669 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			669 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright (c) 1982, 1986, 1988, 1993
 | |
|  *	The Regents of the University of California.  All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. Neither the name of the University nor the names of its contributors
 | |
|  *    may be used to endorse or promote products derived from this software
 | |
|  *    without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  *
 | |
|  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
 | |
|  * ip_input.c,v 1.11 1994/11/16 10:17:08 jkh Exp
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Changes and additions relating to SLiRP are
 | |
|  * Copyright (c) 1995 Danny Gasparovski.
 | |
|  *
 | |
|  * Please read the file COPYRIGHT for the
 | |
|  * terms and conditions of the copyright.
 | |
|  */
 | |
| 
 | |
| #include <slirp.h>
 | |
| #include <qemu/osdep.h>
 | |
| #include "ip_icmp.h"
 | |
| 
 | |
| static struct ip *ip_reass(Slirp *slirp, struct ip *ip, struct ipq *fp);
 | |
| static void ip_freef(Slirp *slirp, struct ipq *fp);
 | |
| static void ip_enq(register struct ipasfrag *p,
 | |
|                    register struct ipasfrag *prev);
 | |
| static void ip_deq(register struct ipasfrag *p);
 | |
| 
 | |
| /*
 | |
|  * IP initialization: fill in IP protocol switch table.
 | |
|  * All protocols not implemented in kernel go to raw IP protocol handler.
 | |
|  */
 | |
| void
 | |
| ip_init(Slirp *slirp)
 | |
| {
 | |
|     slirp->ipq.ip_link.next = slirp->ipq.ip_link.prev = &slirp->ipq.ip_link;
 | |
|     udp_init(slirp);
 | |
|     tcp_init(slirp);
 | |
|     icmp_init(slirp);
 | |
| }
 | |
| 
 | |
| void ip_cleanup(Slirp *slirp)
 | |
| {
 | |
|     udp_cleanup(slirp);
 | |
|     tcp_cleanup(slirp);
 | |
|     icmp_cleanup(slirp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ip input routine.  Checksum and byte swap header.  If fragmented
 | |
|  * try to reassemble.  Process options.  Pass to next level.
 | |
|  */
 | |
| void
 | |
| ip_input(struct mbuf *m)
 | |
| {
 | |
| 	Slirp *slirp = m->slirp;
 | |
| 	register struct ip *ip;
 | |
| 	int hlen;
 | |
| 
 | |
| 	DEBUG_CALL("ip_input");
 | |
| 	DEBUG_ARG("m = %lx", (long)m);
 | |
| 	DEBUG_ARG("m_len = %d", m->m_len);
 | |
| 
 | |
| 	if (m->m_len < sizeof (struct ip)) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ip = mtod(m, struct ip *);
 | |
| 
 | |
| 	if (ip->ip_v != IPVERSION) {
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	hlen = ip->ip_hl << 2;
 | |
| 	if (hlen<sizeof(struct ip ) || hlen>m->m_len) {/* min header length */
 | |
| 	  goto bad;                                  /* or packet too short */
 | |
| 	}
 | |
| 
 | |
|         /* keep ip header intact for ICMP reply
 | |
| 	 * ip->ip_sum = cksum(m, hlen);
 | |
| 	 * if (ip->ip_sum) {
 | |
| 	 */
 | |
| 	if(cksum(m,hlen)) {
 | |
| 	  goto bad;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert fields to host representation.
 | |
| 	 */
 | |
| 	NTOHS(ip->ip_len);
 | |
| 	if (ip->ip_len < hlen) {
 | |
| 		goto bad;
 | |
| 	}
 | |
| 	NTOHS(ip->ip_id);
 | |
| 	NTOHS(ip->ip_off);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check that the amount of data in the buffers
 | |
| 	 * is as at least much as the IP header would have us expect.
 | |
| 	 * Trim mbufs if longer than we expect.
 | |
| 	 * Drop packet if shorter than we expect.
 | |
| 	 */
 | |
| 	if (m->m_len < ip->ip_len) {
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	/* Should drop packet if mbuf too long? hmmm... */
 | |
| 	if (m->m_len > ip->ip_len)
 | |
| 	   m_adj(m, ip->ip_len - m->m_len);
 | |
| 
 | |
| 	/* check ip_ttl for a correct ICMP reply */
 | |
| 	if(ip->ip_ttl==0) {
 | |
| 	  icmp_error(m, ICMP_TIMXCEED,ICMP_TIMXCEED_INTRANS, 0,"ttl");
 | |
| 	  goto bad;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If offset or IP_MF are set, must reassemble.
 | |
| 	 * Otherwise, nothing need be done.
 | |
| 	 * (We could look in the reassembly queue to see
 | |
| 	 * if the packet was previously fragmented,
 | |
| 	 * but it's not worth the time; just let them time out.)
 | |
| 	 *
 | |
| 	 * XXX This should fail, don't fragment yet
 | |
| 	 */
 | |
| 	if (ip->ip_off &~ IP_DF) {
 | |
| 	  register struct ipq *fp;
 | |
|       struct qlink *l;
 | |
| 		/*
 | |
| 		 * Look for queue of fragments
 | |
| 		 * of this datagram.
 | |
| 		 */
 | |
| 		for (l = slirp->ipq.ip_link.next; l != &slirp->ipq.ip_link;
 | |
| 		     l = l->next) {
 | |
|             fp = container_of(l, struct ipq, ip_link);
 | |
|             if (ip->ip_id == fp->ipq_id &&
 | |
|                     ip->ip_src.s_addr == fp->ipq_src.s_addr &&
 | |
|                     ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
 | |
|                     ip->ip_p == fp->ipq_p)
 | |
| 		    goto found;
 | |
|         }
 | |
|         fp = NULL;
 | |
| 	found:
 | |
| 
 | |
| 		/*
 | |
| 		 * Adjust ip_len to not reflect header,
 | |
| 		 * set ip_mff if more fragments are expected,
 | |
| 		 * convert offset of this to bytes.
 | |
| 		 */
 | |
| 		ip->ip_len -= hlen;
 | |
| 		if (ip->ip_off & IP_MF)
 | |
| 		  ip->ip_tos |= 1;
 | |
| 		else
 | |
| 		  ip->ip_tos &= ~1;
 | |
| 
 | |
| 		ip->ip_off <<= 3;
 | |
| 
 | |
| 		/*
 | |
| 		 * If datagram marked as having more fragments
 | |
| 		 * or if this is not the first fragment,
 | |
| 		 * attempt reassembly; if it succeeds, proceed.
 | |
| 		 */
 | |
| 		if (ip->ip_tos & 1 || ip->ip_off) {
 | |
| 			ip = ip_reass(slirp, ip, fp);
 | |
|                         if (ip == NULL)
 | |
| 				return;
 | |
| 			m = dtom(slirp, ip);
 | |
| 		} else
 | |
| 			if (fp)
 | |
| 		   	   ip_freef(slirp, fp);
 | |
| 
 | |
| 	} else
 | |
| 		ip->ip_len -= hlen;
 | |
| 
 | |
| 	/*
 | |
| 	 * Switch out to protocol's input routine.
 | |
| 	 */
 | |
| 	switch (ip->ip_p) {
 | |
| 	 case IPPROTO_TCP:
 | |
| 		tcp_input(m, hlen, (struct socket *)NULL);
 | |
| 		break;
 | |
| 	 case IPPROTO_UDP:
 | |
| 		udp_input(m, hlen);
 | |
| 		break;
 | |
| 	 case IPPROTO_ICMP:
 | |
| 		icmp_input(m, hlen);
 | |
| 		break;
 | |
| 	 default:
 | |
| 		m_free(m);
 | |
| 	}
 | |
| 	return;
 | |
| bad:
 | |
| 	m_free(m);
 | |
| }
 | |
| 
 | |
| #define iptofrag(P) ((struct ipasfrag *)(((char*)(P)) - sizeof(struct qlink)))
 | |
| #define fragtoip(P) ((struct ip*)(((char*)(P)) + sizeof(struct qlink)))
 | |
| /*
 | |
|  * Take incoming datagram fragment and try to
 | |
|  * reassemble it into whole datagram.  If a chain for
 | |
|  * reassembly of this datagram already exists, then it
 | |
|  * is given as fp; otherwise have to make a chain.
 | |
|  */
 | |
| static struct ip *
 | |
| ip_reass(Slirp *slirp, struct ip *ip, struct ipq *fp)
 | |
| {
 | |
| 	register struct mbuf *m = dtom(slirp, ip);
 | |
| 	register struct ipasfrag *q;
 | |
| 	int hlen = ip->ip_hl << 2;
 | |
| 	int i, next;
 | |
| 
 | |
| 	DEBUG_CALL("ip_reass");
 | |
| 	DEBUG_ARG("ip = %lx", (long)ip);
 | |
| 	DEBUG_ARG("fp = %lx", (long)fp);
 | |
| 	DEBUG_ARG("m = %lx", (long)m);
 | |
| 
 | |
| 	/*
 | |
| 	 * Presence of header sizes in mbufs
 | |
| 	 * would confuse code below.
 | |
|          * Fragment m_data is concatenated.
 | |
| 	 */
 | |
| 	m->m_data += hlen;
 | |
| 	m->m_len -= hlen;
 | |
| 
 | |
| 	/*
 | |
| 	 * If first fragment to arrive, create a reassembly queue.
 | |
| 	 */
 | |
|         if (fp == NULL) {
 | |
| 	  struct mbuf *t = m_get(slirp);
 | |
| 
 | |
| 	  if (t == NULL) {
 | |
| 	      goto dropfrag;
 | |
| 	  }
 | |
| 	  fp = mtod(t, struct ipq *);
 | |
| 	  insque(&fp->ip_link, &slirp->ipq.ip_link);
 | |
| 	  fp->ipq_ttl = IPFRAGTTL;
 | |
| 	  fp->ipq_p = ip->ip_p;
 | |
| 	  fp->ipq_id = ip->ip_id;
 | |
| 	  fp->frag_link.next = fp->frag_link.prev = &fp->frag_link;
 | |
| 	  fp->ipq_src = ip->ip_src;
 | |
| 	  fp->ipq_dst = ip->ip_dst;
 | |
| 	  q = (struct ipasfrag *)fp;
 | |
| 	  goto insert;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Find a segment which begins after this one does.
 | |
| 	 */
 | |
| 	for (q = fp->frag_link.next; q != (struct ipasfrag *)&fp->frag_link;
 | |
|             q = q->ipf_next)
 | |
| 		if (q->ipf_off > ip->ip_off)
 | |
| 			break;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is a preceding segment, it may provide some of
 | |
| 	 * our data already.  If so, drop the data from the incoming
 | |
| 	 * segment.  If it provides all of our data, drop us.
 | |
| 	 */
 | |
| 	if (q->ipf_prev != &fp->frag_link) {
 | |
|         struct ipasfrag *pq = q->ipf_prev;
 | |
| 		i = pq->ipf_off + pq->ipf_len - ip->ip_off;
 | |
| 		if (i > 0) {
 | |
| 			if (i >= ip->ip_len)
 | |
| 				goto dropfrag;
 | |
| 			m_adj(dtom(slirp, ip), i);
 | |
| 			ip->ip_off += i;
 | |
| 			ip->ip_len -= i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * While we overlap succeeding segments trim them or,
 | |
| 	 * if they are completely covered, dequeue them.
 | |
| 	 */
 | |
| 	while (q != (struct ipasfrag*)&fp->frag_link &&
 | |
|             ip->ip_off + ip->ip_len > q->ipf_off) {
 | |
| 		i = (ip->ip_off + ip->ip_len) - q->ipf_off;
 | |
| 		if (i < q->ipf_len) {
 | |
| 			q->ipf_len -= i;
 | |
| 			q->ipf_off += i;
 | |
| 			m_adj(dtom(slirp, q), i);
 | |
| 			break;
 | |
| 		}
 | |
| 		q = q->ipf_next;
 | |
| 		m_free(dtom(slirp, q->ipf_prev));
 | |
| 		ip_deq(q->ipf_prev);
 | |
| 	}
 | |
| 
 | |
| insert:
 | |
| 	/*
 | |
| 	 * Stick new segment in its place;
 | |
| 	 * check for complete reassembly.
 | |
| 	 */
 | |
| 	ip_enq(iptofrag(ip), q->ipf_prev);
 | |
| 	next = 0;
 | |
| 	for (q = fp->frag_link.next; q != (struct ipasfrag*)&fp->frag_link;
 | |
|             q = q->ipf_next) {
 | |
| 		if (q->ipf_off != next)
 | |
|                         return NULL;
 | |
| 		next += q->ipf_len;
 | |
| 	}
 | |
| 	if (((struct ipasfrag *)(q->ipf_prev))->ipf_tos & 1)
 | |
|                 return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reassembly is complete; concatenate fragments.
 | |
| 	 */
 | |
|     q = fp->frag_link.next;
 | |
| 	m = dtom(slirp, q);
 | |
| 
 | |
| 	q = (struct ipasfrag *) q->ipf_next;
 | |
| 	while (q != (struct ipasfrag*)&fp->frag_link) {
 | |
| 	  struct mbuf *t = dtom(slirp, q);
 | |
| 	  q = (struct ipasfrag *) q->ipf_next;
 | |
| 	  m_cat(m, t);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Create header for new ip packet by
 | |
| 	 * modifying header of first packet;
 | |
| 	 * dequeue and discard fragment reassembly header.
 | |
| 	 * Make header visible.
 | |
| 	 */
 | |
| 	q = fp->frag_link.next;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the fragments concatenated to an mbuf that's
 | |
| 	 * bigger than the total size of the fragment, then and
 | |
| 	 * m_ext buffer was alloced. But fp->ipq_next points to
 | |
| 	 * the old buffer (in the mbuf), so we must point ip
 | |
| 	 * into the new buffer.
 | |
| 	 */
 | |
| 	if (m->m_flags & M_EXT) {
 | |
| 	  int delta = (char *)q - m->m_dat;
 | |
| 	  q = (struct ipasfrag *)(m->m_ext + delta);
 | |
| 	}
 | |
| 
 | |
|     ip = fragtoip(q);
 | |
| 	ip->ip_len = next;
 | |
| 	ip->ip_tos &= ~1;
 | |
| 	ip->ip_src = fp->ipq_src;
 | |
| 	ip->ip_dst = fp->ipq_dst;
 | |
| 	remque(&fp->ip_link);
 | |
| 	(void) m_free(dtom(slirp, fp));
 | |
| 	m->m_len += (ip->ip_hl << 2);
 | |
| 	m->m_data -= (ip->ip_hl << 2);
 | |
| 
 | |
| 	return ip;
 | |
| 
 | |
| dropfrag:
 | |
| 	m_free(m);
 | |
|         return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a fragment reassembly header and all
 | |
|  * associated datagrams.
 | |
|  */
 | |
| static void
 | |
| ip_freef(Slirp *slirp, struct ipq *fp)
 | |
| {
 | |
| 	register struct ipasfrag *q, *p;
 | |
| 
 | |
| 	for (q = fp->frag_link.next; q != (struct ipasfrag*)&fp->frag_link; q = p) {
 | |
| 		p = q->ipf_next;
 | |
| 		ip_deq(q);
 | |
| 		m_free(dtom(slirp, q));
 | |
| 	}
 | |
| 	remque(&fp->ip_link);
 | |
| 	(void) m_free(dtom(slirp, fp));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Put an ip fragment on a reassembly chain.
 | |
|  * Like insque, but pointers in middle of structure.
 | |
|  */
 | |
| static void
 | |
| ip_enq(register struct ipasfrag *p, register struct ipasfrag *prev)
 | |
| {
 | |
| 	DEBUG_CALL("ip_enq");
 | |
| 	DEBUG_ARG("prev = %lx", (long)prev);
 | |
| 	p->ipf_prev =  prev;
 | |
| 	p->ipf_next = prev->ipf_next;
 | |
| 	((struct ipasfrag *)(prev->ipf_next))->ipf_prev = p;
 | |
| 	prev->ipf_next = p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To ip_enq as remque is to insque.
 | |
|  */
 | |
| static void
 | |
| ip_deq(register struct ipasfrag *p)
 | |
| {
 | |
| 	((struct ipasfrag *)(p->ipf_prev))->ipf_next = p->ipf_next;
 | |
| 	((struct ipasfrag *)(p->ipf_next))->ipf_prev = p->ipf_prev;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IP timer processing;
 | |
|  * if a timer expires on a reassembly
 | |
|  * queue, discard it.
 | |
|  */
 | |
| void
 | |
| ip_slowtimo(Slirp *slirp)
 | |
| {
 | |
|     struct qlink *l;
 | |
| 
 | |
| 	DEBUG_CALL("ip_slowtimo");
 | |
| 
 | |
|     l = slirp->ipq.ip_link.next;
 | |
| 
 | |
|         if (l == NULL)
 | |
| 	   return;
 | |
| 
 | |
|     while (l != &slirp->ipq.ip_link) {
 | |
|         struct ipq *fp = container_of(l, struct ipq, ip_link);
 | |
|         l = l->next;
 | |
| 		if (--fp->ipq_ttl == 0) {
 | |
| 			ip_freef(slirp, fp);
 | |
| 		}
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do option processing on a datagram,
 | |
|  * possibly discarding it if bad options are encountered,
 | |
|  * or forwarding it if source-routed.
 | |
|  * Returns 1 if packet has been forwarded/freed,
 | |
|  * 0 if the packet should be processed further.
 | |
|  */
 | |
| 
 | |
| #ifdef notdef
 | |
| 
 | |
| int
 | |
| ip_dooptions(m)
 | |
| 	struct mbuf *m;
 | |
| {
 | |
| 	register struct ip *ip = mtod(m, struct ip *);
 | |
| 	register u_char *cp;
 | |
| 	register struct ip_timestamp *ipt;
 | |
| 	register struct in_ifaddr *ia;
 | |
| 	int opt, optlen, cnt, off, code, type, forward = 0;
 | |
| 	struct in_addr *sin, dst;
 | |
| typedef uint32_t n_time;
 | |
| 	n_time ntime;
 | |
| 
 | |
| 	dst = ip->ip_dst;
 | |
| 	cp = (u_char *)(ip + 1);
 | |
| 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
 | |
| 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
 | |
| 		opt = cp[IPOPT_OPTVAL];
 | |
| 		if (opt == IPOPT_EOL)
 | |
| 			break;
 | |
| 		if (opt == IPOPT_NOP)
 | |
| 			optlen = 1;
 | |
| 		else {
 | |
| 			optlen = cp[IPOPT_OLEN];
 | |
| 			if (optlen <= 0 || optlen > cnt) {
 | |
| 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
 | |
| 				goto bad;
 | |
| 			}
 | |
| 		}
 | |
| 		switch (opt) {
 | |
| 
 | |
| 		default:
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Source routing with record.
 | |
| 		 * Find interface with current destination address.
 | |
| 		 * If none on this machine then drop if strictly routed,
 | |
| 		 * or do nothing if loosely routed.
 | |
| 		 * Record interface address and bring up next address
 | |
| 		 * component.  If strictly routed make sure next
 | |
| 		 * address is on directly accessible net.
 | |
| 		 */
 | |
| 		case IPOPT_LSRR:
 | |
| 		case IPOPT_SSRR:
 | |
| 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
 | |
| 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
 | |
| 				goto bad;
 | |
| 			}
 | |
| 			ipaddr.sin_addr = ip->ip_dst;
 | |
| 			ia = (struct in_ifaddr *)
 | |
| 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
 | |
| 			if (ia == 0) {
 | |
| 				if (opt == IPOPT_SSRR) {
 | |
| 					type = ICMP_UNREACH;
 | |
| 					code = ICMP_UNREACH_SRCFAIL;
 | |
| 					goto bad;
 | |
| 				}
 | |
| 				/*
 | |
| 				 * Loose routing, and not at next destination
 | |
| 				 * yet; nothing to do except forward.
 | |
| 				 */
 | |
| 				break;
 | |
| 			}
 | |
|                         off--; /* 0 origin */
 | |
| 			if (off > optlen - sizeof(struct in_addr)) {
 | |
| 				/*
 | |
| 				 * End of source route.  Should be for us.
 | |
| 				 */
 | |
| 				save_rte(cp, ip->ip_src);
 | |
| 				break;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * locate outgoing interface
 | |
| 			 */
 | |
| 			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
 | |
| 			    sizeof(ipaddr.sin_addr));
 | |
| 			if (opt == IPOPT_SSRR) {
 | |
| #define	INA	struct in_ifaddr *
 | |
| #define	SA	struct sockaddr *
 | |
|  			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
 | |
| 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
 | |
| 			} else
 | |
| 				ia = ip_rtaddr(ipaddr.sin_addr);
 | |
| 			if (ia == 0) {
 | |
| 				type = ICMP_UNREACH;
 | |
| 				code = ICMP_UNREACH_SRCFAIL;
 | |
| 				goto bad;
 | |
| 			}
 | |
| 			ip->ip_dst = ipaddr.sin_addr;
 | |
| 			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
 | |
| 			    (caddr_t)(cp + off), sizeof(struct in_addr));
 | |
| 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
 | |
| 			/*
 | |
| 			 * Let ip_intr's mcast routing check handle mcast pkts
 | |
| 			 */
 | |
| 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
 | |
| 			break;
 | |
| 
 | |
| 		case IPOPT_RR:
 | |
| 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
 | |
| 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
 | |
| 				goto bad;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * If no space remains, ignore.
 | |
| 			 */
 | |
|                         off--; /* 0 origin */
 | |
| 			if (off > optlen - sizeof(struct in_addr))
 | |
| 				break;
 | |
| 			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
 | |
| 			    sizeof(ipaddr.sin_addr));
 | |
| 			/*
 | |
| 			 * locate outgoing interface; if we're the destination,
 | |
| 			 * use the incoming interface (should be same).
 | |
| 			 */
 | |
| 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
 | |
| 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
 | |
| 				type = ICMP_UNREACH;
 | |
| 				code = ICMP_UNREACH_HOST;
 | |
| 				goto bad;
 | |
| 			}
 | |
| 			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
 | |
| 			    (caddr_t)(cp + off), sizeof(struct in_addr));
 | |
| 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
 | |
| 			break;
 | |
| 
 | |
| 		case IPOPT_TS:
 | |
| 			code = cp - (u_char *)ip;
 | |
| 			ipt = (struct ip_timestamp *)cp;
 | |
| 			if (ipt->ipt_len < 5)
 | |
| 				goto bad;
 | |
| 			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
 | |
| 				if (++ipt->ipt_oflw == 0)
 | |
| 					goto bad;
 | |
| 				break;
 | |
| 			}
 | |
| 			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
 | |
| 			switch (ipt->ipt_flg) {
 | |
| 
 | |
| 			case IPOPT_TS_TSONLY:
 | |
| 				break;
 | |
| 
 | |
| 			case IPOPT_TS_TSANDADDR:
 | |
| 				if (ipt->ipt_ptr + sizeof(n_time) +
 | |
| 				    sizeof(struct in_addr) > ipt->ipt_len)
 | |
| 					goto bad;
 | |
| 				ipaddr.sin_addr = dst;
 | |
| 				ia = (INA)ifaof_ i f p foraddr((SA)&ipaddr,
 | |
| 							    m->m_pkthdr.rcvif);
 | |
| 				if (ia == 0)
 | |
| 					continue;
 | |
| 				bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
 | |
| 				    (caddr_t)sin, sizeof(struct in_addr));
 | |
| 				ipt->ipt_ptr += sizeof(struct in_addr);
 | |
| 				break;
 | |
| 
 | |
| 			case IPOPT_TS_PRESPEC:
 | |
| 				if (ipt->ipt_ptr + sizeof(n_time) +
 | |
| 				    sizeof(struct in_addr) > ipt->ipt_len)
 | |
| 					goto bad;
 | |
| 				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
 | |
| 				    sizeof(struct in_addr));
 | |
| 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
 | |
| 					continue;
 | |
| 				ipt->ipt_ptr += sizeof(struct in_addr);
 | |
| 				break;
 | |
| 
 | |
| 			default:
 | |
| 				goto bad;
 | |
| 			}
 | |
| 			ntime = iptime();
 | |
| 			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
 | |
| 			    sizeof(n_time));
 | |
| 			ipt->ipt_ptr += sizeof(n_time);
 | |
| 		}
 | |
| 	}
 | |
| 	if (forward) {
 | |
| 		ip_forward(m, 1);
 | |
| 		return (1);
 | |
| 	}
 | |
| 	return (0);
 | |
| bad:
 | |
|  	icmp_error(m, type, code, 0, 0);
 | |
| 
 | |
| 	return (1);
 | |
| }
 | |
| 
 | |
| #endif /* notdef */
 | |
| 
 | |
| /*
 | |
|  * Strip out IP options, at higher
 | |
|  * level protocol in the kernel.
 | |
|  * Second argument is buffer to which options
 | |
|  * will be moved, and return value is their length.
 | |
|  * (XXX) should be deleted; last arg currently ignored.
 | |
|  */
 | |
| void
 | |
| ip_stripoptions(register struct mbuf *m, struct mbuf *mopt)
 | |
| {
 | |
| 	register int i;
 | |
| 	struct ip *ip = mtod(m, struct ip *);
 | |
| 	register caddr_t opts;
 | |
| 	int olen;
 | |
| 
 | |
| 	olen = (ip->ip_hl<<2) - sizeof (struct ip);
 | |
| 	opts = (caddr_t)(ip + 1);
 | |
| 	i = m->m_len - (sizeof (struct ip) + olen);
 | |
| 	memcpy(opts, opts  + olen, (unsigned)i);
 | |
| 	m->m_len -= olen;
 | |
| 
 | |
| 	ip->ip_hl = sizeof(struct ip) >> 2;
 | |
| }
 |