 | |
|     };
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
 | |
|             val[3] = 0x80; /* OV5_MMU_BOTH */
 | |
|         } else if (kvmppc_has_cap_mmu_radix()) {
 | |
|             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
 | |
|         } else {
 | |
|             val[3] = 0x00; /* Hash */
 | |
|         }
 | |
|     } else {
 | |
|         if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
 | |
|             /* V3 MMU supports both hash and radix (with dynamic switching) */
 | |
|             val[3] = 0xC0;
 | |
|         } else {
 | |
|             /* Otherwise we can only do hash */
 | |
|             val[3] = 0x00;
 | |
|         }
 | |
|     }
 | |
|     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
 | |
|                      val, sizeof(val)));
 | |
| }
 | |
| 
 | |
| static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     int chosen;
 | |
|     const char *boot_device = machine->boot_order;
 | |
|     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
 | |
|     size_t cb = 0;
 | |
|     char *bootlist = get_boot_devices_list(&cb, true);
 | |
| 
 | |
|     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
 | |
| 
 | |
|     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
 | |
|     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
 | |
|                           spapr->initrd_base));
 | |
|     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
 | |
|                           spapr->initrd_base + spapr->initrd_size));
 | |
| 
 | |
|     if (spapr->kernel_size) {
 | |
|         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
 | |
|                               cpu_to_be64(spapr->kernel_size) };
 | |
| 
 | |
|         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
 | |
|                          &kprop, sizeof(kprop)));
 | |
|         if (spapr->kernel_le) {
 | |
|             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
 | |
|         }
 | |
|     }
 | |
|     if (boot_menu) {
 | |
|         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
 | |
|     }
 | |
|     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
 | |
|     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
 | |
|     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
 | |
| 
 | |
|     if (cb && bootlist) {
 | |
|         int i;
 | |
| 
 | |
|         for (i = 0; i < cb; i++) {
 | |
|             if (bootlist[i] == '\n') {
 | |
|                 bootlist[i] = ' ';
 | |
|             }
 | |
|         }
 | |
|         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
 | |
|     }
 | |
| 
 | |
|     if (boot_device && strlen(boot_device)) {
 | |
|         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
 | |
|     }
 | |
| 
 | |
|     if (!spapr->has_graphics && stdout_path) {
 | |
|         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
 | |
|     }
 | |
| 
 | |
|     spapr_dt_ov5_platform_support(fdt, chosen);
 | |
| 
 | |
|     g_free(stdout_path);
 | |
|     g_free(bootlist);
 | |
| }
 | |
| 
 | |
| static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
 | |
| {
 | |
|     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
 | |
|      * KVM to work under pHyp with some guest co-operation */
 | |
|     int hypervisor;
 | |
|     uint8_t hypercall[16];
 | |
| 
 | |
|     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
 | |
|     /* indicate KVM hypercall interface */
 | |
|     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
 | |
|     if (kvmppc_has_cap_fixup_hcalls()) {
 | |
|         /*
 | |
|          * Older KVM versions with older guest kernels were broken
 | |
|          * with the magic page, don't allow the guest to map it.
 | |
|          */
 | |
|         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
 | |
|                                   sizeof(hypercall))) {
 | |
|             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
 | |
|                              hypercall, sizeof(hypercall)));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void *spapr_build_fdt(sPAPRMachineState *spapr,
 | |
|                              hwaddr rtas_addr,
 | |
|                              hwaddr rtas_size)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(machine);
 | |
|     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
 | |
|     int ret;
 | |
|     void *fdt;
 | |
|     sPAPRPHBState *phb;
 | |
|     char *buf;
 | |
| 
 | |
|     fdt = g_malloc0(FDT_MAX_SIZE);
 | |
|     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
 | |
| 
 | |
|     /* Root node */
 | |
|     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
 | |
|     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
 | |
|     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
 | |
| 
 | |
|     /*
 | |
|      * Add info to guest to indentify which host is it being run on
 | |
|      * and what is the uuid of the guest
 | |
|      */
 | |
|     if (kvmppc_get_host_model(&buf)) {
 | |
|         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
 | |
|         g_free(buf);
 | |
|     }
 | |
|     if (kvmppc_get_host_serial(&buf)) {
 | |
|         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
 | |
|         g_free(buf);
 | |
|     }
 | |
| 
 | |
|     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
 | |
| 
 | |
|     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
 | |
|     if (qemu_uuid_set) {
 | |
|         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
 | |
|     }
 | |
|     g_free(buf);
 | |
| 
 | |
|     if (qemu_get_vm_name()) {
 | |
|         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
 | |
|                                 qemu_get_vm_name()));
 | |
|     }
 | |
| 
 | |
|     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
 | |
|     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
 | |
| 
 | |
|     /* /interrupt controller */
 | |
|     spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
 | |
| 
 | |
|     ret = spapr_populate_memory(spapr, fdt);
 | |
|     if (ret < 0) {
 | |
|         error_report("couldn't setup memory nodes in fdt");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     /* /vdevice */
 | |
|     spapr_dt_vdevice(spapr->vio_bus, fdt);
 | |
| 
 | |
|     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
 | |
|         ret = spapr_rng_populate_dt(fdt);
 | |
|         if (ret < 0) {
 | |
|             error_report("could not set up rng device in the fdt");
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     QLIST_FOREACH(phb, &spapr->phbs, list) {
 | |
|         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
 | |
|         if (ret < 0) {
 | |
|             error_report("couldn't setup PCI devices in fdt");
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* cpus */
 | |
|     spapr_populate_cpus_dt_node(fdt, spapr);
 | |
| 
 | |
|     if (smc->dr_lmb_enabled) {
 | |
|         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
 | |
|     }
 | |
| 
 | |
|     if (mc->has_hotpluggable_cpus) {
 | |
|         int offset = fdt_path_offset(fdt, "/cpus");
 | |
|         ret = spapr_drc_populate_dt(fdt, offset, NULL,
 | |
|                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
 | |
|         if (ret < 0) {
 | |
|             error_report("Couldn't set up CPU DR device tree properties");
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* /event-sources */
 | |
|     spapr_dt_events(spapr, fdt);
 | |
| 
 | |
|     /* /rtas */
 | |
|     spapr_dt_rtas(spapr, fdt);
 | |
| 
 | |
|     /* /chosen */
 | |
|     spapr_dt_chosen(spapr, fdt);
 | |
| 
 | |
|     /* /hypervisor */
 | |
|     if (kvm_enabled()) {
 | |
|         spapr_dt_hypervisor(spapr, fdt);
 | |
|     }
 | |
| 
 | |
|     /* Build memory reserve map */
 | |
|     if (spapr->kernel_size) {
 | |
|         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
 | |
|     }
 | |
|     if (spapr->initrd_size) {
 | |
|         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
 | |
|     }
 | |
| 
 | |
|     /* ibm,client-architecture-support updates */
 | |
|     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
 | |
|     if (ret < 0) {
 | |
|         error_report("couldn't setup CAS properties fdt");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     return fdt;
 | |
| }
 | |
| 
 | |
| static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
 | |
| {
 | |
|     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
 | |
| }
 | |
| 
 | |
| static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
 | |
|                                     PowerPCCPU *cpu)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
| 
 | |
|     /* The TCG path should also be holding the BQL at this point */
 | |
|     g_assert(qemu_mutex_iothread_locked());
 | |
| 
 | |
|     if (msr_pr) {
 | |
|         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
 | |
|         env->gpr[3] = H_PRIVILEGE;
 | |
|     } else {
 | |
|         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
 | |
| 
 | |
|     return spapr->patb_entry;
 | |
| }
 | |
| 
 | |
| #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
 | |
| #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
 | |
| #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
 | |
| #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
 | |
| #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
 | |
| 
 | |
| /*
 | |
|  * Get the fd to access the kernel htab, re-opening it if necessary
 | |
|  */
 | |
| static int get_htab_fd(sPAPRMachineState *spapr)
 | |
| {
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     if (spapr->htab_fd >= 0) {
 | |
|         return spapr->htab_fd;
 | |
|     }
 | |
| 
 | |
|     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
 | |
|     if (spapr->htab_fd < 0) {
 | |
|         error_report_err(local_err);
 | |
|     }
 | |
| 
 | |
|     return spapr->htab_fd;
 | |
| }
 | |
| 
 | |
| void close_htab_fd(sPAPRMachineState *spapr)
 | |
| {
 | |
|     if (spapr->htab_fd >= 0) {
 | |
|         close(spapr->htab_fd);
 | |
|     }
 | |
|     spapr->htab_fd = -1;
 | |
| }
 | |
| 
 | |
| static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
 | |
| 
 | |
|     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
 | |
| }
 | |
| 
 | |
| static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
 | |
| 
 | |
|     assert(kvm_enabled());
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
 | |
| }
 | |
| 
 | |
| static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
 | |
|                                                 hwaddr ptex, int n)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
 | |
|     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         /*
 | |
|          * HTAB is controlled by KVM. Fetch into temporary buffer
 | |
|          */
 | |
|         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
 | |
|         kvmppc_read_hptes(hptes, ptex, n);
 | |
|         return hptes;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * HTAB is controlled by QEMU. Just point to the internally
 | |
|      * accessible PTEG.
 | |
|      */
 | |
|     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
 | |
| }
 | |
| 
 | |
| static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
 | |
|                               const ppc_hash_pte64_t *hptes,
 | |
|                               hwaddr ptex, int n)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         g_free((void *)hptes);
 | |
|     }
 | |
| 
 | |
|     /* Nothing to do for qemu managed HPT */
 | |
| }
 | |
| 
 | |
| static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
 | |
|                              uint64_t pte0, uint64_t pte1)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
 | |
|     hwaddr offset = ptex * HASH_PTE_SIZE_64;
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         kvmppc_write_hpte(ptex, pte0, pte1);
 | |
|     } else {
 | |
|         stq_p(spapr->htab + offset, pte0);
 | |
|         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
 | |
| {
 | |
|     int shift;
 | |
| 
 | |
|     /* We aim for a hash table of size 1/128 the size of RAM (rounded
 | |
|      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
 | |
|      * that's much more than is needed for Linux guests */
 | |
|     shift = ctz64(pow2ceil(ramsize)) - 7;
 | |
|     shift = MAX(shift, 18); /* Minimum architected size */
 | |
|     shift = MIN(shift, 46); /* Maximum architected size */
 | |
|     return shift;
 | |
| }
 | |
| 
 | |
| void spapr_free_hpt(sPAPRMachineState *spapr)
 | |
| {
 | |
|     g_free(spapr->htab);
 | |
|     spapr->htab = NULL;
 | |
|     spapr->htab_shift = 0;
 | |
|     close_htab_fd(spapr);
 | |
| }
 | |
| 
 | |
| void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
 | |
|                           Error **errp)
 | |
| {
 | |
|     long rc;
 | |
| 
 | |
|     /* Clean up any HPT info from a previous boot */
 | |
|     spapr_free_hpt(spapr);
 | |
| 
 | |
|     rc = kvmppc_reset_htab(shift);
 | |
|     if (rc < 0) {
 | |
|         /* kernel-side HPT needed, but couldn't allocate one */
 | |
|         error_setg_errno(errp, errno,
 | |
|                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
 | |
|                          shift);
 | |
|         /* This is almost certainly fatal, but if the caller really
 | |
|          * wants to carry on with shift == 0, it's welcome to try */
 | |
|     } else if (rc > 0) {
 | |
|         /* kernel-side HPT allocated */
 | |
|         if (rc != shift) {
 | |
|             error_setg(errp,
 | |
|                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
 | |
|                        shift, rc);
 | |
|         }
 | |
| 
 | |
|         spapr->htab_shift = shift;
 | |
|         spapr->htab = NULL;
 | |
|     } else {
 | |
|         /* kernel-side HPT not needed, allocate in userspace instead */
 | |
|         size_t size = 1ULL << shift;
 | |
|         int i;
 | |
| 
 | |
|         spapr->htab = qemu_memalign(size, size);
 | |
|         if (!spapr->htab) {
 | |
|             error_setg_errno(errp, errno,
 | |
|                              "Could not allocate HPT of order %d", shift);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         memset(spapr->htab, 0, size);
 | |
|         spapr->htab_shift = shift;
 | |
| 
 | |
|         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
 | |
|             DIRTY_HPTE(HPTE(spapr->htab, i));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
 | |
| {
 | |
|     int hpt_shift;
 | |
| 
 | |
|     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
 | |
|         || (spapr->cas_reboot
 | |
|             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
 | |
|         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
 | |
|     } else {
 | |
|         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->ram_size);
 | |
|     }
 | |
|     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
 | |
| 
 | |
|     if (spapr->vrma_adjust) {
 | |
|         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
 | |
|                                           spapr->htab_shift);
 | |
|     }
 | |
|     /* We're setting up a hash table, so that means we're not radix */
 | |
|     spapr->patb_entry = 0;
 | |
| }
 | |
| 
 | |
| static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
 | |
| {
 | |
|     bool matched = false;
 | |
| 
 | |
|     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
 | |
|         matched = true;
 | |
|     }
 | |
| 
 | |
|     if (!matched) {
 | |
|         error_report("Device %s is not supported by this machine yet.",
 | |
|                      qdev_fw_name(DEVICE(sbdev)));
 | |
|         exit(1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ppc_spapr_reset(void)
 | |
| {
 | |
|     MachineState *machine = MACHINE(qdev_get_machine());
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
 | |
|     PowerPCCPU *first_ppc_cpu;
 | |
|     uint32_t rtas_limit;
 | |
|     hwaddr rtas_addr, fdt_addr;
 | |
|     void *fdt;
 | |
|     int rc;
 | |
| 
 | |
|     /* Check for unknown sysbus devices */
 | |
|     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
 | |
| 
 | |
|     if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
 | |
|         /* If using KVM with radix mode available, VCPUs can be started
 | |
|          * without a HPT because KVM will start them in radix mode.
 | |
|          * Set the GR bit in PATB so that we know there is no HPT. */
 | |
|         spapr->patb_entry = PATBE1_GR;
 | |
|     } else {
 | |
|         spapr_setup_hpt_and_vrma(spapr);
 | |
|     }
 | |
| 
 | |
|     qemu_devices_reset();
 | |
|     spapr_clear_pending_events(spapr);
 | |
| 
 | |
|     /*
 | |
|      * We place the device tree and RTAS just below either the top of the RMA,
 | |
|      * or just below 2GB, whichever is lowere, so that it can be
 | |
|      * processed with 32-bit real mode code if necessary
 | |
|      */
 | |
|     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
 | |
|     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
 | |
|     fdt_addr = rtas_addr - FDT_MAX_SIZE;
 | |
| 
 | |
|     /* if this reset wasn't generated by CAS, we should reset our
 | |
|      * negotiated options and start from scratch */
 | |
|     if (!spapr->cas_reboot) {
 | |
|         spapr_ovec_cleanup(spapr->ov5_cas);
 | |
|         spapr->ov5_cas = spapr_ovec_new();
 | |
| 
 | |
|         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
 | |
|     }
 | |
| 
 | |
|     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
 | |
| 
 | |
|     spapr_load_rtas(spapr, fdt, rtas_addr);
 | |
| 
 | |
|     rc = fdt_pack(fdt);
 | |
| 
 | |
|     /* Should only fail if we've built a corrupted tree */
 | |
|     assert(rc == 0);
 | |
| 
 | |
|     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
 | |
|         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
 | |
|                      fdt_totalsize(fdt), FDT_MAX_SIZE);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     /* Load the fdt */
 | |
|     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
 | |
|     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
 | |
|     g_free(fdt);
 | |
| 
 | |
|     /* Set up the entry state */
 | |
|     first_ppc_cpu = POWERPC_CPU(first_cpu);
 | |
|     first_ppc_cpu->env.gpr[3] = fdt_addr;
 | |
|     first_ppc_cpu->env.gpr[5] = 0;
 | |
|     first_cpu->halted = 0;
 | |
|     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
 | |
| 
 | |
|     spapr->cas_reboot = false;
 | |
| }
 | |
| 
 | |
| static void spapr_create_nvram(sPAPRMachineState *spapr)
 | |
| {
 | |
|     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
 | |
|     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
 | |
| 
 | |
|     if (dinfo) {
 | |
|         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
 | |
|                             &error_fatal);
 | |
|     }
 | |
| 
 | |
|     qdev_init_nofail(dev);
 | |
| 
 | |
|     spapr->nvram = (struct sPAPRNVRAM *)dev;
 | |
| }
 | |
| 
 | |
| static void spapr_rtc_create(sPAPRMachineState *spapr)
 | |
| {
 | |
|     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
 | |
|     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
 | |
|                               &error_fatal);
 | |
|     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
 | |
|                               &error_fatal);
 | |
|     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
 | |
|                               "date", &error_fatal);
 | |
| }
 | |
| 
 | |
| /* Returns whether we want to use VGA or not */
 | |
| static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
 | |
| {
 | |
|     switch (vga_interface_type) {
 | |
|     case VGA_NONE:
 | |
|         return false;
 | |
|     case VGA_DEVICE:
 | |
|         return true;
 | |
|     case VGA_STD:
 | |
|     case VGA_VIRTIO:
 | |
|         return pci_vga_init(pci_bus) != NULL;
 | |
|     default:
 | |
|         error_setg(errp,
 | |
|                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int spapr_post_load(void *opaque, int version_id)
 | |
| {
 | |
|     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
 | |
|     int err = 0;
 | |
| 
 | |
|     if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
 | |
|         CPUState *cs;
 | |
|         CPU_FOREACH(cs) {
 | |
|             PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|             icp_resend(ICP(cpu->intc));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* In earlier versions, there was no separate qdev for the PAPR
 | |
|      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
 | |
|      * So when migrating from those versions, poke the incoming offset
 | |
|      * value into the RTC device */
 | |
|     if (version_id < 3) {
 | |
|         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
 | |
|     }
 | |
| 
 | |
|     if (spapr->patb_entry) {
 | |
|         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
 | |
|         bool radix = !!(spapr->patb_entry & PATBE1_GR);
 | |
|         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
 | |
| 
 | |
|         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
 | |
|         if (err) {
 | |
|             error_report("Process table config unsupported by the host");
 | |
|             return -EINVAL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| static bool version_before_3(void *opaque, int version_id)
 | |
| {
 | |
|     return version_id < 3;
 | |
| }
 | |
| 
 | |
| static bool spapr_pending_events_needed(void *opaque)
 | |
| {
 | |
|     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
 | |
|     return !QTAILQ_EMPTY(&spapr->pending_events);
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr_event_entry = {
 | |
|     .name = "spapr_event_log_entry",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT32(summary, sPAPREventLogEntry),
 | |
|         VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
 | |
|         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
 | |
|                                      NULL, extended_length),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr_pending_events = {
 | |
|     .name = "spapr_pending_events",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = spapr_pending_events_needed,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
 | |
|                          vmstate_spapr_event_entry, sPAPREventLogEntry, next),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| static bool spapr_ov5_cas_needed(void *opaque)
 | |
| {
 | |
|     sPAPRMachineState *spapr = opaque;
 | |
|     sPAPROptionVector *ov5_mask = spapr_ovec_new();
 | |
|     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
 | |
|     sPAPROptionVector *ov5_removed = spapr_ovec_new();
 | |
|     bool cas_needed;
 | |
| 
 | |
|     /* Prior to the introduction of sPAPROptionVector, we had two option
 | |
|      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
 | |
|      * Both of these options encode machine topology into the device-tree
 | |
|      * in such a way that the now-booted OS should still be able to interact
 | |
|      * appropriately with QEMU regardless of what options were actually
 | |
|      * negotiatied on the source side.
 | |
|      *
 | |
|      * As such, we can avoid migrating the CAS-negotiated options if these
 | |
|      * are the only options available on the current machine/platform.
 | |
|      * Since these are the only options available for pseries-2.7 and
 | |
|      * earlier, this allows us to maintain old->new/new->old migration
 | |
|      * compatibility.
 | |
|      *
 | |
|      * For QEMU 2.8+, there are additional CAS-negotiatable options available
 | |
|      * via default pseries-2.8 machines and explicit command-line parameters.
 | |
|      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
 | |
|      * of the actual CAS-negotiated values to continue working properly. For
 | |
|      * example, availability of memory unplug depends on knowing whether
 | |
|      * OV5_HP_EVT was negotiated via CAS.
 | |
|      *
 | |
|      * Thus, for any cases where the set of available CAS-negotiatable
 | |
|      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
 | |
|      * include the CAS-negotiated options in the migration stream.
 | |
|      */
 | |
|     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
 | |
|     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
 | |
| 
 | |
|     /* spapr_ovec_diff returns true if bits were removed. we avoid using
 | |
|      * the mask itself since in the future it's possible "legacy" bits may be
 | |
|      * removed via machine options, which could generate a false positive
 | |
|      * that breaks migration.
 | |
|      */
 | |
|     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
 | |
|     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
 | |
| 
 | |
|     spapr_ovec_cleanup(ov5_mask);
 | |
|     spapr_ovec_cleanup(ov5_legacy);
 | |
|     spapr_ovec_cleanup(ov5_removed);
 | |
| 
 | |
|     return cas_needed;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr_ov5_cas = {
 | |
|     .name = "spapr_option_vector_ov5_cas",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = spapr_ov5_cas_needed,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
 | |
|                                  vmstate_spapr_ovec, sPAPROptionVector),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| static bool spapr_patb_entry_needed(void *opaque)
 | |
| {
 | |
|     sPAPRMachineState *spapr = opaque;
 | |
| 
 | |
|     return !!spapr->patb_entry;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr_patb_entry = {
 | |
|     .name = "spapr_patb_entry",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = spapr_patb_entry_needed,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr = {
 | |
|     .name = "spapr",
 | |
|     .version_id = 3,
 | |
|     .minimum_version_id = 1,
 | |
|     .post_load = spapr_post_load,
 | |
|     .fields = (VMStateField[]) {
 | |
|         /* used to be @next_irq */
 | |
|         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
 | |
| 
 | |
|         /* RTC offset */
 | |
|         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
 | |
| 
 | |
|         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
|     .subsections = (const VMStateDescription*[]) {
 | |
|         &vmstate_spapr_ov5_cas,
 | |
|         &vmstate_spapr_patb_entry,
 | |
|         &vmstate_spapr_pending_events,
 | |
|         NULL
 | |
|     }
 | |
| };
 | |
| 
 | |
| static int htab_save_setup(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     sPAPRMachineState *spapr = opaque;
 | |
| 
 | |
|     /* "Iteration" header */
 | |
|     if (!spapr->htab_shift) {
 | |
|         qemu_put_be32(f, -1);
 | |
|     } else {
 | |
|         qemu_put_be32(f, spapr->htab_shift);
 | |
|     }
 | |
| 
 | |
|     if (spapr->htab) {
 | |
|         spapr->htab_save_index = 0;
 | |
|         spapr->htab_first_pass = true;
 | |
|     } else {
 | |
|         if (spapr->htab_shift) {
 | |
|             assert(kvm_enabled());
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
 | |
|                             int chunkstart, int n_valid, int n_invalid)
 | |
| {
 | |
|     qemu_put_be32(f, chunkstart);
 | |
|     qemu_put_be16(f, n_valid);
 | |
|     qemu_put_be16(f, n_invalid);
 | |
|     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
 | |
|                     HASH_PTE_SIZE_64 * n_valid);
 | |
| }
 | |
| 
 | |
| static void htab_save_end_marker(QEMUFile *f)
 | |
| {
 | |
|     qemu_put_be32(f, 0);
 | |
|     qemu_put_be16(f, 0);
 | |
|     qemu_put_be16(f, 0);
 | |
| }
 | |
| 
 | |
| static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
 | |
|                                  int64_t max_ns)
 | |
| {
 | |
|     bool has_timeout = max_ns != -1;
 | |
|     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
 | |
|     int index = spapr->htab_save_index;
 | |
|     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 | |
| 
 | |
|     assert(spapr->htab_first_pass);
 | |
| 
 | |
|     do {
 | |
|         int chunkstart;
 | |
| 
 | |
|         /* Consume invalid HPTEs */
 | |
|         while ((index < htabslots)
 | |
|                && !HPTE_VALID(HPTE(spapr->htab, index))) {
 | |
|             CLEAN_HPTE(HPTE(spapr->htab, index));
 | |
|             index++;
 | |
|         }
 | |
| 
 | |
|         /* Consume valid HPTEs */
 | |
|         chunkstart = index;
 | |
|         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
 | |
|                && HPTE_VALID(HPTE(spapr->htab, index))) {
 | |
|             CLEAN_HPTE(HPTE(spapr->htab, index));
 | |
|             index++;
 | |
|         }
 | |
| 
 | |
|         if (index > chunkstart) {
 | |
|             int n_valid = index - chunkstart;
 | |
| 
 | |
|             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
 | |
| 
 | |
|             if (has_timeout &&
 | |
|                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     } while ((index < htabslots) && !qemu_file_rate_limit(f));
 | |
| 
 | |
|     if (index >= htabslots) {
 | |
|         assert(index == htabslots);
 | |
|         index = 0;
 | |
|         spapr->htab_first_pass = false;
 | |
|     }
 | |
|     spapr->htab_save_index = index;
 | |
| }
 | |
| 
 | |
| static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
 | |
|                                 int64_t max_ns)
 | |
| {
 | |
|     bool final = max_ns < 0;
 | |
|     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
 | |
|     int examined = 0, sent = 0;
 | |
|     int index = spapr->htab_save_index;
 | |
|     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 | |
| 
 | |
|     assert(!spapr->htab_first_pass);
 | |
| 
 | |
|     do {
 | |
|         int chunkstart, invalidstart;
 | |
| 
 | |
|         /* Consume non-dirty HPTEs */
 | |
|         while ((index < htabslots)
 | |
|                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
 | |
|             index++;
 | |
|             examined++;
 | |
|         }
 | |
| 
 | |
|         chunkstart = index;
 | |
|         /* Consume valid dirty HPTEs */
 | |
|         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
 | |
|                && HPTE_DIRTY(HPTE(spapr->htab, index))
 | |
|                && HPTE_VALID(HPTE(spapr->htab, index))) {
 | |
|             CLEAN_HPTE(HPTE(spapr->htab, index));
 | |
|             index++;
 | |
|             examined++;
 | |
|         }
 | |
| 
 | |
|         invalidstart = index;
 | |
|         /* Consume invalid dirty HPTEs */
 | |
|         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
 | |
|                && HPTE_DIRTY(HPTE(spapr->htab, index))
 | |
|                && !HPTE_VALID(HPTE(spapr->htab, index))) {
 | |
|             CLEAN_HPTE(HPTE(spapr->htab, index));
 | |
|             index++;
 | |
|             examined++;
 | |
|         }
 | |
| 
 | |
|         if (index > chunkstart) {
 | |
|             int n_valid = invalidstart - chunkstart;
 | |
|             int n_invalid = index - invalidstart;
 | |
| 
 | |
|             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
 | |
|             sent += index - chunkstart;
 | |
| 
 | |
|             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (examined >= htabslots) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (index >= htabslots) {
 | |
|             assert(index == htabslots);
 | |
|             index = 0;
 | |
|         }
 | |
|     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
 | |
| 
 | |
|     if (index >= htabslots) {
 | |
|         assert(index == htabslots);
 | |
|         index = 0;
 | |
|     }
 | |
| 
 | |
|     spapr->htab_save_index = index;
 | |
| 
 | |
|     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| #define MAX_ITERATION_NS    5000000 /* 5 ms */
 | |
| #define MAX_KVM_BUF_SIZE    2048
 | |
| 
 | |
| static int htab_save_iterate(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     sPAPRMachineState *spapr = opaque;
 | |
|     int fd;
 | |
|     int rc = 0;
 | |
| 
 | |
|     /* Iteration header */
 | |
|     if (!spapr->htab_shift) {
 | |
|         qemu_put_be32(f, -1);
 | |
|         return 1;
 | |
|     } else {
 | |
|         qemu_put_be32(f, 0);
 | |
|     }
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         assert(kvm_enabled());
 | |
| 
 | |
|         fd = get_htab_fd(spapr);
 | |
|         if (fd < 0) {
 | |
|             return fd;
 | |
|         }
 | |
| 
 | |
|         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
 | |
|         if (rc < 0) {
 | |
|             return rc;
 | |
|         }
 | |
|     } else  if (spapr->htab_first_pass) {
 | |
|         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
 | |
|     } else {
 | |
|         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
 | |
|     }
 | |
| 
 | |
|     htab_save_end_marker(f);
 | |
| 
 | |
|     return rc;
 | |
| }
 | |
| 
 | |
| static int htab_save_complete(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     sPAPRMachineState *spapr = opaque;
 | |
|     int fd;
 | |
| 
 | |
|     /* Iteration header */
 | |
|     if (!spapr->htab_shift) {
 | |
|         qemu_put_be32(f, -1);
 | |
|         return 0;
 | |
|     } else {
 | |
|         qemu_put_be32(f, 0);
 | |
|     }
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         int rc;
 | |
| 
 | |
|         assert(kvm_enabled());
 | |
| 
 | |
|         fd = get_htab_fd(spapr);
 | |
|         if (fd < 0) {
 | |
|             return fd;
 | |
|         }
 | |
| 
 | |
|         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
 | |
|         if (rc < 0) {
 | |
|             return rc;
 | |
|         }
 | |
|     } else {
 | |
|         if (spapr->htab_first_pass) {
 | |
|             htab_save_first_pass(f, spapr, -1);
 | |
|         }
 | |
|         htab_save_later_pass(f, spapr, -1);
 | |
|     }
 | |
| 
 | |
|     /* End marker */
 | |
|     htab_save_end_marker(f);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int htab_load(QEMUFile *f, void *opaque, int version_id)
 | |
| {
 | |
|     sPAPRMachineState *spapr = opaque;
 | |
|     uint32_t section_hdr;
 | |
|     int fd = -1;
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     if (version_id < 1 || version_id > 1) {
 | |
|         error_report("htab_load() bad version");
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     section_hdr = qemu_get_be32(f);
 | |
| 
 | |
|     if (section_hdr == -1) {
 | |
|         spapr_free_hpt(spapr);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (section_hdr) {
 | |
|         /* First section gives the htab size */
 | |
|         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
 | |
|         if (local_err) {
 | |
|             error_report_err(local_err);
 | |
|             return -EINVAL;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         assert(kvm_enabled());
 | |
| 
 | |
|         fd = kvmppc_get_htab_fd(true, 0, &local_err);
 | |
|         if (fd < 0) {
 | |
|             error_report_err(local_err);
 | |
|             return fd;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     while (true) {
 | |
|         uint32_t index;
 | |
|         uint16_t n_valid, n_invalid;
 | |
| 
 | |
|         index = qemu_get_be32(f);
 | |
|         n_valid = qemu_get_be16(f);
 | |
|         n_invalid = qemu_get_be16(f);
 | |
| 
 | |
|         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
 | |
|             /* End of Stream */
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if ((index + n_valid + n_invalid) >
 | |
|             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
 | |
|             /* Bad index in stream */
 | |
|             error_report(
 | |
|                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
 | |
|                 index, n_valid, n_invalid, spapr->htab_shift);
 | |
|             return -EINVAL;
 | |
|         }
 | |
| 
 | |
|         if (spapr->htab) {
 | |
|             if (n_valid) {
 | |
|                 qemu_get_buffer(f, HPTE(spapr->htab, index),
 | |
|                                 HASH_PTE_SIZE_64 * n_valid);
 | |
|             }
 | |
|             if (n_invalid) {
 | |
|                 memset(HPTE(spapr->htab, index + n_valid), 0,
 | |
|                        HASH_PTE_SIZE_64 * n_invalid);
 | |
|             }
 | |
|         } else {
 | |
|             int rc;
 | |
| 
 | |
|             assert(fd >= 0);
 | |
| 
 | |
|             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
 | |
|             if (rc < 0) {
 | |
|                 return rc;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         assert(fd >= 0);
 | |
|         close(fd);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void htab_save_cleanup(void *opaque)
 | |
| {
 | |
|     sPAPRMachineState *spapr = opaque;
 | |
| 
 | |
|     close_htab_fd(spapr);
 | |
| }
 | |
| 
 | |
| static SaveVMHandlers savevm_htab_handlers = {
 | |
|     .save_setup = htab_save_setup,
 | |
|     .save_live_iterate = htab_save_iterate,
 | |
|     .save_live_complete_precopy = htab_save_complete,
 | |
|     .save_cleanup = htab_save_cleanup,
 | |
|     .load_state = htab_load,
 | |
| };
 | |
| 
 | |
| static void spapr_boot_set(void *opaque, const char *boot_device,
 | |
|                            Error **errp)
 | |
| {
 | |
|     MachineState *machine = MACHINE(opaque);
 | |
|     machine->boot_order = g_strdup(boot_device);
 | |
| }
 | |
| 
 | |
| static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < nr_lmbs; i++) {
 | |
|         uint64_t addr;
 | |
| 
 | |
|         addr = i * lmb_size + spapr->hotplug_memory.base;
 | |
|         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
 | |
|                                addr / lmb_size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If RAM size, maxmem size and individual node mem sizes aren't aligned
 | |
|  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
 | |
|  * since we can't support such unaligned sizes with DRCONF_MEMORY.
 | |
|  */
 | |
| static void spapr_validate_node_memory(MachineState *machine, Error **errp)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
 | |
|         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
 | |
|                    " is not aligned to %llu MiB",
 | |
|                    machine->ram_size,
 | |
|                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
 | |
|         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
 | |
|                    " is not aligned to %llu MiB",
 | |
|                    machine->ram_size,
 | |
|                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < nb_numa_nodes; i++) {
 | |
|         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
 | |
|             error_setg(errp,
 | |
|                        "Node %d memory size 0x%" PRIx64
 | |
|                        " is not aligned to %llu MiB",
 | |
|                        i, numa_info[i].node_mem,
 | |
|                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* find cpu slot in machine->possible_cpus by core_id */
 | |
| static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
 | |
| {
 | |
|     int index = id / smp_threads;
 | |
| 
 | |
|     if (index >= ms->possible_cpus->len) {
 | |
|         return NULL;
 | |
|     }
 | |
|     if (idx) {
 | |
|         *idx = index;
 | |
|     }
 | |
|     return &ms->possible_cpus->cpus[index];
 | |
| }
 | |
| 
 | |
| static void spapr_init_cpus(sPAPRMachineState *spapr)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(machine);
 | |
|     char *type = spapr_get_cpu_core_type(machine->cpu_model);
 | |
|     int smt = kvmppc_smt_threads();
 | |
|     const CPUArchIdList *possible_cpus;
 | |
|     int boot_cores_nr = smp_cpus / smp_threads;
 | |
|     int i;
 | |
| 
 | |
|     if (!type) {
 | |
|         error_report("Unable to find sPAPR CPU Core definition");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     possible_cpus = mc->possible_cpu_arch_ids(machine);
 | |
|     if (mc->has_hotpluggable_cpus) {
 | |
|         if (smp_cpus % smp_threads) {
 | |
|             error_report("smp_cpus (%u) must be multiple of threads (%u)",
 | |
|                          smp_cpus, smp_threads);
 | |
|             exit(1);
 | |
|         }
 | |
|         if (max_cpus % smp_threads) {
 | |
|             error_report("max_cpus (%u) must be multiple of threads (%u)",
 | |
|                          max_cpus, smp_threads);
 | |
|             exit(1);
 | |
|         }
 | |
|     } else {
 | |
|         if (max_cpus != smp_cpus) {
 | |
|             error_report("This machine version does not support CPU hotplug");
 | |
|             exit(1);
 | |
|         }
 | |
|         boot_cores_nr = possible_cpus->len;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < possible_cpus->len; i++) {
 | |
|         int core_id = i * smp_threads;
 | |
| 
 | |
|         if (mc->has_hotpluggable_cpus) {
 | |
|             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
 | |
|                                    (core_id / smp_threads) * smt);
 | |
|         }
 | |
| 
 | |
|         if (i < boot_cores_nr) {
 | |
|             Object *core  = object_new(type);
 | |
|             int nr_threads = smp_threads;
 | |
| 
 | |
|             /* Handle the partially filled core for older machine types */
 | |
|             if ((i + 1) * smp_threads >= smp_cpus) {
 | |
|                 nr_threads = smp_cpus - i * smp_threads;
 | |
|             }
 | |
| 
 | |
|             object_property_set_int(core, nr_threads, "nr-threads",
 | |
|                                     &error_fatal);
 | |
|             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
 | |
|                                     &error_fatal);
 | |
|             object_property_set_bool(core, true, "realized", &error_fatal);
 | |
|         }
 | |
|     }
 | |
|     g_free(type);
 | |
| }
 | |
| 
 | |
| static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
 | |
| {
 | |
|     Error *local_err = NULL;
 | |
|     bool vsmt_user = !!spapr->vsmt;
 | |
|     int kvm_smt = kvmppc_smt_threads();
 | |
|     int ret;
 | |
| 
 | |
|     if (!kvm_enabled() && (smp_threads > 1)) {
 | |
|         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
 | |
|                      "on a pseries machine");
 | |
|         goto out;
 | |
|     }
 | |
|     if (!is_power_of_2(smp_threads)) {
 | |
|         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
 | |
|                      "machine because it must be a power of 2", smp_threads);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /* Detemine the VSMT mode to use: */
 | |
|     if (vsmt_user) {
 | |
|         if (spapr->vsmt < smp_threads) {
 | |
|             error_setg(&local_err, "Cannot support VSMT mode %d"
 | |
|                          " because it must be >= threads/core (%d)",
 | |
|                          spapr->vsmt, smp_threads);
 | |
|             goto out;
 | |
|         }
 | |
|         /* In this case, spapr->vsmt has been set by the command line */
 | |
|     } else {
 | |
|         /* Choose a VSMT mode that may be higher than necessary but is
 | |
|          * likely to be compatible with hosts that don't have VSMT. */
 | |
|         spapr->vsmt = MAX(kvm_smt, smp_threads);
 | |
|     }
 | |
| 
 | |
|     /* KVM: If necessary, set the SMT mode: */
 | |
|     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
 | |
|         ret = kvmppc_set_smt_threads(spapr->vsmt);
 | |
|         if (ret) {
 | |
|             error_setg(&local_err,
 | |
|                        "Failed to set KVM's VSMT mode to %d (errno %d)",
 | |
|                        spapr->vsmt, ret);
 | |
|             if (!vsmt_user) {
 | |
|                 error_append_hint(&local_err, "On PPC, a VM with %d threads/"
 | |
|                              "core on a host with %d threads/core requires "
 | |
|                              " the use of VSMT mode %d.\n",
 | |
|                              smp_threads, kvm_smt, spapr->vsmt);
 | |
|             }
 | |
|             kvmppc_hint_smt_possible(&local_err);
 | |
|             goto out;
 | |
|         }
 | |
|     }
 | |
|     /* else TCG: nothing to do currently */
 | |
| out:
 | |
|     error_propagate(errp, local_err);
 | |
| }
 | |
| 
 | |
| /* pSeries LPAR / sPAPR hardware init */
 | |
| static void ppc_spapr_init(MachineState *machine)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
 | |
|     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
 | |
|     const char *kernel_filename = machine->kernel_filename;
 | |
|     const char *initrd_filename = machine->initrd_filename;
 | |
|     PCIHostState *phb;
 | |
|     int i;
 | |
|     MemoryRegion *sysmem = get_system_memory();
 | |
|     MemoryRegion *ram = g_new(MemoryRegion, 1);
 | |
|     MemoryRegion *rma_region;
 | |
|     void *rma = NULL;
 | |
|     hwaddr rma_alloc_size;
 | |
|     hwaddr node0_size = spapr_node0_size(machine);
 | |
|     long load_limit, fw_size;
 | |
|     char *filename;
 | |
|     Error *resize_hpt_err = NULL;
 | |
| 
 | |
|     msi_nonbroken = true;
 | |
| 
 | |
|     QLIST_INIT(&spapr->phbs);
 | |
|     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
 | |
| 
 | |
|     /* Check HPT resizing availability */
 | |
|     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
 | |
|     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
 | |
|         /*
 | |
|          * If the user explicitly requested a mode we should either
 | |
|          * supply it, or fail completely (which we do below).  But if
 | |
|          * it's not set explicitly, we reset our mode to something
 | |
|          * that works
 | |
|          */
 | |
|         if (resize_hpt_err) {
 | |
|             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
 | |
|             error_free(resize_hpt_err);
 | |
|             resize_hpt_err = NULL;
 | |
|         } else {
 | |
|             spapr->resize_hpt = smc->resize_hpt_default;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
 | |
| 
 | |
|     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
 | |
|         /*
 | |
|          * User requested HPT resize, but this host can't supply it.  Bail out
 | |
|          */
 | |
|         error_report_err(resize_hpt_err);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     /* Allocate RMA if necessary */
 | |
|     rma_alloc_size = kvmppc_alloc_rma(&rma);
 | |
| 
 | |
|     if (rma_alloc_size == -1) {
 | |
|         error_report("Unable to create RMA");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
 | |
|         spapr->rma_size = rma_alloc_size;
 | |
|     } else {
 | |
|         spapr->rma_size = node0_size;
 | |
| 
 | |
|         /* With KVM, we don't actually know whether KVM supports an
 | |
|          * unbounded RMA (PR KVM) or is limited by the hash table size
 | |
|          * (HV KVM using VRMA), so we always assume the latter
 | |
|          *
 | |
|          * In that case, we also limit the initial allocations for RTAS
 | |
|          * etc... to 256M since we have no way to know what the VRMA size
 | |
|          * is going to be as it depends on the size of the hash table
 | |
|          * isn't determined yet.
 | |
|          */
 | |
|         if (kvm_enabled()) {
 | |
|             spapr->vrma_adjust = 1;
 | |
|             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
 | |
|         }
 | |
| 
 | |
|         /* Actually we don't support unbounded RMA anymore since we
 | |
|          * added proper emulation of HV mode. The max we can get is
 | |
|          * 16G which also happens to be what we configure for PAPR
 | |
|          * mode so make sure we don't do anything bigger than that
 | |
|          */
 | |
|         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
 | |
|     }
 | |
| 
 | |
|     if (spapr->rma_size > node0_size) {
 | |
|         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
 | |
|                      spapr->rma_size);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
 | |
|     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
 | |
| 
 | |
|     /* Set up Interrupt Controller before we create the VCPUs */
 | |
|     xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
 | |
| 
 | |
|     /* Set up containers for ibm,client-set-architecture negotiated options */
 | |
|     spapr->ov5 = spapr_ovec_new();
 | |
|     spapr->ov5_cas = spapr_ovec_new();
 | |
| 
 | |
|     if (smc->dr_lmb_enabled) {
 | |
|         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
 | |
|         spapr_validate_node_memory(machine, &error_fatal);
 | |
|     }
 | |
| 
 | |
|     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
 | |
|     if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
 | |
|         /* KVM and TCG always allow GTSE with radix... */
 | |
|         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
 | |
|     }
 | |
|     /* ... but not with hash (currently). */
 | |
| 
 | |
|     /* advertise support for dedicated HP event source to guests */
 | |
|     if (spapr->use_hotplug_event_source) {
 | |
|         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
 | |
|     }
 | |
| 
 | |
|     /* advertise support for HPT resizing */
 | |
|     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
 | |
|         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
 | |
|     }
 | |
| 
 | |
|     /* init CPUs */
 | |
|     if (machine->cpu_model == NULL) {
 | |
|         machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
 | |
|     }
 | |
| 
 | |
|     spapr_cpu_parse_features(spapr);
 | |
| 
 | |
|     spapr_set_vsmt_mode(spapr, &error_fatal);
 | |
| 
 | |
|     spapr_init_cpus(spapr);
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
 | |
|         kvmppc_enable_logical_ci_hcalls();
 | |
|         kvmppc_enable_set_mode_hcall();
 | |
| 
 | |
|         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
 | |
|         kvmppc_enable_clear_ref_mod_hcalls();
 | |
|     }
 | |
| 
 | |
|     /* allocate RAM */
 | |
|     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
 | |
|                                          machine->ram_size);
 | |
|     memory_region_add_subregion(sysmem, 0, ram);
 | |
| 
 | |
|     if (rma_alloc_size && rma) {
 | |
|         rma_region = g_new(MemoryRegion, 1);
 | |
|         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
 | |
|                                    rma_alloc_size, rma);
 | |
|         vmstate_register_ram_global(rma_region);
 | |
|         memory_region_add_subregion(sysmem, 0, rma_region);
 | |
|     }
 | |
| 
 | |
|     /* initialize hotplug memory address space */
 | |
|     if (machine->ram_size < machine->maxram_size) {
 | |
|         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
 | |
|         /*
 | |
|          * Limit the number of hotpluggable memory slots to half the number
 | |
|          * slots that KVM supports, leaving the other half for PCI and other
 | |
|          * devices. However ensure that number of slots doesn't drop below 32.
 | |
|          */
 | |
|         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
 | |
|                            SPAPR_MAX_RAM_SLOTS;
 | |
| 
 | |
|         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
 | |
|             max_memslots = SPAPR_MAX_RAM_SLOTS;
 | |
|         }
 | |
|         if (machine->ram_slots > max_memslots) {
 | |
|             error_report("Specified number of memory slots %"
 | |
|                          PRIu64" exceeds max supported %d",
 | |
|                          machine->ram_slots, max_memslots);
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
 | |
|                                               SPAPR_HOTPLUG_MEM_ALIGN);
 | |
|         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
 | |
|                            "hotplug-memory", hotplug_mem_size);
 | |
|         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
 | |
|                                     &spapr->hotplug_memory.mr);
 | |
|     }
 | |
| 
 | |
|     if (smc->dr_lmb_enabled) {
 | |
|         spapr_create_lmb_dr_connectors(spapr);
 | |
|     }
 | |
| 
 | |
|     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
 | |
|     if (!filename) {
 | |
|         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
 | |
|         exit(1);
 | |
|     }
 | |
|     spapr->rtas_size = get_image_size(filename);
 | |
|     if (spapr->rtas_size < 0) {
 | |
|         error_report("Could not get size of LPAR rtas '%s'", filename);
 | |
|         exit(1);
 | |
|     }
 | |
|     spapr->rtas_blob = g_malloc(spapr->rtas_size);
 | |
|     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
 | |
|         error_report("Could not load LPAR rtas '%s'", filename);
 | |
|         exit(1);
 | |
|     }
 | |
|     if (spapr->rtas_size > RTAS_MAX_SIZE) {
 | |
|         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
 | |
|                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
 | |
|         exit(1);
 | |
|     }
 | |
|     g_free(filename);
 | |
| 
 | |
|     /* Set up RTAS event infrastructure */
 | |
|     spapr_events_init(spapr);
 | |
| 
 | |
|     /* Set up the RTC RTAS interfaces */
 | |
|     spapr_rtc_create(spapr);
 | |
| 
 | |
|     /* Set up VIO bus */
 | |
|     spapr->vio_bus = spapr_vio_bus_init();
 | |
| 
 | |
|     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
 | |
|         if (serial_hds[i]) {
 | |
|             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* We always have at least the nvram device on VIO */
 | |
|     spapr_create_nvram(spapr);
 | |
| 
 | |
|     /* Set up PCI */
 | |
|     spapr_pci_rtas_init();
 | |
| 
 | |
|     phb = spapr_create_phb(spapr, 0);
 | |
| 
 | |
|     for (i = 0; i < nb_nics; i++) {
 | |
|         NICInfo *nd = &nd_table[i];
 | |
| 
 | |
|         if (!nd->model) {
 | |
|             nd->model = g_strdup("ibmveth");
 | |
|         }
 | |
| 
 | |
|         if (strcmp(nd->model, "ibmveth") == 0) {
 | |
|             spapr_vlan_create(spapr->vio_bus, nd);
 | |
|         } else {
 | |
|             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
 | |
|         spapr_vscsi_create(spapr->vio_bus);
 | |
|     }
 | |
| 
 | |
|     /* Graphics */
 | |
|     if (spapr_vga_init(phb->bus, &error_fatal)) {
 | |
|         spapr->has_graphics = true;
 | |
|         machine->usb |= defaults_enabled() && !machine->usb_disabled;
 | |
|     }
 | |
| 
 | |
|     if (machine->usb) {
 | |
|         if (smc->use_ohci_by_default) {
 | |
|             pci_create_simple(phb->bus, -1, "pci-ohci");
 | |
|         } else {
 | |
|             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
 | |
|         }
 | |
| 
 | |
|         if (spapr->has_graphics) {
 | |
|             USBBus *usb_bus = usb_bus_find(-1);
 | |
| 
 | |
|             usb_create_simple(usb_bus, "usb-kbd");
 | |
|             usb_create_simple(usb_bus, "usb-mouse");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
 | |
|         error_report(
 | |
|             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
 | |
|             MIN_RMA_SLOF);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     if (kernel_filename) {
 | |
|         uint64_t lowaddr = 0;
 | |
| 
 | |
|         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
 | |
|                                       NULL, NULL, &lowaddr, NULL, 1,
 | |
|                                       PPC_ELF_MACHINE, 0, 0);
 | |
|         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
 | |
|             spapr->kernel_size = load_elf(kernel_filename,
 | |
|                                           translate_kernel_address, NULL, NULL,
 | |
|                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
 | |
|                                           0, 0);
 | |
|             spapr->kernel_le = spapr->kernel_size > 0;
 | |
|         }
 | |
|         if (spapr->kernel_size < 0) {
 | |
|             error_report("error loading %s: %s", kernel_filename,
 | |
|                          load_elf_strerror(spapr->kernel_size));
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         /* load initrd */
 | |
|         if (initrd_filename) {
 | |
|             /* Try to locate the initrd in the gap between the kernel
 | |
|              * and the firmware. Add a bit of space just in case
 | |
|              */
 | |
|             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
 | |
|                                   + 0x1ffff) & ~0xffff;
 | |
|             spapr->initrd_size = load_image_targphys(initrd_filename,
 | |
|                                                      spapr->initrd_base,
 | |
|                                                      load_limit
 | |
|                                                      - spapr->initrd_base);
 | |
|             if (spapr->initrd_size < 0) {
 | |
|                 error_report("could not load initial ram disk '%s'",
 | |
|                              initrd_filename);
 | |
|                 exit(1);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (bios_name == NULL) {
 | |
|         bios_name = FW_FILE_NAME;
 | |
|     }
 | |
|     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
 | |
|     if (!filename) {
 | |
|         error_report("Could not find LPAR firmware '%s'", bios_name);
 | |
|         exit(1);
 | |
|     }
 | |
|     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
 | |
|     if (fw_size <= 0) {
 | |
|         error_report("Could not load LPAR firmware '%s'", filename);
 | |
|         exit(1);
 | |
|     }
 | |
|     g_free(filename);
 | |
| 
 | |
|     /* FIXME: Should register things through the MachineState's qdev
 | |
|      * interface, this is a legacy from the sPAPREnvironment structure
 | |
|      * which predated MachineState but had a similar function */
 | |
|     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
 | |
|     register_savevm_live(NULL, "spapr/htab", -1, 1,
 | |
|                          &savevm_htab_handlers, spapr);
 | |
| 
 | |
|     qemu_register_boot_set(spapr_boot_set, spapr);
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         /* to stop and start vmclock */
 | |
|         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
 | |
|                                          &spapr->tb);
 | |
| 
 | |
|         kvmppc_spapr_enable_inkernel_multitce();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int spapr_kvm_type(const char *vm_type)
 | |
| {
 | |
|     if (!vm_type) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (!strcmp(vm_type, "HV")) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (!strcmp(vm_type, "PR")) {
 | |
|         return 2;
 | |
|     }
 | |
| 
 | |
|     error_report("Unknown kvm-type specified '%s'", vm_type);
 | |
|     exit(1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Implementation of an interface to adjust firmware path
 | |
|  * for the bootindex property handling.
 | |
|  */
 | |
| static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
 | |
|                                    DeviceState *dev)
 | |
| {
 | |
| #define CAST(type, obj, name) \
 | |
|     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
 | |
|     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
 | |
|     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
 | |
|     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
 | |
| 
 | |
|     if (d) {
 | |
|         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
 | |
|         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
 | |
|         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
 | |
| 
 | |
|         if (spapr) {
 | |
|             /*
 | |
|              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
 | |
|              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
 | |
|              * in the top 16 bits of the 64-bit LUN
 | |
|              */
 | |
|             unsigned id = 0x8000 | (d->id << 8) | d->lun;
 | |
|             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
 | |
|                                    (uint64_t)id << 48);
 | |
|         } else if (virtio) {
 | |
|             /*
 | |
|              * We use SRP luns of the form 01000000 | (target << 8) | lun
 | |
|              * in the top 32 bits of the 64-bit LUN
 | |
|              * Note: the quote above is from SLOF and it is wrong,
 | |
|              * the actual binding is:
 | |
|              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
 | |
|              */
 | |
|             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
 | |
|             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
 | |
|                                    (uint64_t)id << 32);
 | |
|         } else if (usb) {
 | |
|             /*
 | |
|              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
 | |
|              * in the top 32 bits of the 64-bit LUN
 | |
|              */
 | |
|             unsigned usb_port = atoi(usb->port->path);
 | |
|             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
 | |
|             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
 | |
|                                    (uint64_t)id << 32);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * SLOF probes the USB devices, and if it recognizes that the device is a
 | |
|      * storage device, it changes its name to "storage" instead of "usb-host",
 | |
|      * and additionally adds a child node for the SCSI LUN, so the correct
 | |
|      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
 | |
|      */
 | |
|     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
 | |
|         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
 | |
|         if (usb_host_dev_is_scsi_storage(usbdev)) {
 | |
|             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (phb) {
 | |
|         /* Replace "pci" with "pci@800000020000000" */
 | |
|         return g_strdup_printf("pci@%"PRIX64, phb->buid);
 | |
|     }
 | |
| 
 | |
|     if (vsc) {
 | |
|         /* Same logic as virtio above */
 | |
|         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
 | |
|         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
 | |
|     }
 | |
| 
 | |
|     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
 | |
|         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
 | |
|         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
 | |
|         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static char *spapr_get_kvm_type(Object *obj, Error **errp)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     return g_strdup(spapr->kvm_type);
 | |
| }
 | |
| 
 | |
| static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     g_free(spapr->kvm_type);
 | |
|     spapr->kvm_type = g_strdup(value);
 | |
| }
 | |
| 
 | |
| static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     return spapr->use_hotplug_event_source;
 | |
| }
 | |
| 
 | |
| static void spapr_set_modern_hotplug_events(Object *obj, bool value,
 | |
|                                             Error **errp)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     spapr->use_hotplug_event_source = value;
 | |
| }
 | |
| 
 | |
| static char *spapr_get_resize_hpt(Object *obj, Error **errp)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     switch (spapr->resize_hpt) {
 | |
|     case SPAPR_RESIZE_HPT_DEFAULT:
 | |
|         return g_strdup("default");
 | |
|     case SPAPR_RESIZE_HPT_DISABLED:
 | |
|         return g_strdup("disabled");
 | |
|     case SPAPR_RESIZE_HPT_ENABLED:
 | |
|         return g_strdup("enabled");
 | |
|     case SPAPR_RESIZE_HPT_REQUIRED:
 | |
|         return g_strdup("required");
 | |
|     }
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| 
 | |
| static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     if (strcmp(value, "default") == 0) {
 | |
|         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
 | |
|     } else if (strcmp(value, "disabled") == 0) {
 | |
|         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
 | |
|     } else if (strcmp(value, "enabled") == 0) {
 | |
|         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
 | |
|     } else if (strcmp(value, "required") == 0) {
 | |
|         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
 | |
|     } else {
 | |
|         error_setg(errp, "Bad value for \"resize-hpt\" property");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
 | |
|                                    void *opaque, Error **errp)
 | |
| {
 | |
|     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
 | |
| }
 | |
| 
 | |
| static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
 | |
|                                    void *opaque, Error **errp)
 | |
| {
 | |
|     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
 | |
| }
 | |
| 
 | |
| static void spapr_machine_initfn(Object *obj)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     spapr->htab_fd = -1;
 | |
|     spapr->use_hotplug_event_source = true;
 | |
|     object_property_add_str(obj, "kvm-type",
 | |
|                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
 | |
|     object_property_set_description(obj, "kvm-type",
 | |
|                                     "Specifies the KVM virtualization mode (HV, PR)",
 | |
|                                     NULL);
 | |
|     object_property_add_bool(obj, "modern-hotplug-events",
 | |
|                             spapr_get_modern_hotplug_events,
 | |
|                             spapr_set_modern_hotplug_events,
 | |
|                             NULL);
 | |
|     object_property_set_description(obj, "modern-hotplug-events",
 | |
|                                     "Use dedicated hotplug event mechanism in"
 | |
|                                     " place of standard EPOW events when possible"
 | |
|                                     " (required for memory hot-unplug support)",
 | |
|                                     NULL);
 | |
| 
 | |
|     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
 | |
|                             "Maximum permitted CPU compatibility mode",
 | |
|                             &error_fatal);
 | |
| 
 | |
|     object_property_add_str(obj, "resize-hpt",
 | |
|                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
 | |
|     object_property_set_description(obj, "resize-hpt",
 | |
|                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
 | |
|                                     NULL);
 | |
|     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
 | |
|                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
 | |
|     object_property_set_description(obj, "vsmt",
 | |
|                                     "Virtual SMT: KVM behaves as if this were"
 | |
|                                     " the host's SMT mode", &error_abort);
 | |
| }
 | |
| 
 | |
| static void spapr_machine_finalizefn(Object *obj)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     g_free(spapr->kvm_type);
 | |
| }
 | |
| 
 | |
| void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
 | |
| {
 | |
|     cpu_synchronize_state(cs);
 | |
|     ppc_cpu_do_system_reset(cs);
 | |
| }
 | |
| 
 | |
| static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
 | |
| {
 | |
|     CPUState *cs;
 | |
| 
 | |
|     CPU_FOREACH(cs) {
 | |
|         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
 | |
|                            uint32_t node, bool dedicated_hp_event_source,
 | |
|                            Error **errp)
 | |
| {
 | |
|     sPAPRDRConnector *drc;
 | |
|     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     int i, fdt_offset, fdt_size;
 | |
|     void *fdt;
 | |
|     uint64_t addr = addr_start;
 | |
|     bool hotplugged = spapr_drc_hotplugged(dev);
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     for (i = 0; i < nr_lmbs; i++) {
 | |
|         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
 | |
|                               addr / SPAPR_MEMORY_BLOCK_SIZE);
 | |
|         g_assert(drc);
 | |
| 
 | |
|         fdt = create_device_tree(&fdt_size);
 | |
|         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
 | |
|                                                 SPAPR_MEMORY_BLOCK_SIZE);
 | |
| 
 | |
|         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
 | |
|         if (local_err) {
 | |
|             while (addr > addr_start) {
 | |
|                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
 | |
|                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
 | |
|                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
 | |
|                 spapr_drc_detach(drc);
 | |
|             }
 | |
|             g_free(fdt);
 | |
|             error_propagate(errp, local_err);
 | |
|             return;
 | |
|         }
 | |
|         if (!hotplugged) {
 | |
|             spapr_drc_reset(drc);
 | |
|         }
 | |
|         addr += SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     }
 | |
|     /* send hotplug notification to the
 | |
|      * guest only in case of hotplugged memory
 | |
|      */
 | |
|     if (hotplugged) {
 | |
|         if (dedicated_hp_event_source) {
 | |
|             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
 | |
|                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
 | |
|             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
 | |
|                                                    nr_lmbs,
 | |
|                                                    spapr_drc_index(drc));
 | |
|         } else {
 | |
|             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
 | |
|                                            nr_lmbs);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
 | |
|                               uint32_t node, Error **errp)
 | |
| {
 | |
|     Error *local_err = NULL;
 | |
|     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
 | |
|     PCDIMMDevice *dimm = PC_DIMM(dev);
 | |
|     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
 | |
|     MemoryRegion *mr;
 | |
|     uint64_t align, size, addr;
 | |
| 
 | |
|     mr = ddc->get_memory_region(dimm, &local_err);
 | |
|     if (local_err) {
 | |
|         goto out;
 | |
|     }
 | |
|     align = memory_region_get_alignment(mr);
 | |
|     size = memory_region_size(mr);
 | |
| 
 | |
|     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
 | |
|     if (local_err) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     addr = object_property_get_uint(OBJECT(dimm),
 | |
|                                     PC_DIMM_ADDR_PROP, &local_err);
 | |
|     if (local_err) {
 | |
|         goto out_unplug;
 | |
|     }
 | |
| 
 | |
|     spapr_add_lmbs(dev, addr, size, node,
 | |
|                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
 | |
|                    &local_err);
 | |
|     if (local_err) {
 | |
|         goto out_unplug;
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| out_unplug:
 | |
|     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
 | |
| out:
 | |
|     error_propagate(errp, local_err);
 | |
| }
 | |
| 
 | |
| static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
 | |
|                                   Error **errp)
 | |
| {
 | |
|     PCDIMMDevice *dimm = PC_DIMM(dev);
 | |
|     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
 | |
|     MemoryRegion *mr;
 | |
|     uint64_t size;
 | |
|     char *mem_dev;
 | |
| 
 | |
|     mr = ddc->get_memory_region(dimm, errp);
 | |
|     if (!mr) {
 | |
|         return;
 | |
|     }
 | |
|     size = memory_region_size(mr);
 | |
| 
 | |
|     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
 | |
|         error_setg(errp, "Hotplugged memory size must be a multiple of "
 | |
|                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
 | |
|     if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
 | |
|         error_setg(errp, "Memory backend has bad page size. "
 | |
|                    "Use 'memory-backend-file' with correct mem-path.");
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
| out:
 | |
|     g_free(mem_dev);
 | |
| }
 | |
| 
 | |
| struct sPAPRDIMMState {
 | |
|     PCDIMMDevice *dimm;
 | |
|     uint32_t nr_lmbs;
 | |
|     QTAILQ_ENTRY(sPAPRDIMMState) next;
 | |
| };
 | |
| 
 | |
| static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
 | |
|                                                        PCDIMMDevice *dimm)
 | |
| {
 | |
|     sPAPRDIMMState *dimm_state = NULL;
 | |
| 
 | |
|     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
 | |
|         if (dimm_state->dimm == dimm) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return dimm_state;
 | |
| }
 | |
| 
 | |
| static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
 | |
|                                                       uint32_t nr_lmbs,
 | |
|                                                       PCDIMMDevice *dimm)
 | |
| {
 | |
|     sPAPRDIMMState *ds = NULL;
 | |
| 
 | |
|     /*
 | |
|      * If this request is for a DIMM whose removal had failed earlier
 | |
|      * (due to guest's refusal to remove the LMBs), we would have this
 | |
|      * dimm already in the pending_dimm_unplugs list. In that
 | |
|      * case don't add again.
 | |
|      */
 | |
|     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
 | |
|     if (!ds) {
 | |
|         ds = g_malloc0(sizeof(sPAPRDIMMState));
 | |
|         ds->nr_lmbs = nr_lmbs;
 | |
|         ds->dimm = dimm;
 | |
|         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
 | |
|     }
 | |
|     return ds;
 | |
| }
 | |
| 
 | |
| static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
 | |
|                                               sPAPRDIMMState *dimm_state)
 | |
| {
 | |
|     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
 | |
|     g_free(dimm_state);
 | |
| }
 | |
| 
 | |
| static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
 | |
|                                                         PCDIMMDevice *dimm)
 | |
| {
 | |
|     sPAPRDRConnector *drc;
 | |
|     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
 | |
|     MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
 | |
|     uint64_t size = memory_region_size(mr);
 | |
|     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     uint32_t avail_lmbs = 0;
 | |
|     uint64_t addr_start, addr;
 | |
|     int i;
 | |
| 
 | |
|     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
 | |
|                                          &error_abort);
 | |
| 
 | |
|     addr = addr_start;
 | |
|     for (i = 0; i < nr_lmbs; i++) {
 | |
|         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
 | |
|                               addr / SPAPR_MEMORY_BLOCK_SIZE);
 | |
|         g_assert(drc);
 | |
|         if (drc->dev) {
 | |
|             avail_lmbs++;
 | |
|         }
 | |
|         addr += SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     }
 | |
| 
 | |
|     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
 | |
| }
 | |
| 
 | |
| /* Callback to be called during DRC release. */
 | |
| void spapr_lmb_release(DeviceState *dev)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
 | |
|     PCDIMMDevice *dimm = PC_DIMM(dev);
 | |
|     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
 | |
|     MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
 | |
|     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
 | |
| 
 | |
|     /* This information will get lost if a migration occurs
 | |
|      * during the unplug process. In this case recover it. */
 | |
|     if (ds == NULL) {
 | |
|         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
 | |
|         g_assert(ds);
 | |
|         /* The DRC being examined by the caller at least must be counted */
 | |
|         g_assert(ds->nr_lmbs);
 | |
|     }
 | |
| 
 | |
|     if (--ds->nr_lmbs) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     spapr_pending_dimm_unplugs_remove(spapr, ds);
 | |
| 
 | |
|     /*
 | |
|      * Now that all the LMBs have been removed by the guest, call the
 | |
|      * pc-dimm unplug handler to cleanup up the pc-dimm device.
 | |
|      */
 | |
|     pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
 | |
|     object_unparent(OBJECT(dev));
 | |
| }
 | |
| 
 | |
| static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
 | |
|                                         DeviceState *dev, Error **errp)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
 | |
|     Error *local_err = NULL;
 | |
|     PCDIMMDevice *dimm = PC_DIMM(dev);
 | |
|     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
 | |
|     MemoryRegion *mr;
 | |
|     uint32_t nr_lmbs;
 | |
|     uint64_t size, addr_start, addr;
 | |
|     int i;
 | |
|     sPAPRDRConnector *drc;
 | |
| 
 | |
|     mr = ddc->get_memory_region(dimm, &local_err);
 | |
|     if (local_err) {
 | |
|         goto out;
 | |
|     }
 | |
|     size = memory_region_size(mr);
 | |
|     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
 | |
| 
 | |
|     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
 | |
|                                          &local_err);
 | |
|     if (local_err) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
 | |
| 
 | |
|     addr = addr_start;
 | |
|     for (i = 0; i < nr_lmbs; i++) {
 | |
|         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
 | |
|                               addr / SPAPR_MEMORY_BLOCK_SIZE);
 | |
|         g_assert(drc);
 | |
| 
 | |
|         spapr_drc_detach(drc);
 | |
|         addr += SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     }
 | |
| 
 | |
|     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
 | |
|                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
 | |
|     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
 | |
|                                               nr_lmbs, spapr_drc_index(drc));
 | |
| out:
 | |
|     error_propagate(errp, local_err);
 | |
| }
 | |
| 
 | |
| static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
 | |
|                                            sPAPRMachineState *spapr)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     DeviceClass *dc = DEVICE_GET_CLASS(cs);
 | |
|     int id = spapr_vcpu_id(cpu);
 | |
|     void *fdt;
 | |
|     int offset, fdt_size;
 | |
|     char *nodename;
 | |
| 
 | |
|     fdt = create_device_tree(&fdt_size);
 | |
|     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
 | |
|     offset = fdt_add_subnode(fdt, 0, nodename);
 | |
| 
 | |
|     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
 | |
|     g_free(nodename);
 | |
| 
 | |
|     *fdt_offset = offset;
 | |
|     return fdt;
 | |
| }
 | |
| 
 | |
| /* Callback to be called during DRC release. */
 | |
| void spapr_core_release(DeviceState *dev)
 | |
| {
 | |
|     MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
 | |
|     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
 | |
|     CPUCore *cc = CPU_CORE(dev);
 | |
|     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
 | |
| 
 | |
|     if (smc->pre_2_10_has_unused_icps) {
 | |
|         sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
 | |
|         sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
 | |
|         const char *typename = object_class_get_name(scc->cpu_class);
 | |
|         size_t size = object_type_get_instance_size(typename);
 | |
|         int i;
 | |
| 
 | |
|         for (i = 0; i < cc->nr_threads; i++) {
 | |
|             CPUState *cs = CPU(sc->threads + i * size);
 | |
| 
 | |
|             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     assert(core_slot);
 | |
|     core_slot->cpu = NULL;
 | |
|     object_unparent(OBJECT(dev));
 | |
| }
 | |
| 
 | |
| static
 | |
| void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
 | |
|                                Error **errp)
 | |
| {
 | |
|     int index;
 | |
|     sPAPRDRConnector *drc;
 | |
|     CPUCore *cc = CPU_CORE(dev);
 | |
|     int smt = kvmppc_smt_threads();
 | |
| 
 | |
|     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
 | |
|         error_setg(errp, "Unable to find CPU core with core-id: %d",
 | |
|                    cc->core_id);
 | |
|         return;
 | |
|     }
 | |
|     if (index == 0) {
 | |
|         error_setg(errp, "Boot CPU core may not be unplugged");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
 | |
|     g_assert(drc);
 | |
| 
 | |
|     spapr_drc_detach(drc);
 | |
| 
 | |
|     spapr_hotplug_req_remove_by_index(drc);
 | |
| }
 | |
| 
 | |
| static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
 | |
|                             Error **errp)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(spapr);
 | |
|     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
|     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
 | |
|     CPUCore *cc = CPU_CORE(dev);
 | |
|     CPUState *cs = CPU(core->threads);
 | |
|     sPAPRDRConnector *drc;
 | |
|     Error *local_err = NULL;
 | |
|     int smt = kvmppc_smt_threads();
 | |
|     CPUArchId *core_slot;
 | |
|     int index;
 | |
|     bool hotplugged = spapr_drc_hotplugged(dev);
 | |
| 
 | |
|     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
 | |
|     if (!core_slot) {
 | |
|         error_setg(errp, "Unable to find CPU core with core-id: %d",
 | |
|                    cc->core_id);
 | |
|         return;
 | |
|     }
 | |
|     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
 | |
| 
 | |
|     g_assert(drc || !mc->has_hotpluggable_cpus);
 | |
| 
 | |
|     if (drc) {
 | |
|         void *fdt;
 | |
|         int fdt_offset;
 | |
| 
 | |
|         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
 | |
| 
 | |
|         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
 | |
|         if (local_err) {
 | |
|             g_free(fdt);
 | |
|             error_propagate(errp, local_err);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (hotplugged) {
 | |
|             /*
 | |
|              * Send hotplug notification interrupt to the guest only
 | |
|              * in case of hotplugged CPUs.
 | |
|              */
 | |
|             spapr_hotplug_req_add_by_index(drc);
 | |
|         } else {
 | |
|             spapr_drc_reset(drc);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     core_slot->cpu = OBJECT(dev);
 | |
| 
 | |
|     if (smc->pre_2_10_has_unused_icps) {
 | |
|         sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
 | |
|         const char *typename = object_class_get_name(scc->cpu_class);
 | |
|         size_t size = object_type_get_instance_size(typename);
 | |
|         int i;
 | |
| 
 | |
|         for (i = 0; i < cc->nr_threads; i++) {
 | |
|             sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
 | |
|             void *obj = sc->threads + i * size;
 | |
| 
 | |
|             cs = CPU(obj);
 | |
|             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
 | |
|                                 Error **errp)
 | |
| {
 | |
|     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
 | |
|     Error *local_err = NULL;
 | |
|     CPUCore *cc = CPU_CORE(dev);
 | |
|     char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
 | |
|     const char *type = object_get_typename(OBJECT(dev));
 | |
|     CPUArchId *core_slot;
 | |
|     int index;
 | |
| 
 | |
|     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
 | |
|         error_setg(&local_err, "CPU hotplug not supported for this machine");
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (strcmp(base_core_type, type)) {
 | |
|         error_setg(&local_err, "CPU core type should be %s", base_core_type);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (cc->core_id % smp_threads) {
 | |
|         error_setg(&local_err, "invalid core id %d", cc->core_id);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * In general we should have homogeneous threads-per-core, but old
 | |
|      * (pre hotplug support) machine types allow the last core to have
 | |
|      * reduced threads as a compatibility hack for when we allowed
 | |
|      * total vcpus not a multiple of threads-per-core.
 | |
|      */
 | |
|     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
 | |
|         error_setg(&local_err, "invalid nr-threads %d, must be %d",
 | |
|                    cc->nr_threads, smp_threads);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
 | |
|     if (!core_slot) {
 | |
|         error_setg(&local_err, "core id %d out of range", cc->core_id);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (core_slot->cpu) {
 | |
|         error_setg(&local_err, "core %d already populated", cc->core_id);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     numa_cpu_pre_plug(core_slot, dev, &local_err);
 | |
| 
 | |
| out:
 | |
|     g_free(base_core_type);
 | |
|     error_propagate(errp, local_err);
 | |
| }
 | |
| 
 | |
| static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
 | |
|                                       DeviceState *dev, Error **errp)
 | |
| {
 | |
|     MachineState *ms = MACHINE(hotplug_dev);
 | |
|     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
 | |
| 
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
 | |
|         int node;
 | |
| 
 | |
|         if (!smc->dr_lmb_enabled) {
 | |
|             error_setg(errp, "Memory hotplug not supported for this machine");
 | |
|             return;
 | |
|         }
 | |
|         node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
 | |
|         if (*errp) {
 | |
|             return;
 | |
|         }
 | |
|         if (node < 0 || node >= MAX_NODES) {
 | |
|             error_setg(errp, "Invaild node %d", node);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Currently PowerPC kernel doesn't allow hot-adding memory to
 | |
|          * memory-less node, but instead will silently add the memory
 | |
|          * to the first node that has some memory. This causes two
 | |
|          * unexpected behaviours for the user.
 | |
|          *
 | |
|          * - Memory gets hotplugged to a different node than what the user
 | |
|          *   specified.
 | |
|          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
 | |
|          *   to memory-less node, a reboot will set things accordingly
 | |
|          *   and the previously hotplugged memory now ends in the right node.
 | |
|          *   This appears as if some memory moved from one node to another.
 | |
|          *
 | |
|          * So until kernel starts supporting memory hotplug to memory-less
 | |
|          * nodes, just prevent such attempts upfront in QEMU.
 | |
|          */
 | |
|         if (nb_numa_nodes && !numa_info[node].node_mem) {
 | |
|             error_setg(errp, "Can't hotplug memory to memory-less node %d",
 | |
|                        node);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         spapr_memory_plug(hotplug_dev, dev, node, errp);
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
 | |
|         spapr_core_plug(hotplug_dev, dev, errp);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
 | |
|                                                 DeviceState *dev, Error **errp)
 | |
| {
 | |
|     sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(sms);
 | |
| 
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
 | |
|         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
 | |
|             spapr_memory_unplug_request(hotplug_dev, dev, errp);
 | |
|         } else {
 | |
|             /* NOTE: this means there is a window after guest reset, prior to
 | |
|              * CAS negotiation, where unplug requests will fail due to the
 | |
|              * capability not being detected yet. This is a bit different than
 | |
|              * the case with PCI unplug, where the events will be queued and
 | |
|              * eventually handled by the guest after boot
 | |
|              */
 | |
|             error_setg(errp, "Memory hot unplug not supported for this guest");
 | |
|         }
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
 | |
|         if (!mc->has_hotpluggable_cpus) {
 | |
|             error_setg(errp, "CPU hot unplug not supported on this machine");
 | |
|             return;
 | |
|         }
 | |
|         spapr_core_unplug_request(hotplug_dev, dev, errp);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
 | |
|                                           DeviceState *dev, Error **errp)
 | |
| {
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
 | |
|         spapr_memory_pre_plug(hotplug_dev, dev, errp);
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
 | |
|         spapr_core_pre_plug(hotplug_dev, dev, errp);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
 | |
|                                                  DeviceState *dev)
 | |
| {
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
 | |
|         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
 | |
|         return HOTPLUG_HANDLER(machine);
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static CpuInstanceProperties
 | |
| spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
 | |
| {
 | |
|     CPUArchId *core_slot;
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(machine);
 | |
| 
 | |
|     /* make sure possible_cpu are intialized */
 | |
|     mc->possible_cpu_arch_ids(machine);
 | |
|     /* get CPU core slot containing thread that matches cpu_index */
 | |
|     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
 | |
|     assert(core_slot);
 | |
|     return core_slot->props;
 | |
| }
 | |
| 
 | |
| static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
 | |
| {
 | |
|     return idx / smp_cores % nb_numa_nodes;
 | |
| }
 | |
| 
 | |
| static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
 | |
| {
 | |
|     int i;
 | |
|     int spapr_max_cores = max_cpus / smp_threads;
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(machine);
 | |
| 
 | |
|     if (!mc->has_hotpluggable_cpus) {
 | |
|         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
 | |
|     }
 | |
|     if (machine->possible_cpus) {
 | |
|         assert(machine->possible_cpus->len == spapr_max_cores);
 | |
|         return machine->possible_cpus;
 | |
|     }
 | |
| 
 | |
|     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
 | |
|                              sizeof(CPUArchId) * spapr_max_cores);
 | |
|     machine->possible_cpus->len = spapr_max_cores;
 | |
|     for (i = 0; i < machine->possible_cpus->len; i++) {
 | |
|         int core_id = i * smp_threads;
 | |
| 
 | |
|         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
 | |
|         machine->possible_cpus->cpus[i].arch_id = core_id;
 | |
|         machine->possible_cpus->cpus[i].props.has_core_id = true;
 | |
|         machine->possible_cpus->cpus[i].props.core_id = core_id;
 | |
|     }
 | |
|     return machine->possible_cpus;
 | |
| }
 | |
| 
 | |
| static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
 | |
|                                 uint64_t *buid, hwaddr *pio,
 | |
|                                 hwaddr *mmio32, hwaddr *mmio64,
 | |
|                                 unsigned n_dma, uint32_t *liobns, Error **errp)
 | |
| {
 | |
|     /*
 | |
|      * New-style PHB window placement.
 | |
|      *
 | |
|      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
 | |
|      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
 | |
|      * windows.
 | |
|      *
 | |
|      * Some guest kernels can't work with MMIO windows above 1<<46
 | |
|      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
 | |
|      *
 | |
|      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
 | |
|      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
 | |
|      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
 | |
|      * 1TiB 64-bit MMIO windows for each PHB.
 | |
|      */
 | |
|     const uint64_t base_buid = 0x800000020000000ULL;
 | |
| #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
 | |
|                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
 | |
|     int i;
 | |
| 
 | |
|     /* Sanity check natural alignments */
 | |
|     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
 | |
|     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
 | |
|     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
 | |
|     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
 | |
|     /* Sanity check bounds */
 | |
|     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
 | |
|                       SPAPR_PCI_MEM32_WIN_SIZE);
 | |
|     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
 | |
|                       SPAPR_PCI_MEM64_WIN_SIZE);
 | |
| 
 | |
|     if (index >= SPAPR_MAX_PHBS) {
 | |
|         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
 | |
|                    SPAPR_MAX_PHBS - 1);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     *buid = base_buid + index;
 | |
|     for (i = 0; i < n_dma; ++i) {
 | |
|         liobns[i] = SPAPR_PCI_LIOBN(index, i);
 | |
|     }
 | |
| 
 | |
|     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
 | |
|     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
 | |
|     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
 | |
| }
 | |
| 
 | |
| static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
 | |
| 
 | |
|     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
 | |
| }
 | |
| 
 | |
| static void spapr_ics_resend(XICSFabric *dev)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
 | |
| 
 | |
|     ics_resend(spapr->ics);
 | |
| }
 | |
| 
 | |
| static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
 | |
| {
 | |
|     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
 | |
| 
 | |
|     return cpu ? ICP(cpu->intc) : NULL;
 | |
| }
 | |
| 
 | |
| static void spapr_pic_print_info(InterruptStatsProvider *obj,
 | |
|                                  Monitor *mon)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
 | |
|     CPUState *cs;
 | |
| 
 | |
|     CPU_FOREACH(cs) {
 | |
|         PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
| 
 | |
|         icp_pic_print_info(ICP(cpu->intc), mon);
 | |
|     }
 | |
| 
 | |
|     ics_pic_print_info(spapr->ics, mon);
 | |
| }
 | |
| 
 | |
| int spapr_vcpu_id(PowerPCCPU *cpu)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         return kvm_arch_vcpu_id(cs);
 | |
|     } else {
 | |
|         return cs->cpu_index;
 | |
|     }
 | |
| }
 | |
| 
 | |
| PowerPCCPU *spapr_find_cpu(int vcpu_id)
 | |
| {
 | |
|     CPUState *cs;
 | |
| 
 | |
|     CPU_FOREACH(cs) {
 | |
|         PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
| 
 | |
|         if (spapr_vcpu_id(cpu) == vcpu_id) {
 | |
|             return cpu;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static void spapr_machine_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     MachineClass *mc = MACHINE_CLASS(oc);
 | |
|     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
 | |
|     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
 | |
|     NMIClass *nc = NMI_CLASS(oc);
 | |
|     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
 | |
|     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
 | |
|     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
 | |
|     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
 | |
| 
 | |
|     mc->desc = "pSeries Logical Partition (PAPR compliant)";
 | |
| 
 | |
|     /*
 | |
|      * We set up the default / latest behaviour here.  The class_init
 | |
|      * functions for the specific versioned machine types can override
 | |
|      * these details for backwards compatibility
 | |
|      */
 | |
|     mc->init = ppc_spapr_init;
 | |
|     mc->reset = ppc_spapr_reset;
 | |
|     mc->block_default_type = IF_SCSI;
 | |
|     mc->max_cpus = 1024;
 | |
|     mc->no_parallel = 1;
 | |
|     mc->default_boot_order = "";
 | |
|     mc->default_ram_size = 512 * M_BYTE;
 | |
|     mc->kvm_type = spapr_kvm_type;
 | |
|     mc->has_dynamic_sysbus = true;
 | |
|     mc->pci_allow_0_address = true;
 | |
|     mc->get_hotplug_handler = spapr_get_hotplug_handler;
 | |
|     hc->pre_plug = spapr_machine_device_pre_plug;
 | |
|     hc->plug = spapr_machine_device_plug;
 | |
|     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
 | |
|     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
 | |
|     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
 | |
|     hc->unplug_request = spapr_machine_device_unplug_request;
 | |
| 
 | |
|     smc->dr_lmb_enabled = true;
 | |
|     smc->tcg_default_cpu = "POWER8";
 | |
|     mc->has_hotpluggable_cpus = true;
 | |
|     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
 | |
|     fwc->get_dev_path = spapr_get_fw_dev_path;
 | |
|     nc->nmi_monitor_handler = spapr_nmi;
 | |
|     smc->phb_placement = spapr_phb_placement;
 | |
|     vhc->hypercall = emulate_spapr_hypercall;
 | |
|     vhc->hpt_mask = spapr_hpt_mask;
 | |
|     vhc->map_hptes = spapr_map_hptes;
 | |
|     vhc->unmap_hptes = spapr_unmap_hptes;
 | |
|     vhc->store_hpte = spapr_store_hpte;
 | |
|     vhc->get_patbe = spapr_get_patbe;
 | |
|     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
 | |
|     xic->ics_get = spapr_ics_get;
 | |
|     xic->ics_resend = spapr_ics_resend;
 | |
|     xic->icp_get = spapr_icp_get;
 | |
|     ispc->print_info = spapr_pic_print_info;
 | |
|     /* Force NUMA node memory size to be a multiple of
 | |
|      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
 | |
|      * in which LMBs are represented and hot-added
 | |
|      */
 | |
|     mc->numa_mem_align_shift = 28;
 | |
| }
 | |
| 
 | |
| static const TypeInfo spapr_machine_info = {
 | |
|     .name          = TYPE_SPAPR_MACHINE,
 | |
|     .parent        = TYPE_MACHINE,
 | |
|     .abstract      = true,
 | |
|     .instance_size = sizeof(sPAPRMachineState),
 | |
|     .instance_init = spapr_machine_initfn,
 | |
|     .instance_finalize = spapr_machine_finalizefn,
 | |
|     .class_size    = sizeof(sPAPRMachineClass),
 | |
|     .class_init    = spapr_machine_class_init,
 | |
|     .interfaces = (InterfaceInfo[]) {
 | |
|         { TYPE_FW_PATH_PROVIDER },
 | |
|         { TYPE_NMI },
 | |
|         { TYPE_HOTPLUG_HANDLER },
 | |
|         { TYPE_PPC_VIRTUAL_HYPERVISOR },
 | |
|         { TYPE_XICS_FABRIC },
 | |
|         { TYPE_INTERRUPT_STATS_PROVIDER },
 | |
|         { }
 | |
|     },
 | |
| };
 | |
| 
 | |
| #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
 | |
|     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
 | |
|                                                     void *data)      \
 | |
|     {                                                                \
 | |
|         MachineClass *mc = MACHINE_CLASS(oc);                        \
 | |
|         spapr_machine_##suffix##_class_options(mc);                  \
 | |
|         if (latest) {                                                \
 | |
|             mc->alias = "pseries";                                   \
 | |
|             mc->is_default = 1;                                      \
 | |
|         }                                                            \
 | |
|     }                                                                \
 | |
|     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
 | |
|     {                                                                \
 | |
|         MachineState *machine = MACHINE(obj);                        \
 | |
|         spapr_machine_##suffix##_instance_options(machine);          \
 | |
|     }                                                                \
 | |
|     static const TypeInfo spapr_machine_##suffix##_info = {          \
 | |
|         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
 | |
|         .parent = TYPE_SPAPR_MACHINE,                                \
 | |
|         .class_init = spapr_machine_##suffix##_class_init,           \
 | |
|         .instance_init = spapr_machine_##suffix##_instance_init,     \
 | |
|     };                                                               \
 | |
|     static void spapr_machine_register_##suffix(void)                \
 | |
|     {                                                                \
 | |
|         type_register(&spapr_machine_##suffix##_info);               \
 | |
|     }                                                                \
 | |
|     type_init(spapr_machine_register_##suffix)
 | |
| 
 | |
| /*
 | |
|  * pseries-2.11
 | |
|  */
 | |
| static void spapr_machine_2_11_instance_options(MachineState *machine)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void spapr_machine_2_11_class_options(MachineClass *mc)
 | |
| {
 | |
|     /* Defaults for the latest behaviour inherited from the base class */
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_11, "2.11", true);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.10
 | |
|  */
 | |
| #define SPAPR_COMPAT_2_10                                              \
 | |
|     HW_COMPAT_2_10                                                     \
 | |
| 
 | |
| static void spapr_machine_2_10_instance_options(MachineState *machine)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void spapr_machine_2_10_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_2_11_class_options(mc);
 | |
|     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.9
 | |
|  */
 | |
| #define SPAPR_COMPAT_2_9                                               \
 | |
|     HW_COMPAT_2_9                                                      \
 | |
|     {                                                                  \
 | |
|         .driver = TYPE_POWERPC_CPU,                                    \
 | |
|         .property = "pre-2.10-migration",                              \
 | |
|         .value    = "on",                                              \
 | |
|     },                                                                 \
 | |
| 
 | |
| static void spapr_machine_2_9_instance_options(MachineState *machine)
 | |
| {
 | |
|     spapr_machine_2_10_instance_options(machine);
 | |
| }
 | |
| 
 | |
| static void spapr_machine_2_9_class_options(MachineClass *mc)
 | |
| {
 | |
|     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
| 
 | |
|     spapr_machine_2_10_class_options(mc);
 | |
|     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
 | |
|     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
 | |
|     smc->pre_2_10_has_unused_icps = true;
 | |
|     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.8
 | |
|  */
 | |
| #define SPAPR_COMPAT_2_8                                        \
 | |
|     HW_COMPAT_2_8                                               \
 | |
|     {                                                           \
 | |
|         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
 | |
|         .property = "pcie-extended-configuration-space",        \
 | |
|         .value    = "off",                                      \
 | |
|     },
 | |
| 
 | |
| static void spapr_machine_2_8_instance_options(MachineState *machine)
 | |
| {
 | |
|     spapr_machine_2_9_instance_options(machine);
 | |
| }
 | |
| 
 | |
| static void spapr_machine_2_8_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_2_9_class_options(mc);
 | |
|     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
 | |
|     mc->numa_mem_align_shift = 23;
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.7
 | |
|  */
 | |
| #define SPAPR_COMPAT_2_7                            \
 | |
|     HW_COMPAT_2_7                                   \
 | |
|     {                                               \
 | |
|         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
 | |
|         .property = "mem_win_size",                 \
 | |
|         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
 | |
|     },                                              \
 | |
|     {                                               \
 | |
|         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
 | |
|         .property = "mem64_win_size",               \
 | |
|         .value    = "0",                            \
 | |
|     },                                              \
 | |
|     {                                               \
 | |
|         .driver = TYPE_POWERPC_CPU,                 \
 | |
|         .property = "pre-2.8-migration",            \
 | |
|         .value    = "on",                           \
 | |
|     },                                              \
 | |
|     {                                               \
 | |
|         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
 | |
|         .property = "pre-2.8-migration",            \
 | |
|         .value    = "on",                           \
 | |
|     },
 | |
| 
 | |
| static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
 | |
|                               uint64_t *buid, hwaddr *pio,
 | |
|                               hwaddr *mmio32, hwaddr *mmio64,
 | |
|                               unsigned n_dma, uint32_t *liobns, Error **errp)
 | |
| {
 | |
|     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
 | |
|     const uint64_t base_buid = 0x800000020000000ULL;
 | |
|     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
 | |
|     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
 | |
|     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
 | |
|     const uint32_t max_index = 255;
 | |
|     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
 | |
| 
 | |
|     uint64_t ram_top = MACHINE(spapr)->ram_size;
 | |
|     hwaddr phb0_base, phb_base;
 | |
|     int i;
 | |
| 
 | |
|     /* Do we have hotpluggable memory? */
 | |
|     if (MACHINE(spapr)->maxram_size > ram_top) {
 | |
|         /* Can't just use maxram_size, because there may be an
 | |
|          * alignment gap between normal and hotpluggable memory
 | |
|          * regions */
 | |
|         ram_top = spapr->hotplug_memory.base +
 | |
|             memory_region_size(&spapr->hotplug_memory.mr);
 | |
|     }
 | |
| 
 | |
|     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
 | |
| 
 | |
|     if (index > max_index) {
 | |
|         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
 | |
|                    max_index);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     *buid = base_buid + index;
 | |
|     for (i = 0; i < n_dma; ++i) {
 | |
|         liobns[i] = SPAPR_PCI_LIOBN(index, i);
 | |
|     }
 | |
| 
 | |
|     phb_base = phb0_base + index * phb_spacing;
 | |
|     *pio = phb_base + pio_offset;
 | |
|     *mmio32 = phb_base + mmio_offset;
 | |
|     /*
 | |
|      * We don't set the 64-bit MMIO window, relying on the PHB's
 | |
|      * fallback behaviour of automatically splitting a large "32-bit"
 | |
|      * window into contiguous 32-bit and 64-bit windows
 | |
|      */
 | |
| }
 | |
| 
 | |
| static void spapr_machine_2_7_instance_options(MachineState *machine)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
 | |
| 
 | |
|     spapr_machine_2_8_instance_options(machine);
 | |
|     spapr->use_hotplug_event_source = false;
 | |
| }
 | |
| 
 | |
| static void spapr_machine_2_7_class_options(MachineClass *mc)
 | |
| {
 | |
|     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
| 
 | |
|     spapr_machine_2_8_class_options(mc);
 | |
|     smc->tcg_default_cpu = "POWER7";
 | |
|     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
 | |
|     smc->phb_placement = phb_placement_2_7;
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.6
 | |
|  */
 | |
| #define SPAPR_COMPAT_2_6 \
 | |
|     HW_COMPAT_2_6 \
 | |
|     { \
 | |
|         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
 | |
|         .property = "ddw",\
 | |
|         .value    = stringify(off),\
 | |
|     },
 | |
| 
 | |
| static void spapr_machine_2_6_instance_options(MachineState *machine)
 | |
| {
 | |
|     spapr_machine_2_7_instance_options(machine);
 | |
| }
 | |
| 
 | |
| static void spapr_machine_2_6_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_2_7_class_options(mc);
 | |
|     mc->has_hotpluggable_cpus = false;
 | |
|     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.5
 | |
|  */
 | |
| #define SPAPR_COMPAT_2_5 \
 | |
|     HW_COMPAT_2_5 \
 | |
|     { \
 | |
|         .driver   = "spapr-vlan", \
 | |
|         .property = "use-rx-buffer-pools", \
 | |
|         .value    = "off", \
 | |
|     },
 | |
| 
 | |
| static void spapr_machine_2_5_instance_options(MachineState *machine)
 | |
| {
 | |
|     spapr_machine_2_6_instance_options(machine);
 | |
| }
 | |
| 
 | |
| static void spapr_machine_2_5_class_options(MachineClass *mc)
 | |
| {
 | |
|     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
| 
 | |
|     spapr_machine_2_6_class_options(mc);
 | |
|     smc->use_ohci_by_default = true;
 | |
|     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.4
 | |
|  */
 | |
| #define SPAPR_COMPAT_2_4 \
 | |
|         HW_COMPAT_2_4
 | |
| 
 | |
| static void spapr_machine_2_4_instance_options(MachineState *machine)
 | |
| {
 | |
|     spapr_machine_2_5_instance_options(machine);
 | |
| }
 | |
| 
 | |
| static void spapr_machine_2_4_class_options(MachineClass *mc)
 | |
| {
 | |
|     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
| 
 | |
|     spapr_machine_2_5_class_options(mc);
 | |
|     smc->dr_lmb_enabled = false;
 | |
|     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.3
 | |
|  */
 | |
| #define SPAPR_COMPAT_2_3 \
 | |
|         HW_COMPAT_2_3 \
 | |
|         {\
 | |
|             .driver   = "spapr-pci-host-bridge",\
 | |
|             .property = "dynamic-reconfiguration",\
 | |
|             .value    = "off",\
 | |
|         },
 | |
| 
 | |
| static void spapr_machine_2_3_instance_options(MachineState *machine)
 | |
| {
 | |
|     spapr_machine_2_4_instance_options(machine);
 | |
| }
 | |
| 
 | |
| static void spapr_machine_2_3_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_2_4_class_options(mc);
 | |
|     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
 | |
| }
 | |
| DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.2
 | |
|  */
 | |
| 
 | |
| #define SPAPR_COMPAT_2_2 \
 | |
|         HW_COMPAT_2_2 \
 | |
|         {\
 | |
|             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
 | |
|             .property = "mem_win_size",\
 | |
|             .value    = "0x20000000",\
 | |
|         },
 | |
| 
 | |
| static void spapr_machine_2_2_instance_options(MachineState *machine)
 | |
| {
 | |
|     spapr_machine_2_3_instance_options(machine);
 | |
|     machine->suppress_vmdesc = true;
 | |
| }
 | |
| 
 | |
| static void spapr_machine_2_2_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_2_3_class_options(mc);
 | |
|     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
 | |
| }
 | |
| DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.1
 | |
|  */
 | |
| #define SPAPR_COMPAT_2_1 \
 | |
|         HW_COMPAT_2_1
 | |
| 
 | |
| static void spapr_machine_2_1_instance_options(MachineState *machine)
 | |
| {
 | |
|     spapr_machine_2_2_instance_options(machine);
 | |
| }
 | |
| 
 | |
| static void spapr_machine_2_1_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_2_2_class_options(mc);
 | |
|     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
 | |
| }
 | |
| DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
 | |
| 
 | |
| static void spapr_machine_register_types(void)
 | |
| {
 | |
|     type_register_static(&spapr_machine_info);
 | |
| }
 | |
| 
 | |
| type_init(spapr_machine_register_types)
 |