491 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			491 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  *  Alpha emulation cpu helpers for qemu.
 | |
|  *
 | |
|  *  Copyright (c) 2007 Jocelyn Mayer
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| 
 | |
| #include "cpu.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "fpu/softfloat.h"
 | |
| #include "exec/helper-proto.h"
 | |
| 
 | |
| 
 | |
| #define CONVERT_BIT(X, SRC, DST) \
 | |
|     (SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC))
 | |
| 
 | |
| uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env)
 | |
| {
 | |
|     return (uint64_t)env->fpcr << 32;
 | |
| }
 | |
| 
 | |
| void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val)
 | |
| {
 | |
|     uint32_t fpcr = val >> 32;
 | |
|     uint32_t t = 0;
 | |
| 
 | |
|     t |= CONVERT_BIT(fpcr, FPCR_INED, FPCR_INE);
 | |
|     t |= CONVERT_BIT(fpcr, FPCR_UNFD, FPCR_UNF);
 | |
|     t |= CONVERT_BIT(fpcr, FPCR_OVFD, FPCR_OVF);
 | |
|     t |= CONVERT_BIT(fpcr, FPCR_DZED, FPCR_DZE);
 | |
|     t |= CONVERT_BIT(fpcr, FPCR_INVD, FPCR_INV);
 | |
| 
 | |
|     env->fpcr = fpcr;
 | |
|     env->fpcr_exc_enable = ~t & FPCR_STATUS_MASK;
 | |
| 
 | |
|     switch (fpcr & FPCR_DYN_MASK) {
 | |
|     case FPCR_DYN_NORMAL:
 | |
|     default:
 | |
|         t = float_round_nearest_even;
 | |
|         break;
 | |
|     case FPCR_DYN_CHOPPED:
 | |
|         t = float_round_to_zero;
 | |
|         break;
 | |
|     case FPCR_DYN_MINUS:
 | |
|         t = float_round_down;
 | |
|         break;
 | |
|     case FPCR_DYN_PLUS:
 | |
|         t = float_round_up;
 | |
|         break;
 | |
|     }
 | |
|     env->fpcr_dyn_round = t;
 | |
| 
 | |
|     env->fpcr_flush_to_zero = (fpcr & FPCR_UNFD) && (fpcr & FPCR_UNDZ);
 | |
|     env->fp_status.flush_inputs_to_zero = (fpcr & FPCR_DNZ) != 0;
 | |
| }
 | |
| 
 | |
| uint64_t helper_load_fpcr(CPUAlphaState *env)
 | |
| {
 | |
|     return cpu_alpha_load_fpcr(env);
 | |
| }
 | |
| 
 | |
| void helper_store_fpcr(CPUAlphaState *env, uint64_t val)
 | |
| {
 | |
|     cpu_alpha_store_fpcr(env, val);
 | |
| }
 | |
| 
 | |
| static uint64_t *cpu_alpha_addr_gr(CPUAlphaState *env, unsigned reg)
 | |
| {
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     if (env->pal_mode) {
 | |
|         if (reg >= 8 && reg <= 14) {
 | |
|             return &env->shadow[reg - 8];
 | |
|         } else if (reg == 25) {
 | |
|             return &env->shadow[7];
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     return &env->ir[reg];
 | |
| }
 | |
| 
 | |
| uint64_t cpu_alpha_load_gr(CPUAlphaState *env, unsigned reg)
 | |
| {
 | |
|     return *cpu_alpha_addr_gr(env, reg);
 | |
| }
 | |
| 
 | |
| void cpu_alpha_store_gr(CPUAlphaState *env, unsigned reg, uint64_t val)
 | |
| {
 | |
|     *cpu_alpha_addr_gr(env, reg) = val;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| int alpha_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
 | |
|                                int rw, int mmu_idx)
 | |
| {
 | |
|     AlphaCPU *cpu = ALPHA_CPU(cs);
 | |
| 
 | |
|     cs->exception_index = EXCP_MMFAULT;
 | |
|     cpu->env.trap_arg0 = address;
 | |
|     return 1;
 | |
| }
 | |
| #else
 | |
| /* Returns the OSF/1 entMM failure indication, or -1 on success.  */
 | |
| static int get_physical_address(CPUAlphaState *env, target_ulong addr,
 | |
|                                 int prot_need, int mmu_idx,
 | |
|                                 target_ulong *pphys, int *pprot)
 | |
| {
 | |
|     CPUState *cs = CPU(alpha_env_get_cpu(env));
 | |
|     target_long saddr = addr;
 | |
|     target_ulong phys = 0;
 | |
|     target_ulong L1pte, L2pte, L3pte;
 | |
|     target_ulong pt, index;
 | |
|     int prot = 0;
 | |
|     int ret = MM_K_ACV;
 | |
| 
 | |
|     /* Handle physical accesses.  */
 | |
|     if (mmu_idx == MMU_PHYS_IDX) {
 | |
|         phys = addr;
 | |
|         prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|         ret = -1;
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     /* Ensure that the virtual address is properly sign-extended from
 | |
|        the last implemented virtual address bit.  */
 | |
|     if (saddr >> TARGET_VIRT_ADDR_SPACE_BITS != saddr >> 63) {
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     /* Translate the superpage.  */
 | |
|     /* ??? When we do more than emulate Unix PALcode, we'll need to
 | |
|        determine which KSEG is actually active.  */
 | |
|     if (saddr < 0 && ((saddr >> 41) & 3) == 2) {
 | |
|         /* User-space cannot access KSEG addresses.  */
 | |
|         if (mmu_idx != MMU_KERNEL_IDX) {
 | |
|             goto exit;
 | |
|         }
 | |
| 
 | |
|         /* For the benefit of the Typhoon chipset, move bit 40 to bit 43.
 | |
|            We would not do this if the 48-bit KSEG is enabled.  */
 | |
|         phys = saddr & ((1ull << 40) - 1);
 | |
|         phys |= (saddr & (1ull << 40)) << 3;
 | |
| 
 | |
|         prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|         ret = -1;
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     /* Interpret the page table exactly like PALcode does.  */
 | |
| 
 | |
|     pt = env->ptbr;
 | |
| 
 | |
|     /* L1 page table read.  */
 | |
|     index = (addr >> (TARGET_PAGE_BITS + 20)) & 0x3ff;
 | |
|     L1pte = ldq_phys(cs->as, pt + index*8);
 | |
| 
 | |
|     if (unlikely((L1pte & PTE_VALID) == 0)) {
 | |
|         ret = MM_K_TNV;
 | |
|         goto exit;
 | |
|     }
 | |
|     if (unlikely((L1pte & PTE_KRE) == 0)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     pt = L1pte >> 32 << TARGET_PAGE_BITS;
 | |
| 
 | |
|     /* L2 page table read.  */
 | |
|     index = (addr >> (TARGET_PAGE_BITS + 10)) & 0x3ff;
 | |
|     L2pte = ldq_phys(cs->as, pt + index*8);
 | |
| 
 | |
|     if (unlikely((L2pte & PTE_VALID) == 0)) {
 | |
|         ret = MM_K_TNV;
 | |
|         goto exit;
 | |
|     }
 | |
|     if (unlikely((L2pte & PTE_KRE) == 0)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     pt = L2pte >> 32 << TARGET_PAGE_BITS;
 | |
| 
 | |
|     /* L3 page table read.  */
 | |
|     index = (addr >> TARGET_PAGE_BITS) & 0x3ff;
 | |
|     L3pte = ldq_phys(cs->as, pt + index*8);
 | |
| 
 | |
|     phys = L3pte >> 32 << TARGET_PAGE_BITS;
 | |
|     if (unlikely((L3pte & PTE_VALID) == 0)) {
 | |
|         ret = MM_K_TNV;
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
| #if PAGE_READ != 1 || PAGE_WRITE != 2 || PAGE_EXEC != 4
 | |
| # error page bits out of date
 | |
| #endif
 | |
| 
 | |
|     /* Check access violations.  */
 | |
|     if (L3pte & (PTE_KRE << mmu_idx)) {
 | |
|         prot |= PAGE_READ | PAGE_EXEC;
 | |
|     }
 | |
|     if (L3pte & (PTE_KWE << mmu_idx)) {
 | |
|         prot |= PAGE_WRITE;
 | |
|     }
 | |
|     if (unlikely((prot & prot_need) == 0 && prot_need)) {
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     /* Check fault-on-operation violations.  */
 | |
|     prot &= ~(L3pte >> 1);
 | |
|     ret = -1;
 | |
|     if (unlikely((prot & prot_need) == 0)) {
 | |
|         ret = (prot_need & PAGE_EXEC ? MM_K_FOE :
 | |
|                prot_need & PAGE_WRITE ? MM_K_FOW :
 | |
|                prot_need & PAGE_READ ? MM_K_FOR : -1);
 | |
|     }
 | |
| 
 | |
|  exit:
 | |
|     *pphys = phys;
 | |
|     *pprot = prot;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| hwaddr alpha_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 | |
| {
 | |
|     AlphaCPU *cpu = ALPHA_CPU(cs);
 | |
|     target_ulong phys;
 | |
|     int prot, fail;
 | |
| 
 | |
|     fail = get_physical_address(&cpu->env, addr, 0, 0, &phys, &prot);
 | |
|     return (fail >= 0 ? -1 : phys);
 | |
| }
 | |
| 
 | |
| int alpha_cpu_handle_mmu_fault(CPUState *cs, vaddr addr, int rw,
 | |
|                                int mmu_idx)
 | |
| {
 | |
|     AlphaCPU *cpu = ALPHA_CPU(cs);
 | |
|     CPUAlphaState *env = &cpu->env;
 | |
|     target_ulong phys;
 | |
|     int prot, fail;
 | |
| 
 | |
|     fail = get_physical_address(env, addr, 1 << rw, mmu_idx, &phys, &prot);
 | |
|     if (unlikely(fail >= 0)) {
 | |
|         cs->exception_index = EXCP_MMFAULT;
 | |
|         env->trap_arg0 = addr;
 | |
|         env->trap_arg1 = fail;
 | |
|         env->trap_arg2 = (rw == 2 ? -1 : rw);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
 | |
|                  prot, mmu_idx, TARGET_PAGE_SIZE);
 | |
|     return 0;
 | |
| }
 | |
| #endif /* USER_ONLY */
 | |
| 
 | |
| void alpha_cpu_do_interrupt(CPUState *cs)
 | |
| {
 | |
|     AlphaCPU *cpu = ALPHA_CPU(cs);
 | |
|     CPUAlphaState *env = &cpu->env;
 | |
|     int i = cs->exception_index;
 | |
| 
 | |
|     if (qemu_loglevel_mask(CPU_LOG_INT)) {
 | |
|         static int count;
 | |
|         const char *name = "<unknown>";
 | |
| 
 | |
|         switch (i) {
 | |
|         case EXCP_RESET:
 | |
|             name = "reset";
 | |
|             break;
 | |
|         case EXCP_MCHK:
 | |
|             name = "mchk";
 | |
|             break;
 | |
|         case EXCP_SMP_INTERRUPT:
 | |
|             name = "smp_interrupt";
 | |
|             break;
 | |
|         case EXCP_CLK_INTERRUPT:
 | |
|             name = "clk_interrupt";
 | |
|             break;
 | |
|         case EXCP_DEV_INTERRUPT:
 | |
|             name = "dev_interrupt";
 | |
|             break;
 | |
|         case EXCP_MMFAULT:
 | |
|             name = "mmfault";
 | |
|             break;
 | |
|         case EXCP_UNALIGN:
 | |
|             name = "unalign";
 | |
|             break;
 | |
|         case EXCP_OPCDEC:
 | |
|             name = "opcdec";
 | |
|             break;
 | |
|         case EXCP_ARITH:
 | |
|             name = "arith";
 | |
|             break;
 | |
|         case EXCP_FEN:
 | |
|             name = "fen";
 | |
|             break;
 | |
|         case EXCP_CALL_PAL:
 | |
|             name = "call_pal";
 | |
|             break;
 | |
|         }
 | |
|         qemu_log("INT %6d: %s(%#x) cpu=%d pc=%016"
 | |
|                  PRIx64 " sp=%016" PRIx64 "\n",
 | |
|                  ++count, name, env->error_code, cs->cpu_index,
 | |
|                  env->pc, env->ir[IR_SP]);
 | |
|     }
 | |
| 
 | |
|     cs->exception_index = -1;
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     switch (i) {
 | |
|     case EXCP_RESET:
 | |
|         i = 0x0000;
 | |
|         break;
 | |
|     case EXCP_MCHK:
 | |
|         i = 0x0080;
 | |
|         break;
 | |
|     case EXCP_SMP_INTERRUPT:
 | |
|         i = 0x0100;
 | |
|         break;
 | |
|     case EXCP_CLK_INTERRUPT:
 | |
|         i = 0x0180;
 | |
|         break;
 | |
|     case EXCP_DEV_INTERRUPT:
 | |
|         i = 0x0200;
 | |
|         break;
 | |
|     case EXCP_MMFAULT:
 | |
|         i = 0x0280;
 | |
|         break;
 | |
|     case EXCP_UNALIGN:
 | |
|         i = 0x0300;
 | |
|         break;
 | |
|     case EXCP_OPCDEC:
 | |
|         i = 0x0380;
 | |
|         break;
 | |
|     case EXCP_ARITH:
 | |
|         i = 0x0400;
 | |
|         break;
 | |
|     case EXCP_FEN:
 | |
|         i = 0x0480;
 | |
|         break;
 | |
|     case EXCP_CALL_PAL:
 | |
|         i = env->error_code;
 | |
|         /* There are 64 entry points for both privileged and unprivileged,
 | |
|            with bit 0x80 indicating unprivileged.  Each entry point gets
 | |
|            64 bytes to do its job.  */
 | |
|         if (i & 0x80) {
 | |
|             i = 0x2000 + (i - 0x80) * 64;
 | |
|         } else {
 | |
|             i = 0x1000 + i * 64;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         cpu_abort(cs, "Unhandled CPU exception");
 | |
|     }
 | |
| 
 | |
|     /* Remember where the exception happened.  Emulate real hardware in
 | |
|        that the low bit of the PC indicates PALmode.  */
 | |
|     env->exc_addr = env->pc | env->pal_mode;
 | |
| 
 | |
|     /* Continue execution at the PALcode entry point.  */
 | |
|     env->pc = env->palbr + i;
 | |
| 
 | |
|     /* Switch to PALmode.  */
 | |
|     env->pal_mode = 1;
 | |
| #endif /* !USER_ONLY */
 | |
| }
 | |
| 
 | |
| bool alpha_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 | |
| {
 | |
|     AlphaCPU *cpu = ALPHA_CPU(cs);
 | |
|     CPUAlphaState *env = &cpu->env;
 | |
|     int idx = -1;
 | |
| 
 | |
|     /* We never take interrupts while in PALmode.  */
 | |
|     if (env->pal_mode) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /* Fall through the switch, collecting the highest priority
 | |
|        interrupt that isn't masked by the processor status IPL.  */
 | |
|     /* ??? This hard-codes the OSF/1 interrupt levels.  */
 | |
|     switch (env->ps & PS_INT_MASK) {
 | |
|     case 0 ... 3:
 | |
|         if (interrupt_request & CPU_INTERRUPT_HARD) {
 | |
|             idx = EXCP_DEV_INTERRUPT;
 | |
|         }
 | |
|         /* FALLTHRU */
 | |
|     case 4:
 | |
|         if (interrupt_request & CPU_INTERRUPT_TIMER) {
 | |
|             idx = EXCP_CLK_INTERRUPT;
 | |
|         }
 | |
|         /* FALLTHRU */
 | |
|     case 5:
 | |
|         if (interrupt_request & CPU_INTERRUPT_SMP) {
 | |
|             idx = EXCP_SMP_INTERRUPT;
 | |
|         }
 | |
|         /* FALLTHRU */
 | |
|     case 6:
 | |
|         if (interrupt_request & CPU_INTERRUPT_MCHK) {
 | |
|             idx = EXCP_MCHK;
 | |
|         }
 | |
|     }
 | |
|     if (idx >= 0) {
 | |
|         cs->exception_index = idx;
 | |
|         env->error_code = 0;
 | |
|         alpha_cpu_do_interrupt(cs);
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void alpha_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
 | |
|                           int flags)
 | |
| {
 | |
|     static const char *linux_reg_names[] = {
 | |
|         "v0 ", "t0 ", "t1 ", "t2 ", "t3 ", "t4 ", "t5 ", "t6 ",
 | |
|         "t7 ", "s0 ", "s1 ", "s2 ", "s3 ", "s4 ", "s5 ", "fp ",
 | |
|         "a0 ", "a1 ", "a2 ", "a3 ", "a4 ", "a5 ", "t8 ", "t9 ",
 | |
|         "t10", "t11", "ra ", "t12", "at ", "gp ", "sp ", "zero",
 | |
|     };
 | |
|     AlphaCPU *cpu = ALPHA_CPU(cs);
 | |
|     CPUAlphaState *env = &cpu->env;
 | |
|     int i;
 | |
| 
 | |
|     cpu_fprintf(f, "     PC  " TARGET_FMT_lx "      PS  %02x\n",
 | |
|                 env->pc, env->ps);
 | |
|     for (i = 0; i < 31; i++) {
 | |
|         cpu_fprintf(f, "IR%02d %s " TARGET_FMT_lx " ", i,
 | |
|                     linux_reg_names[i], cpu_alpha_load_gr(env, i));
 | |
|         if ((i % 3) == 2)
 | |
|             cpu_fprintf(f, "\n");
 | |
|     }
 | |
| 
 | |
|     cpu_fprintf(f, "lock_a   " TARGET_FMT_lx " lock_v   " TARGET_FMT_lx "\n",
 | |
|                 env->lock_addr, env->lock_value);
 | |
| 
 | |
|     for (i = 0; i < 31; i++) {
 | |
|         cpu_fprintf(f, "FIR%02d    " TARGET_FMT_lx " ", i,
 | |
|                     *((uint64_t *)(&env->fir[i])));
 | |
|         if ((i % 3) == 2)
 | |
|             cpu_fprintf(f, "\n");
 | |
|     }
 | |
|     cpu_fprintf(f, "\n");
 | |
| }
 | |
| 
 | |
| /* This should only be called from translate, via gen_excp.
 | |
|    We expect that ENV->PC has already been updated.  */
 | |
| void QEMU_NORETURN helper_excp(CPUAlphaState *env, int excp, int error)
 | |
| {
 | |
|     AlphaCPU *cpu = alpha_env_get_cpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     cs->exception_index = excp;
 | |
|     env->error_code = error;
 | |
|     cpu_loop_exit(cs);
 | |
| }
 | |
| 
 | |
| /* This may be called from any of the helpers to set up EXCEPTION_INDEX.  */
 | |
| void QEMU_NORETURN dynamic_excp(CPUAlphaState *env, uintptr_t retaddr,
 | |
|                                 int excp, int error)
 | |
| {
 | |
|     AlphaCPU *cpu = alpha_env_get_cpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     cs->exception_index = excp;
 | |
|     env->error_code = error;
 | |
|     if (retaddr) {
 | |
|         cpu_restore_state(cs, retaddr);
 | |
|         /* Floating-point exceptions (our only users) point to the next PC.  */
 | |
|         env->pc += 4;
 | |
|     }
 | |
|     cpu_loop_exit(cs);
 | |
| }
 | |
| 
 | |
| void QEMU_NORETURN arith_excp(CPUAlphaState *env, uintptr_t retaddr,
 | |
|                               int exc, uint64_t mask)
 | |
| {
 | |
|     env->trap_arg0 = exc;
 | |
|     env->trap_arg1 = mask;
 | |
|     dynamic_excp(env, retaddr, EXCP_ARITH, 0);
 | |
| }
 |