504 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			504 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
#ifndef BSWAP_H
 | 
						|
#define BSWAP_H
 | 
						|
 | 
						|
#include "fpu/softfloat.h"
 | 
						|
 | 
						|
#ifdef CONFIG_MACHINE_BSWAP_H
 | 
						|
# include <sys/endian.h>
 | 
						|
# include <machine/bswap.h>
 | 
						|
#elif defined(__FreeBSD__)
 | 
						|
# include <sys/endian.h>
 | 
						|
#elif defined(CONFIG_BYTESWAP_H)
 | 
						|
# include <byteswap.h>
 | 
						|
 | 
						|
static inline uint16_t bswap16(uint16_t x)
 | 
						|
{
 | 
						|
    return bswap_16(x);
 | 
						|
}
 | 
						|
 | 
						|
static inline uint32_t bswap32(uint32_t x)
 | 
						|
{
 | 
						|
    return bswap_32(x);
 | 
						|
}
 | 
						|
 | 
						|
static inline uint64_t bswap64(uint64_t x)
 | 
						|
{
 | 
						|
    return bswap_64(x);
 | 
						|
}
 | 
						|
# else
 | 
						|
static inline uint16_t bswap16(uint16_t x)
 | 
						|
{
 | 
						|
    return (((x & 0x00ff) << 8) |
 | 
						|
            ((x & 0xff00) >> 8));
 | 
						|
}
 | 
						|
 | 
						|
static inline uint32_t bswap32(uint32_t x)
 | 
						|
{
 | 
						|
    return (((x & 0x000000ffU) << 24) |
 | 
						|
            ((x & 0x0000ff00U) <<  8) |
 | 
						|
            ((x & 0x00ff0000U) >>  8) |
 | 
						|
            ((x & 0xff000000U) >> 24));
 | 
						|
}
 | 
						|
 | 
						|
static inline uint64_t bswap64(uint64_t x)
 | 
						|
{
 | 
						|
    return (((x & 0x00000000000000ffULL) << 56) |
 | 
						|
            ((x & 0x000000000000ff00ULL) << 40) |
 | 
						|
            ((x & 0x0000000000ff0000ULL) << 24) |
 | 
						|
            ((x & 0x00000000ff000000ULL) <<  8) |
 | 
						|
            ((x & 0x000000ff00000000ULL) >>  8) |
 | 
						|
            ((x & 0x0000ff0000000000ULL) >> 24) |
 | 
						|
            ((x & 0x00ff000000000000ULL) >> 40) |
 | 
						|
            ((x & 0xff00000000000000ULL) >> 56));
 | 
						|
}
 | 
						|
#endif /* ! CONFIG_MACHINE_BSWAP_H */
 | 
						|
 | 
						|
static inline void bswap16s(uint16_t *s)
 | 
						|
{
 | 
						|
    *s = bswap16(*s);
 | 
						|
}
 | 
						|
 | 
						|
static inline void bswap32s(uint32_t *s)
 | 
						|
{
 | 
						|
    *s = bswap32(*s);
 | 
						|
}
 | 
						|
 | 
						|
static inline void bswap64s(uint64_t *s)
 | 
						|
{
 | 
						|
    *s = bswap64(*s);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(HOST_WORDS_BIGENDIAN)
 | 
						|
#define be_bswap(v, size) (v)
 | 
						|
#define le_bswap(v, size) glue(bswap, size)(v)
 | 
						|
#define be_bswaps(v, size)
 | 
						|
#define le_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
 | 
						|
#else
 | 
						|
#define le_bswap(v, size) (v)
 | 
						|
#define be_bswap(v, size) glue(bswap, size)(v)
 | 
						|
#define le_bswaps(v, size)
 | 
						|
#define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * Endianness conversion functions between host cpu and specified endianness.
 | 
						|
 * (We list the complete set of prototypes produced by the macros below
 | 
						|
 * to assist people who search the headers to find their definitions.)
 | 
						|
 *
 | 
						|
 * uint16_t le16_to_cpu(uint16_t v);
 | 
						|
 * uint32_t le32_to_cpu(uint32_t v);
 | 
						|
 * uint64_t le64_to_cpu(uint64_t v);
 | 
						|
 * uint16_t be16_to_cpu(uint16_t v);
 | 
						|
 * uint32_t be32_to_cpu(uint32_t v);
 | 
						|
 * uint64_t be64_to_cpu(uint64_t v);
 | 
						|
 *
 | 
						|
 * Convert the value @v from the specified format to the native
 | 
						|
 * endianness of the host CPU by byteswapping if necessary, and
 | 
						|
 * return the converted value.
 | 
						|
 *
 | 
						|
 * uint16_t cpu_to_le16(uint16_t v);
 | 
						|
 * uint32_t cpu_to_le32(uint32_t v);
 | 
						|
 * uint64_t cpu_to_le64(uint64_t v);
 | 
						|
 * uint16_t cpu_to_be16(uint16_t v);
 | 
						|
 * uint32_t cpu_to_be32(uint32_t v);
 | 
						|
 * uint64_t cpu_to_be64(uint64_t v);
 | 
						|
 *
 | 
						|
 * Convert the value @v from the native endianness of the host CPU to
 | 
						|
 * the specified format by byteswapping if necessary, and return
 | 
						|
 * the converted value.
 | 
						|
 *
 | 
						|
 * void le16_to_cpus(uint16_t *v);
 | 
						|
 * void le32_to_cpus(uint32_t *v);
 | 
						|
 * void le64_to_cpus(uint64_t *v);
 | 
						|
 * void be16_to_cpus(uint16_t *v);
 | 
						|
 * void be32_to_cpus(uint32_t *v);
 | 
						|
 * void be64_to_cpus(uint64_t *v);
 | 
						|
 *
 | 
						|
 * Do an in-place conversion of the value pointed to by @v from the
 | 
						|
 * specified format to the native endianness of the host CPU.
 | 
						|
 *
 | 
						|
 * void cpu_to_le16s(uint16_t *v);
 | 
						|
 * void cpu_to_le32s(uint32_t *v);
 | 
						|
 * void cpu_to_le64s(uint64_t *v);
 | 
						|
 * void cpu_to_be16s(uint16_t *v);
 | 
						|
 * void cpu_to_be32s(uint32_t *v);
 | 
						|
 * void cpu_to_be64s(uint64_t *v);
 | 
						|
 *
 | 
						|
 * Do an in-place conversion of the value pointed to by @v from the
 | 
						|
 * native endianness of the host CPU to the specified format.
 | 
						|
 *
 | 
						|
 * Both X_to_cpu() and cpu_to_X() perform the same operation; you
 | 
						|
 * should use whichever one is better documenting of the function your
 | 
						|
 * code is performing.
 | 
						|
 *
 | 
						|
 * Do not use these functions for conversion of values which are in guest
 | 
						|
 * memory, since the data may not be sufficiently aligned for the host CPU's
 | 
						|
 * load and store instructions. Instead you should use the ld*_p() and
 | 
						|
 * st*_p() functions, which perform loads and stores of data of any
 | 
						|
 * required size and endianness and handle possible misalignment.
 | 
						|
 */
 | 
						|
 | 
						|
#define CPU_CONVERT(endian, size, type)\
 | 
						|
static inline type endian ## size ## _to_cpu(type v)\
 | 
						|
{\
 | 
						|
    return glue(endian, _bswap)(v, size);\
 | 
						|
}\
 | 
						|
\
 | 
						|
static inline type cpu_to_ ## endian ## size(type v)\
 | 
						|
{\
 | 
						|
    return glue(endian, _bswap)(v, size);\
 | 
						|
}\
 | 
						|
\
 | 
						|
static inline void endian ## size ## _to_cpus(type *p)\
 | 
						|
{\
 | 
						|
    glue(endian, _bswaps)(p, size);\
 | 
						|
}\
 | 
						|
\
 | 
						|
static inline void cpu_to_ ## endian ## size ## s(type *p)\
 | 
						|
{\
 | 
						|
    glue(endian, _bswaps)(p, size);\
 | 
						|
}
 | 
						|
 | 
						|
CPU_CONVERT(be, 16, uint16_t)
 | 
						|
CPU_CONVERT(be, 32, uint32_t)
 | 
						|
CPU_CONVERT(be, 64, uint64_t)
 | 
						|
 | 
						|
CPU_CONVERT(le, 16, uint16_t)
 | 
						|
CPU_CONVERT(le, 32, uint32_t)
 | 
						|
CPU_CONVERT(le, 64, uint64_t)
 | 
						|
 | 
						|
/* len must be one of 1, 2, 4 */
 | 
						|
static inline uint32_t qemu_bswap_len(uint32_t value, int len)
 | 
						|
{
 | 
						|
    return bswap32(value) >> (32 - 8 * len);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Same as cpu_to_le{16,32}, except that gcc will figure the result is
 | 
						|
 * a compile-time constant if you pass in a constant.  So this can be
 | 
						|
 * used to initialize static variables.
 | 
						|
 */
 | 
						|
#if defined(HOST_WORDS_BIGENDIAN)
 | 
						|
# define const_le32(_x)                          \
 | 
						|
    ((((_x) & 0x000000ffU) << 24) |              \
 | 
						|
     (((_x) & 0x0000ff00U) <<  8) |              \
 | 
						|
     (((_x) & 0x00ff0000U) >>  8) |              \
 | 
						|
     (((_x) & 0xff000000U) >> 24))
 | 
						|
# define const_le16(_x)                          \
 | 
						|
    ((((_x) & 0x00ff) << 8) |                    \
 | 
						|
     (((_x) & 0xff00) >> 8))
 | 
						|
#else
 | 
						|
# define const_le32(_x) (_x)
 | 
						|
# define const_le16(_x) (_x)
 | 
						|
#endif
 | 
						|
 | 
						|
/* Unions for reinterpreting between floats and integers.  */
 | 
						|
 | 
						|
typedef union {
 | 
						|
    float32 f;
 | 
						|
    uint32_t l;
 | 
						|
} CPU_FloatU;
 | 
						|
 | 
						|
typedef union {
 | 
						|
    float64 d;
 | 
						|
#if defined(HOST_WORDS_BIGENDIAN)
 | 
						|
    struct {
 | 
						|
        uint32_t upper;
 | 
						|
        uint32_t lower;
 | 
						|
    } l;
 | 
						|
#else
 | 
						|
    struct {
 | 
						|
        uint32_t lower;
 | 
						|
        uint32_t upper;
 | 
						|
    } l;
 | 
						|
#endif
 | 
						|
    uint64_t ll;
 | 
						|
} CPU_DoubleU;
 | 
						|
 | 
						|
typedef union {
 | 
						|
     floatx80 d;
 | 
						|
     struct {
 | 
						|
         uint64_t lower;
 | 
						|
         uint16_t upper;
 | 
						|
     } l;
 | 
						|
} CPU_LDoubleU;
 | 
						|
 | 
						|
typedef union {
 | 
						|
    float128 q;
 | 
						|
#if defined(HOST_WORDS_BIGENDIAN)
 | 
						|
    struct {
 | 
						|
        uint32_t upmost;
 | 
						|
        uint32_t upper;
 | 
						|
        uint32_t lower;
 | 
						|
        uint32_t lowest;
 | 
						|
    } l;
 | 
						|
    struct {
 | 
						|
        uint64_t upper;
 | 
						|
        uint64_t lower;
 | 
						|
    } ll;
 | 
						|
#else
 | 
						|
    struct {
 | 
						|
        uint32_t lowest;
 | 
						|
        uint32_t lower;
 | 
						|
        uint32_t upper;
 | 
						|
        uint32_t upmost;
 | 
						|
    } l;
 | 
						|
    struct {
 | 
						|
        uint64_t lower;
 | 
						|
        uint64_t upper;
 | 
						|
    } ll;
 | 
						|
#endif
 | 
						|
} CPU_QuadU;
 | 
						|
 | 
						|
/* unaligned/endian-independent pointer access */
 | 
						|
 | 
						|
/*
 | 
						|
 * the generic syntax is:
 | 
						|
 *
 | 
						|
 * load: ld{type}{sign}{size}{endian}_p(ptr)
 | 
						|
 *
 | 
						|
 * store: st{type}{size}{endian}_p(ptr, val)
 | 
						|
 *
 | 
						|
 * Note there are small differences with the softmmu access API!
 | 
						|
 *
 | 
						|
 * type is:
 | 
						|
 * (empty): integer access
 | 
						|
 *   f    : float access
 | 
						|
 *
 | 
						|
 * sign is:
 | 
						|
 * (empty): for 32 or 64 bit sizes (including floats and doubles)
 | 
						|
 *   u    : unsigned
 | 
						|
 *   s    : signed
 | 
						|
 *
 | 
						|
 * size is:
 | 
						|
 *   b: 8 bits
 | 
						|
 *   w: 16 bits
 | 
						|
 *   l: 32 bits
 | 
						|
 *   q: 64 bits
 | 
						|
 *
 | 
						|
 * endian is:
 | 
						|
 *   he   : host endian
 | 
						|
 *   be   : big endian
 | 
						|
 *   le   : little endian
 | 
						|
 *   te   : target endian
 | 
						|
 * (except for byte accesses, which have no endian infix).
 | 
						|
 *
 | 
						|
 * The target endian accessors are obviously only available to source
 | 
						|
 * files which are built per-target; they are defined in cpu-all.h.
 | 
						|
 *
 | 
						|
 * In all cases these functions take a host pointer.
 | 
						|
 * For accessors that take a guest address rather than a
 | 
						|
 * host address, see the cpu_{ld,st}_* accessors defined in
 | 
						|
 * cpu_ldst.h.
 | 
						|
 */
 | 
						|
 | 
						|
static inline int ldub_p(const void *ptr)
 | 
						|
{
 | 
						|
    return *(uint8_t *)ptr;
 | 
						|
}
 | 
						|
 | 
						|
static inline int ldsb_p(const void *ptr)
 | 
						|
{
 | 
						|
    return *(int8_t *)ptr;
 | 
						|
}
 | 
						|
 | 
						|
static inline void stb_p(void *ptr, uint8_t v)
 | 
						|
{
 | 
						|
    *(uint8_t *)ptr = v;
 | 
						|
}
 | 
						|
 | 
						|
/* Any compiler worth its salt will turn these memcpy into native unaligned
 | 
						|
   operations.  Thus we don't need to play games with packed attributes, or
 | 
						|
   inline byte-by-byte stores.  */
 | 
						|
 | 
						|
static inline int lduw_he_p(const void *ptr)
 | 
						|
{
 | 
						|
    uint16_t r;
 | 
						|
    memcpy(&r, ptr, sizeof(r));
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static inline int ldsw_he_p(const void *ptr)
 | 
						|
{
 | 
						|
    int16_t r;
 | 
						|
    memcpy(&r, ptr, sizeof(r));
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static inline void stw_he_p(void *ptr, uint16_t v)
 | 
						|
{
 | 
						|
    memcpy(ptr, &v, sizeof(v));
 | 
						|
}
 | 
						|
 | 
						|
static inline int ldl_he_p(const void *ptr)
 | 
						|
{
 | 
						|
    int32_t r;
 | 
						|
    memcpy(&r, ptr, sizeof(r));
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static inline void stl_he_p(void *ptr, uint32_t v)
 | 
						|
{
 | 
						|
    memcpy(ptr, &v, sizeof(v));
 | 
						|
}
 | 
						|
 | 
						|
static inline uint64_t ldq_he_p(const void *ptr)
 | 
						|
{
 | 
						|
    uint64_t r;
 | 
						|
    memcpy(&r, ptr, sizeof(r));
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static inline void stq_he_p(void *ptr, uint64_t v)
 | 
						|
{
 | 
						|
    memcpy(ptr, &v, sizeof(v));
 | 
						|
}
 | 
						|
 | 
						|
static inline int lduw_le_p(const void *ptr)
 | 
						|
{
 | 
						|
    return (uint16_t)le_bswap(lduw_he_p(ptr), 16);
 | 
						|
}
 | 
						|
 | 
						|
static inline int ldsw_le_p(const void *ptr)
 | 
						|
{
 | 
						|
    return (int16_t)le_bswap(lduw_he_p(ptr), 16);
 | 
						|
}
 | 
						|
 | 
						|
static inline int ldl_le_p(const void *ptr)
 | 
						|
{
 | 
						|
    return le_bswap(ldl_he_p(ptr), 32);
 | 
						|
}
 | 
						|
 | 
						|
static inline uint64_t ldq_le_p(const void *ptr)
 | 
						|
{
 | 
						|
    return le_bswap(ldq_he_p(ptr), 64);
 | 
						|
}
 | 
						|
 | 
						|
static inline void stw_le_p(void *ptr, uint16_t v)
 | 
						|
{
 | 
						|
    stw_he_p(ptr, le_bswap(v, 16));
 | 
						|
}
 | 
						|
 | 
						|
static inline void stl_le_p(void *ptr, uint32_t v)
 | 
						|
{
 | 
						|
    stl_he_p(ptr, le_bswap(v, 32));
 | 
						|
}
 | 
						|
 | 
						|
static inline void stq_le_p(void *ptr, uint64_t v)
 | 
						|
{
 | 
						|
    stq_he_p(ptr, le_bswap(v, 64));
 | 
						|
}
 | 
						|
 | 
						|
/* float access */
 | 
						|
 | 
						|
static inline float32 ldfl_le_p(const void *ptr)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
    u.l = ldl_le_p(ptr);
 | 
						|
    return u.f;
 | 
						|
}
 | 
						|
 | 
						|
static inline void stfl_le_p(void *ptr, float32 v)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
    u.f = v;
 | 
						|
    stl_le_p(ptr, u.l);
 | 
						|
}
 | 
						|
 | 
						|
static inline float64 ldfq_le_p(const void *ptr)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
    u.ll = ldq_le_p(ptr);
 | 
						|
    return u.d;
 | 
						|
}
 | 
						|
 | 
						|
static inline void stfq_le_p(void *ptr, float64 v)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
    u.d = v;
 | 
						|
    stq_le_p(ptr, u.ll);
 | 
						|
}
 | 
						|
 | 
						|
static inline int lduw_be_p(const void *ptr)
 | 
						|
{
 | 
						|
    return (uint16_t)be_bswap(lduw_he_p(ptr), 16);
 | 
						|
}
 | 
						|
 | 
						|
static inline int ldsw_be_p(const void *ptr)
 | 
						|
{
 | 
						|
    return (int16_t)be_bswap(lduw_he_p(ptr), 16);
 | 
						|
}
 | 
						|
 | 
						|
static inline int ldl_be_p(const void *ptr)
 | 
						|
{
 | 
						|
    return be_bswap(ldl_he_p(ptr), 32);
 | 
						|
}
 | 
						|
 | 
						|
static inline uint64_t ldq_be_p(const void *ptr)
 | 
						|
{
 | 
						|
    return be_bswap(ldq_he_p(ptr), 64);
 | 
						|
}
 | 
						|
 | 
						|
static inline void stw_be_p(void *ptr, uint16_t v)
 | 
						|
{
 | 
						|
    stw_he_p(ptr, be_bswap(v, 16));
 | 
						|
}
 | 
						|
 | 
						|
static inline void stl_be_p(void *ptr, uint32_t v)
 | 
						|
{
 | 
						|
    stl_he_p(ptr, be_bswap(v, 32));
 | 
						|
}
 | 
						|
 | 
						|
static inline void stq_be_p(void *ptr, uint64_t v)
 | 
						|
{
 | 
						|
    stq_he_p(ptr, be_bswap(v, 64));
 | 
						|
}
 | 
						|
 | 
						|
/* float access */
 | 
						|
 | 
						|
static inline float32 ldfl_be_p(const void *ptr)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
    u.l = ldl_be_p(ptr);
 | 
						|
    return u.f;
 | 
						|
}
 | 
						|
 | 
						|
static inline void stfl_be_p(void *ptr, float32 v)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
    u.f = v;
 | 
						|
    stl_be_p(ptr, u.l);
 | 
						|
}
 | 
						|
 | 
						|
static inline float64 ldfq_be_p(const void *ptr)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
    u.ll = ldq_be_p(ptr);
 | 
						|
    return u.d;
 | 
						|
}
 | 
						|
 | 
						|
static inline void stfq_be_p(void *ptr, float64 v)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
    u.d = v;
 | 
						|
    stq_be_p(ptr, u.ll);
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned long leul_to_cpu(unsigned long v)
 | 
						|
{
 | 
						|
#if HOST_LONG_BITS == 32
 | 
						|
    return le_bswap(v, 32);
 | 
						|
#elif HOST_LONG_BITS == 64
 | 
						|
    return le_bswap(v, 64);
 | 
						|
#else
 | 
						|
# error Unknown sizeof long
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#undef le_bswap
 | 
						|
#undef be_bswap
 | 
						|
#undef le_bswaps
 | 
						|
#undef be_bswaps
 | 
						|
 | 
						|
#endif /* BSWAP_H */
 |