366 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			366 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * PowerPC implementation of KVM hooks
 | |
|  *
 | |
|  * Copyright IBM Corp. 2007
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Jerone Young <jyoung5@us.ibm.com>
 | |
|  *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 | |
|  *  Hollis Blanchard <hollisb@us.ibm.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <sys/types.h>
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/mman.h>
 | |
| 
 | |
| #include <linux/kvm.h>
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "qemu-timer.h"
 | |
| #include "sysemu.h"
 | |
| #include "kvm.h"
 | |
| #include "kvm_ppc.h"
 | |
| #include "cpu.h"
 | |
| #include "device_tree.h"
 | |
| 
 | |
| //#define DEBUG_KVM
 | |
| 
 | |
| #ifdef DEBUG_KVM
 | |
| #define dprintf(fmt, ...) \
 | |
|     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
 | |
| #else
 | |
| #define dprintf(fmt, ...) \
 | |
|     do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /* XXX We have a race condition where we actually have a level triggered
 | |
|  *     interrupt, but the infrastructure can't expose that yet, so the guest
 | |
|  *     takes but ignores it, goes to sleep and never gets notified that there's
 | |
|  *     still an interrupt pending.
 | |
|  *
 | |
|  *     As a quick workaround, let's just wake up again 20 ms after we injected
 | |
|  *     an interrupt. That way we can assure that we're always reinjecting
 | |
|  *     interrupts in case the guest swallowed them.
 | |
|  */
 | |
| static QEMUTimer *idle_timer;
 | |
| 
 | |
| static void kvm_kick_env(void *env)
 | |
| {
 | |
|     qemu_cpu_kick(env);
 | |
| }
 | |
| 
 | |
| int kvm_arch_init(KVMState *s, int smp_cpus)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_init_vcpu(CPUState *cenv)
 | |
| {
 | |
|     int ret = 0;
 | |
|     struct kvm_sregs sregs;
 | |
| 
 | |
|     sregs.pvr = cenv->spr[SPR_PVR];
 | |
|     ret = kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs);
 | |
| 
 | |
|     idle_timer = qemu_new_timer(vm_clock, kvm_kick_env, cenv);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void kvm_arch_reset_vcpu(CPUState *env)
 | |
| {
 | |
| }
 | |
| 
 | |
| int kvm_arch_put_registers(CPUState *env, int level)
 | |
| {
 | |
|     struct kvm_regs regs;
 | |
|     int ret;
 | |
|     int i;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     regs.ctr = env->ctr;
 | |
|     regs.lr  = env->lr;
 | |
|     regs.xer = env->xer;
 | |
|     regs.msr = env->msr;
 | |
|     regs.pc = env->nip;
 | |
| 
 | |
|     regs.srr0 = env->spr[SPR_SRR0];
 | |
|     regs.srr1 = env->spr[SPR_SRR1];
 | |
| 
 | |
|     regs.sprg0 = env->spr[SPR_SPRG0];
 | |
|     regs.sprg1 = env->spr[SPR_SPRG1];
 | |
|     regs.sprg2 = env->spr[SPR_SPRG2];
 | |
|     regs.sprg3 = env->spr[SPR_SPRG3];
 | |
|     regs.sprg4 = env->spr[SPR_SPRG4];
 | |
|     regs.sprg5 = env->spr[SPR_SPRG5];
 | |
|     regs.sprg6 = env->spr[SPR_SPRG6];
 | |
|     regs.sprg7 = env->spr[SPR_SPRG7];
 | |
| 
 | |
|     for (i = 0;i < 32; i++)
 | |
|         regs.gpr[i] = env->gpr[i];
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_arch_get_registers(CPUState *env)
 | |
| {
 | |
|     struct kvm_regs regs;
 | |
|     struct kvm_sregs sregs;
 | |
|     uint32_t i, ret;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     env->ctr = regs.ctr;
 | |
|     env->lr = regs.lr;
 | |
|     env->xer = regs.xer;
 | |
|     env->msr = regs.msr;
 | |
|     env->nip = regs.pc;
 | |
| 
 | |
|     env->spr[SPR_SRR0] = regs.srr0;
 | |
|     env->spr[SPR_SRR1] = regs.srr1;
 | |
| 
 | |
|     env->spr[SPR_SPRG0] = regs.sprg0;
 | |
|     env->spr[SPR_SPRG1] = regs.sprg1;
 | |
|     env->spr[SPR_SPRG2] = regs.sprg2;
 | |
|     env->spr[SPR_SPRG3] = regs.sprg3;
 | |
|     env->spr[SPR_SPRG4] = regs.sprg4;
 | |
|     env->spr[SPR_SPRG5] = regs.sprg5;
 | |
|     env->spr[SPR_SPRG6] = regs.sprg6;
 | |
|     env->spr[SPR_SPRG7] = regs.sprg7;
 | |
| 
 | |
|     for (i = 0;i < 32; i++)
 | |
|         env->gpr[i] = regs.gpr[i];
 | |
| 
 | |
| #ifdef KVM_CAP_PPC_SEGSTATE
 | |
|     if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_SEGSTATE)) {
 | |
|         env->sdr1 = sregs.u.s.sdr1;
 | |
| 
 | |
|         /* Sync SLB */
 | |
| #ifdef TARGET_PPC64
 | |
|         for (i = 0; i < 64; i++) {
 | |
|             ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe,
 | |
|                                sregs.u.s.ppc64.slb[i].slbv);
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         /* Sync SRs */
 | |
|         for (i = 0; i < 16; i++) {
 | |
|             env->sr[i] = sregs.u.s.ppc32.sr[i];
 | |
|         }
 | |
| 
 | |
|         /* Sync BATs */
 | |
|         for (i = 0; i < 8; i++) {
 | |
|             env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
 | |
|             env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
 | |
|             env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
 | |
|             env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_PPCEMB)
 | |
| #define PPC_INPUT_INT PPC40x_INPUT_INT
 | |
| #elif defined(TARGET_PPC64)
 | |
| #define PPC_INPUT_INT PPC970_INPUT_INT
 | |
| #else
 | |
| #define PPC_INPUT_INT PPC6xx_INPUT_INT
 | |
| #endif
 | |
| 
 | |
| int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
 | |
| {
 | |
|     int r;
 | |
|     unsigned irq;
 | |
| 
 | |
|     /* PowerPC Qemu tracks the various core input pins (interrupt, critical
 | |
|      * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
 | |
|     if (run->ready_for_interrupt_injection &&
 | |
|         (env->interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
|         (env->irq_input_state & (1<<PPC_INPUT_INT)))
 | |
|     {
 | |
|         /* For now KVM disregards the 'irq' argument. However, in the
 | |
|          * future KVM could cache it in-kernel to avoid a heavyweight exit
 | |
|          * when reading the UIC.
 | |
|          */
 | |
|         irq = -1U;
 | |
| 
 | |
|         dprintf("injected interrupt %d\n", irq);
 | |
|         r = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &irq);
 | |
|         if (r < 0)
 | |
|             printf("cpu %d fail inject %x\n", env->cpu_index, irq);
 | |
| 
 | |
|         /* Always wake up soon in case the interrupt was level based */
 | |
|         qemu_mod_timer(idle_timer, qemu_get_clock(vm_clock) +
 | |
|                        (get_ticks_per_sec() / 50));
 | |
|     }
 | |
| 
 | |
|     /* We don't know if there are more interrupts pending after this. However,
 | |
|      * the guest will return to userspace in the course of handling this one
 | |
|      * anyways, so we will get a chance to deliver the rest. */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_process_irqchip_events(CPUState *env)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvmppc_handle_halt(CPUState *env)
 | |
| {
 | |
|     if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
 | |
|         env->halted = 1;
 | |
|         env->exception_index = EXCP_HLT;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* map dcr access to existing qemu dcr emulation */
 | |
| static int kvmppc_handle_dcr_read(CPUState *env, uint32_t dcrn, uint32_t *data)
 | |
| {
 | |
|     if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
 | |
|         fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int kvmppc_handle_dcr_write(CPUState *env, uint32_t dcrn, uint32_t data)
 | |
| {
 | |
|     if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
 | |
|         fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     switch (run->exit_reason) {
 | |
|     case KVM_EXIT_DCR:
 | |
|         if (run->dcr.is_write) {
 | |
|             dprintf("handle dcr write\n");
 | |
|             ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
 | |
|         } else {
 | |
|             dprintf("handle dcr read\n");
 | |
|             ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
 | |
|         }
 | |
|         break;
 | |
|     case KVM_EXIT_HLT:
 | |
|         dprintf("handle halt\n");
 | |
|         ret = kvmppc_handle_halt(env);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int read_cpuinfo(const char *field, char *value, int len)
 | |
| {
 | |
|     FILE *f;
 | |
|     int ret = -1;
 | |
|     int field_len = strlen(field);
 | |
|     char line[512];
 | |
| 
 | |
|     f = fopen("/proc/cpuinfo", "r");
 | |
|     if (!f) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         if(!fgets(line, sizeof(line), f)) {
 | |
|             break;
 | |
|         }
 | |
|         if (!strncmp(line, field, field_len)) {
 | |
|             strncpy(value, line, len);
 | |
|             ret = 0;
 | |
|             break;
 | |
|         }
 | |
|     } while(*line);
 | |
| 
 | |
|     fclose(f);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| uint32_t kvmppc_get_tbfreq(void)
 | |
| {
 | |
|     char line[512];
 | |
|     char *ns;
 | |
|     uint32_t retval = get_ticks_per_sec();
 | |
| 
 | |
|     if (read_cpuinfo("timebase", line, sizeof(line))) {
 | |
|         return retval;
 | |
|     }
 | |
| 
 | |
|     if (!(ns = strchr(line, ':'))) {
 | |
|         return retval;
 | |
|     }
 | |
| 
 | |
|     ns++;
 | |
| 
 | |
|     retval = atoi(ns);
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| int kvmppc_get_hypercall(CPUState *env, uint8_t *buf, int buf_len)
 | |
| {
 | |
|     uint32_t *hc = (uint32_t*)buf;
 | |
| 
 | |
| #ifdef KVM_CAP_PPC_GET_PVINFO
 | |
|     struct kvm_ppc_pvinfo pvinfo;
 | |
| 
 | |
|     if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
 | |
|         !kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_PVINFO, &pvinfo)) {
 | |
|         memcpy(buf, pvinfo.hcall, buf_len);
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /*
 | |
|      * Fallback to always fail hypercalls:
 | |
|      *
 | |
|      *     li r3, -1
 | |
|      *     nop
 | |
|      *     nop
 | |
|      *     nop
 | |
|      */
 | |
| 
 | |
|     hc[0] = 0x3860ffff;
 | |
|     hc[1] = 0x60000000;
 | |
|     hc[2] = 0x60000000;
 | |
|     hc[3] = 0x60000000;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| bool kvm_arch_stop_on_emulation_error(CPUState *env)
 | |
| {
 | |
|     return true;
 | |
| }
 |