2487 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2487 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * PowerPC implementation of KVM hooks
 | |
|  *
 | |
|  * Copyright IBM Corp. 2007
 | |
|  * Copyright (C) 2011 Freescale Semiconductor, Inc.
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Jerone Young <jyoung5@us.ibm.com>
 | |
|  *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 | |
|  *  Hollis Blanchard <hollisb@us.ibm.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <dirent.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/mman.h>
 | |
| #include <sys/vfs.h>
 | |
| 
 | |
| #include <linux/kvm.h>
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "kvm_ppc.h"
 | |
| #include "cpu.h"
 | |
| #include "sysemu/cpus.h"
 | |
| #include "sysemu/device_tree.h"
 | |
| #include "mmu-hash64.h"
 | |
| 
 | |
| #include "hw/sysbus.h"
 | |
| #include "hw/ppc/spapr.h"
 | |
| #include "hw/ppc/spapr_vio.h"
 | |
| #include "hw/ppc/ppc.h"
 | |
| #include "sysemu/watchdog.h"
 | |
| #include "trace.h"
 | |
| #include "exec/gdbstub.h"
 | |
| #include "exec/memattrs.h"
 | |
| #include "sysemu/hostmem.h"
 | |
| 
 | |
| //#define DEBUG_KVM
 | |
| 
 | |
| #ifdef DEBUG_KVM
 | |
| #define DPRINTF(fmt, ...) \
 | |
|     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
 | |
| #else
 | |
| #define DPRINTF(fmt, ...) \
 | |
|     do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
 | |
| 
 | |
| const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
 | |
|     KVM_CAP_LAST_INFO
 | |
| };
 | |
| 
 | |
| static int cap_interrupt_unset = false;
 | |
| static int cap_interrupt_level = false;
 | |
| static int cap_segstate;
 | |
| static int cap_booke_sregs;
 | |
| static int cap_ppc_smt;
 | |
| static int cap_ppc_rma;
 | |
| static int cap_spapr_tce;
 | |
| static int cap_spapr_multitce;
 | |
| static int cap_spapr_vfio;
 | |
| static int cap_hior;
 | |
| static int cap_one_reg;
 | |
| static int cap_epr;
 | |
| static int cap_ppc_watchdog;
 | |
| static int cap_papr;
 | |
| static int cap_htab_fd;
 | |
| static int cap_fixup_hcalls;
 | |
| 
 | |
| static uint32_t debug_inst_opcode;
 | |
| 
 | |
| /* XXX We have a race condition where we actually have a level triggered
 | |
|  *     interrupt, but the infrastructure can't expose that yet, so the guest
 | |
|  *     takes but ignores it, goes to sleep and never gets notified that there's
 | |
|  *     still an interrupt pending.
 | |
|  *
 | |
|  *     As a quick workaround, let's just wake up again 20 ms after we injected
 | |
|  *     an interrupt. That way we can assure that we're always reinjecting
 | |
|  *     interrupts in case the guest swallowed them.
 | |
|  */
 | |
| static QEMUTimer *idle_timer;
 | |
| 
 | |
| static void kvm_kick_cpu(void *opaque)
 | |
| {
 | |
|     PowerPCCPU *cpu = opaque;
 | |
| 
 | |
|     qemu_cpu_kick(CPU(cpu));
 | |
| }
 | |
| 
 | |
| static int kvm_ppc_register_host_cpu_type(void);
 | |
| 
 | |
| int kvm_arch_init(MachineState *ms, KVMState *s)
 | |
| {
 | |
|     cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
 | |
|     cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
 | |
|     cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
 | |
|     cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
 | |
|     cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
 | |
|     cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
 | |
|     cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
 | |
|     cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
 | |
|     cap_spapr_vfio = false;
 | |
|     cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
 | |
|     cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
 | |
|     cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
 | |
|     cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
 | |
|     /* Note: we don't set cap_papr here, because this capability is
 | |
|      * only activated after this by kvmppc_set_papr() */
 | |
|     cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
 | |
|     cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
 | |
| 
 | |
|     if (!cap_interrupt_level) {
 | |
|         fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
 | |
|                         "VM to stall at times!\n");
 | |
|     }
 | |
| 
 | |
|     kvm_ppc_register_host_cpu_type();
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
 | |
| {
 | |
|     CPUPPCState *cenv = &cpu->env;
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     struct kvm_sregs sregs;
 | |
|     int ret;
 | |
| 
 | |
|     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
 | |
|         /* What we're really trying to say is "if we're on BookE, we use
 | |
|            the native PVR for now". This is the only sane way to check
 | |
|            it though, so we potentially confuse users that they can run
 | |
|            BookE guests on BookS. Let's hope nobody dares enough :) */
 | |
|         return 0;
 | |
|     } else {
 | |
|         if (!cap_segstate) {
 | |
|             fprintf(stderr, "kvm error: missing PVR setting capability\n");
 | |
|             return -ENOSYS;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     sregs.pvr = cenv->spr[SPR_PVR];
 | |
|     return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
 | |
| }
 | |
| 
 | |
| /* Set up a shared TLB array with KVM */
 | |
| static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     struct kvm_book3e_206_tlb_params params = {};
 | |
|     struct kvm_config_tlb cfg = {};
 | |
|     unsigned int entries = 0;
 | |
|     int ret, i;
 | |
| 
 | |
|     if (!kvm_enabled() ||
 | |
|         !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
 | |
| 
 | |
|     for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
 | |
|         params.tlb_sizes[i] = booke206_tlb_size(env, i);
 | |
|         params.tlb_ways[i] = booke206_tlb_ways(env, i);
 | |
|         entries += params.tlb_sizes[i];
 | |
|     }
 | |
| 
 | |
|     assert(entries == env->nb_tlb);
 | |
|     assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
 | |
| 
 | |
|     env->tlb_dirty = true;
 | |
| 
 | |
|     cfg.array = (uintptr_t)env->tlb.tlbm;
 | |
|     cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
 | |
|     cfg.params = (uintptr_t)¶ms;
 | |
|     cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
 | |
| 
 | |
|     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
 | |
|                 __func__, strerror(-ret));
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     env->kvm_sw_tlb = true;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(TARGET_PPC64)
 | |
| static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu,
 | |
|                                        struct kvm_ppc_smmu_info *info)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     memset(info, 0, sizeof(*info));
 | |
| 
 | |
|     /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
 | |
|      * need to "guess" what the supported page sizes are.
 | |
|      *
 | |
|      * For that to work we make a few assumptions:
 | |
|      *
 | |
|      * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
 | |
|      *   KVM which only supports 4K and 16M pages, but supports them
 | |
|      *   regardless of the backing store characteritics. We also don't
 | |
|      *   support 1T segments.
 | |
|      *
 | |
|      *   This is safe as if HV KVM ever supports that capability or PR
 | |
|      *   KVM grows supports for more page/segment sizes, those versions
 | |
|      *   will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
 | |
|      *   will not hit this fallback
 | |
|      *
 | |
|      * - Else we are running HV KVM. This means we only support page
 | |
|      *   sizes that fit in the backing store. Additionally we only
 | |
|      *   advertize 64K pages if the processor is ARCH 2.06 and we assume
 | |
|      *   P7 encodings for the SLB and hash table. Here too, we assume
 | |
|      *   support for any newer processor will mean a kernel that
 | |
|      *   implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
 | |
|      *   this fallback.
 | |
|      */
 | |
|     if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
 | |
|         /* No flags */
 | |
|         info->flags = 0;
 | |
|         info->slb_size = 64;
 | |
| 
 | |
|         /* Standard 4k base page size segment */
 | |
|         info->sps[0].page_shift = 12;
 | |
|         info->sps[0].slb_enc = 0;
 | |
|         info->sps[0].enc[0].page_shift = 12;
 | |
|         info->sps[0].enc[0].pte_enc = 0;
 | |
| 
 | |
|         /* Standard 16M large page size segment */
 | |
|         info->sps[1].page_shift = 24;
 | |
|         info->sps[1].slb_enc = SLB_VSID_L;
 | |
|         info->sps[1].enc[0].page_shift = 24;
 | |
|         info->sps[1].enc[0].pte_enc = 0;
 | |
|     } else {
 | |
|         int i = 0;
 | |
| 
 | |
|         /* HV KVM has backing store size restrictions */
 | |
|         info->flags = KVM_PPC_PAGE_SIZES_REAL;
 | |
| 
 | |
|         if (env->mmu_model & POWERPC_MMU_1TSEG) {
 | |
|             info->flags |= KVM_PPC_1T_SEGMENTS;
 | |
|         }
 | |
| 
 | |
|         if (env->mmu_model == POWERPC_MMU_2_06) {
 | |
|             info->slb_size = 32;
 | |
|         } else {
 | |
|             info->slb_size = 64;
 | |
|         }
 | |
| 
 | |
|         /* Standard 4k base page size segment */
 | |
|         info->sps[i].page_shift = 12;
 | |
|         info->sps[i].slb_enc = 0;
 | |
|         info->sps[i].enc[0].page_shift = 12;
 | |
|         info->sps[i].enc[0].pte_enc = 0;
 | |
|         i++;
 | |
| 
 | |
|         /* 64K on MMU 2.06 */
 | |
|         if (env->mmu_model == POWERPC_MMU_2_06) {
 | |
|             info->sps[i].page_shift = 16;
 | |
|             info->sps[i].slb_enc = 0x110;
 | |
|             info->sps[i].enc[0].page_shift = 16;
 | |
|             info->sps[i].enc[0].pte_enc = 1;
 | |
|             i++;
 | |
|         }
 | |
| 
 | |
|         /* Standard 16M large page size segment */
 | |
|         info->sps[i].page_shift = 24;
 | |
|         info->sps[i].slb_enc = SLB_VSID_L;
 | |
|         info->sps[i].enc[0].page_shift = 24;
 | |
|         info->sps[i].enc[0].pte_enc = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     int ret;
 | |
| 
 | |
|     if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
 | |
|         ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
 | |
|         if (ret == 0) {
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     kvm_get_fallback_smmu_info(cpu, info);
 | |
| }
 | |
| 
 | |
| static long gethugepagesize(const char *mem_path)
 | |
| {
 | |
|     struct statfs fs;
 | |
|     int ret;
 | |
| 
 | |
|     do {
 | |
|         ret = statfs(mem_path, &fs);
 | |
|     } while (ret != 0 && errno == EINTR);
 | |
| 
 | |
|     if (ret != 0) {
 | |
|         fprintf(stderr, "Couldn't statfs() memory path: %s\n",
 | |
|                 strerror(errno));
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
| #define HUGETLBFS_MAGIC       0x958458f6
 | |
| 
 | |
|     if (fs.f_type != HUGETLBFS_MAGIC) {
 | |
|         /* Explicit mempath, but it's ordinary pages */
 | |
|         return getpagesize();
 | |
|     }
 | |
| 
 | |
|     /* It's hugepage, return the huge page size */
 | |
|     return fs.f_bsize;
 | |
| }
 | |
| 
 | |
| static int find_max_supported_pagesize(Object *obj, void *opaque)
 | |
| {
 | |
|     char *mem_path;
 | |
|     long *hpsize_min = opaque;
 | |
| 
 | |
|     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
 | |
|         mem_path = object_property_get_str(obj, "mem-path", NULL);
 | |
|         if (mem_path) {
 | |
|             long hpsize = gethugepagesize(mem_path);
 | |
|             if (hpsize < *hpsize_min) {
 | |
|                 *hpsize_min = hpsize;
 | |
|             }
 | |
|         } else {
 | |
|             *hpsize_min = getpagesize();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static long getrampagesize(void)
 | |
| {
 | |
|     long hpsize = LONG_MAX;
 | |
|     Object *memdev_root;
 | |
| 
 | |
|     if (mem_path) {
 | |
|         return gethugepagesize(mem_path);
 | |
|     }
 | |
| 
 | |
|     /* it's possible we have memory-backend objects with
 | |
|      * hugepage-backed RAM. these may get mapped into system
 | |
|      * address space via -numa parameters or memory hotplug
 | |
|      * hooks. we want to take these into account, but we
 | |
|      * also want to make sure these supported hugepage
 | |
|      * sizes are applicable across the entire range of memory
 | |
|      * we may boot from, so we take the min across all
 | |
|      * backends, and assume normal pages in cases where a
 | |
|      * backend isn't backed by hugepages.
 | |
|      */
 | |
|     memdev_root = object_resolve_path("/objects", NULL);
 | |
|     if (!memdev_root) {
 | |
|         return getpagesize();
 | |
|     }
 | |
| 
 | |
|     object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
 | |
| 
 | |
|     return (hpsize == LONG_MAX) ? getpagesize() : hpsize;
 | |
| }
 | |
| 
 | |
| static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
 | |
| {
 | |
|     if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return (1ul << shift) <= rampgsize;
 | |
| }
 | |
| 
 | |
| static void kvm_fixup_page_sizes(PowerPCCPU *cpu)
 | |
| {
 | |
|     static struct kvm_ppc_smmu_info smmu_info;
 | |
|     static bool has_smmu_info;
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     long rampagesize;
 | |
|     int iq, ik, jq, jk;
 | |
| 
 | |
|     /* We only handle page sizes for 64-bit server guests for now */
 | |
|     if (!(env->mmu_model & POWERPC_MMU_64)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Collect MMU info from kernel if not already */
 | |
|     if (!has_smmu_info) {
 | |
|         kvm_get_smmu_info(cpu, &smmu_info);
 | |
|         has_smmu_info = true;
 | |
|     }
 | |
| 
 | |
|     rampagesize = getrampagesize();
 | |
| 
 | |
|     /* Convert to QEMU form */
 | |
|     memset(&env->sps, 0, sizeof(env->sps));
 | |
| 
 | |
|     /*
 | |
|      * XXX This loop should be an entry wide AND of the capabilities that
 | |
|      *     the selected CPU has with the capabilities that KVM supports.
 | |
|      */
 | |
|     for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
 | |
|         struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
 | |
|         struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];
 | |
| 
 | |
|         if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
 | |
|                                  ksps->page_shift)) {
 | |
|             continue;
 | |
|         }
 | |
|         qsps->page_shift = ksps->page_shift;
 | |
|         qsps->slb_enc = ksps->slb_enc;
 | |
|         for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
 | |
|             if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
 | |
|                                      ksps->enc[jk].page_shift)) {
 | |
|                 continue;
 | |
|             }
 | |
|             qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
 | |
|             qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
 | |
|             if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     env->slb_nr = smmu_info.slb_size;
 | |
|     if (!(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
 | |
|         env->mmu_model &= ~POWERPC_MMU_1TSEG;
 | |
|     }
 | |
| }
 | |
| #else /* defined (TARGET_PPC64) */
 | |
| 
 | |
| static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* !defined (TARGET_PPC64) */
 | |
| 
 | |
| unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 | |
| {
 | |
|     return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
 | |
| }
 | |
| 
 | |
| /* e500 supports 2 h/w breakpoint and 2 watchpoint.
 | |
|  * book3s supports only 1 watchpoint, so array size
 | |
|  * of 4 is sufficient for now.
 | |
|  */
 | |
| #define MAX_HW_BKPTS 4
 | |
| 
 | |
| static struct HWBreakpoint {
 | |
|     target_ulong addr;
 | |
|     int type;
 | |
| } hw_debug_points[MAX_HW_BKPTS];
 | |
| 
 | |
| static CPUWatchpoint hw_watchpoint;
 | |
| 
 | |
| /* Default there is no breakpoint and watchpoint supported */
 | |
| static int max_hw_breakpoint;
 | |
| static int max_hw_watchpoint;
 | |
| static int nb_hw_breakpoint;
 | |
| static int nb_hw_watchpoint;
 | |
| 
 | |
| static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
 | |
| {
 | |
|     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
 | |
|         max_hw_breakpoint = 2;
 | |
|         max_hw_watchpoint = 2;
 | |
|     }
 | |
| 
 | |
|     if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
 | |
|         fprintf(stderr, "Error initializing h/w breakpoints\n");
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int kvm_arch_init_vcpu(CPUState *cs)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     CPUPPCState *cenv = &cpu->env;
 | |
|     int ret;
 | |
| 
 | |
|     /* Gather server mmu info from KVM and update the CPU state */
 | |
|     kvm_fixup_page_sizes(cpu);
 | |
| 
 | |
|     /* Synchronize sregs with kvm */
 | |
|     ret = kvm_arch_sync_sregs(cpu);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
 | |
| 
 | |
|     /* Some targets support access to KVM's guest TLB. */
 | |
|     switch (cenv->mmu_model) {
 | |
|     case POWERPC_MMU_BOOKE206:
 | |
|         ret = kvm_booke206_tlb_init(cpu);
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
 | |
|     kvmppc_hw_debug_points_init(cenv);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void kvm_sw_tlb_put(PowerPCCPU *cpu)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     struct kvm_dirty_tlb dirty_tlb;
 | |
|     unsigned char *bitmap;
 | |
|     int ret;
 | |
| 
 | |
|     if (!env->kvm_sw_tlb) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bitmap = g_malloc((env->nb_tlb + 7) / 8);
 | |
|     memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
 | |
| 
 | |
|     dirty_tlb.bitmap = (uintptr_t)bitmap;
 | |
|     dirty_tlb.num_dirty = env->nb_tlb;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
 | |
|     if (ret) {
 | |
|         fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
 | |
|                 __func__, strerror(-ret));
 | |
|     }
 | |
| 
 | |
|     g_free(bitmap);
 | |
| }
 | |
| 
 | |
| static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     union {
 | |
|         uint32_t u32;
 | |
|         uint64_t u64;
 | |
|     } val;
 | |
|     struct kvm_one_reg reg = {
 | |
|         .id = id,
 | |
|         .addr = (uintptr_t) &val,
 | |
|     };
 | |
|     int ret;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret != 0) {
 | |
|         trace_kvm_failed_spr_get(spr, strerror(errno));
 | |
|     } else {
 | |
|         switch (id & KVM_REG_SIZE_MASK) {
 | |
|         case KVM_REG_SIZE_U32:
 | |
|             env->spr[spr] = val.u32;
 | |
|             break;
 | |
| 
 | |
|         case KVM_REG_SIZE_U64:
 | |
|             env->spr[spr] = val.u64;
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             /* Don't handle this size yet */
 | |
|             abort();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     union {
 | |
|         uint32_t u32;
 | |
|         uint64_t u64;
 | |
|     } val;
 | |
|     struct kvm_one_reg reg = {
 | |
|         .id = id,
 | |
|         .addr = (uintptr_t) &val,
 | |
|     };
 | |
|     int ret;
 | |
| 
 | |
|     switch (id & KVM_REG_SIZE_MASK) {
 | |
|     case KVM_REG_SIZE_U32:
 | |
|         val.u32 = env->spr[spr];
 | |
|         break;
 | |
| 
 | |
|     case KVM_REG_SIZE_U64:
 | |
|         val.u64 = env->spr[spr];
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         /* Don't handle this size yet */
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret != 0) {
 | |
|         trace_kvm_failed_spr_set(spr, strerror(errno));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int kvm_put_fp(CPUState *cs)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     struct kvm_one_reg reg;
 | |
|     int i;
 | |
|     int ret;
 | |
| 
 | |
|     if (env->insns_flags & PPC_FLOAT) {
 | |
|         uint64_t fpscr = env->fpscr;
 | |
|         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
 | |
| 
 | |
|         reg.id = KVM_REG_PPC_FPSCR;
 | |
|         reg.addr = (uintptr_t)&fpscr;
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|         if (ret < 0) {
 | |
|             DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno));
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < 32; i++) {
 | |
|             uint64_t vsr[2];
 | |
| 
 | |
|             vsr[0] = float64_val(env->fpr[i]);
 | |
|             vsr[1] = env->vsr[i];
 | |
|             reg.addr = (uintptr_t) &vsr;
 | |
|             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
 | |
| 
 | |
|             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|             if (ret < 0) {
 | |
|                 DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR",
 | |
|                         i, strerror(errno));
 | |
|                 return ret;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (env->insns_flags & PPC_ALTIVEC) {
 | |
|         reg.id = KVM_REG_PPC_VSCR;
 | |
|         reg.addr = (uintptr_t)&env->vscr;
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|         if (ret < 0) {
 | |
|             DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno));
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < 32; i++) {
 | |
|             reg.id = KVM_REG_PPC_VR(i);
 | |
|             reg.addr = (uintptr_t)&env->avr[i];
 | |
|             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|             if (ret < 0) {
 | |
|                 DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno));
 | |
|                 return ret;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_get_fp(CPUState *cs)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     struct kvm_one_reg reg;
 | |
|     int i;
 | |
|     int ret;
 | |
| 
 | |
|     if (env->insns_flags & PPC_FLOAT) {
 | |
|         uint64_t fpscr;
 | |
|         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
 | |
| 
 | |
|         reg.id = KVM_REG_PPC_FPSCR;
 | |
|         reg.addr = (uintptr_t)&fpscr;
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|         if (ret < 0) {
 | |
|             DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno));
 | |
|             return ret;
 | |
|         } else {
 | |
|             env->fpscr = fpscr;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < 32; i++) {
 | |
|             uint64_t vsr[2];
 | |
| 
 | |
|             reg.addr = (uintptr_t) &vsr;
 | |
|             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
 | |
| 
 | |
|             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|             if (ret < 0) {
 | |
|                 DPRINTF("Unable to get %s%d from KVM: %s\n",
 | |
|                         vsx ? "VSR" : "FPR", i, strerror(errno));
 | |
|                 return ret;
 | |
|             } else {
 | |
|                 env->fpr[i] = vsr[0];
 | |
|                 if (vsx) {
 | |
|                     env->vsr[i] = vsr[1];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (env->insns_flags & PPC_ALTIVEC) {
 | |
|         reg.id = KVM_REG_PPC_VSCR;
 | |
|         reg.addr = (uintptr_t)&env->vscr;
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|         if (ret < 0) {
 | |
|             DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno));
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < 32; i++) {
 | |
|             reg.id = KVM_REG_PPC_VR(i);
 | |
|             reg.addr = (uintptr_t)&env->avr[i];
 | |
|             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|             if (ret < 0) {
 | |
|                 DPRINTF("Unable to get VR%d from KVM: %s\n",
 | |
|                         i, strerror(errno));
 | |
|                 return ret;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_PPC64)
 | |
| static int kvm_get_vpa(CPUState *cs)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     struct kvm_one_reg reg;
 | |
|     int ret;
 | |
| 
 | |
|     reg.id = KVM_REG_PPC_VPA_ADDR;
 | |
|     reg.addr = (uintptr_t)&env->vpa_addr;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret < 0) {
 | |
|         DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     assert((uintptr_t)&env->slb_shadow_size
 | |
|            == ((uintptr_t)&env->slb_shadow_addr + 8));
 | |
|     reg.id = KVM_REG_PPC_VPA_SLB;
 | |
|     reg.addr = (uintptr_t)&env->slb_shadow_addr;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret < 0) {
 | |
|         DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
 | |
|                 strerror(errno));
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
 | |
|     reg.id = KVM_REG_PPC_VPA_DTL;
 | |
|     reg.addr = (uintptr_t)&env->dtl_addr;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret < 0) {
 | |
|         DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
 | |
|                 strerror(errno));
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_put_vpa(CPUState *cs)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     struct kvm_one_reg reg;
 | |
|     int ret;
 | |
| 
 | |
|     /* SLB shadow or DTL can't be registered unless a master VPA is
 | |
|      * registered.  That means when restoring state, if a VPA *is*
 | |
|      * registered, we need to set that up first.  If not, we need to
 | |
|      * deregister the others before deregistering the master VPA */
 | |
|     assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr));
 | |
| 
 | |
|     if (env->vpa_addr) {
 | |
|         reg.id = KVM_REG_PPC_VPA_ADDR;
 | |
|         reg.addr = (uintptr_t)&env->vpa_addr;
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|         if (ret < 0) {
 | |
|             DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     assert((uintptr_t)&env->slb_shadow_size
 | |
|            == ((uintptr_t)&env->slb_shadow_addr + 8));
 | |
|     reg.id = KVM_REG_PPC_VPA_SLB;
 | |
|     reg.addr = (uintptr_t)&env->slb_shadow_addr;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret < 0) {
 | |
|         DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
 | |
|     reg.id = KVM_REG_PPC_VPA_DTL;
 | |
|     reg.addr = (uintptr_t)&env->dtl_addr;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret < 0) {
 | |
|         DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
 | |
|                 strerror(errno));
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     if (!env->vpa_addr) {
 | |
|         reg.id = KVM_REG_PPC_VPA_ADDR;
 | |
|         reg.addr = (uintptr_t)&env->vpa_addr;
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|         if (ret < 0) {
 | |
|             DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| #endif /* TARGET_PPC64 */
 | |
| 
 | |
| int kvm_arch_put_registers(CPUState *cs, int level)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     struct kvm_regs regs;
 | |
|     int ret;
 | |
|     int i;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     regs.ctr = env->ctr;
 | |
|     regs.lr  = env->lr;
 | |
|     regs.xer = cpu_read_xer(env);
 | |
|     regs.msr = env->msr;
 | |
|     regs.pc = env->nip;
 | |
| 
 | |
|     regs.srr0 = env->spr[SPR_SRR0];
 | |
|     regs.srr1 = env->spr[SPR_SRR1];
 | |
| 
 | |
|     regs.sprg0 = env->spr[SPR_SPRG0];
 | |
|     regs.sprg1 = env->spr[SPR_SPRG1];
 | |
|     regs.sprg2 = env->spr[SPR_SPRG2];
 | |
|     regs.sprg3 = env->spr[SPR_SPRG3];
 | |
|     regs.sprg4 = env->spr[SPR_SPRG4];
 | |
|     regs.sprg5 = env->spr[SPR_SPRG5];
 | |
|     regs.sprg6 = env->spr[SPR_SPRG6];
 | |
|     regs.sprg7 = env->spr[SPR_SPRG7];
 | |
| 
 | |
|     regs.pid = env->spr[SPR_BOOKE_PID];
 | |
| 
 | |
|     for (i = 0;i < 32; i++)
 | |
|         regs.gpr[i] = env->gpr[i];
 | |
| 
 | |
|     regs.cr = 0;
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     kvm_put_fp(cs);
 | |
| 
 | |
|     if (env->tlb_dirty) {
 | |
|         kvm_sw_tlb_put(cpu);
 | |
|         env->tlb_dirty = false;
 | |
|     }
 | |
| 
 | |
|     if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
 | |
|         struct kvm_sregs sregs;
 | |
| 
 | |
|         sregs.pvr = env->spr[SPR_PVR];
 | |
| 
 | |
|         sregs.u.s.sdr1 = env->spr[SPR_SDR1];
 | |
| 
 | |
|         /* Sync SLB */
 | |
| #ifdef TARGET_PPC64
 | |
|         for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
 | |
|             sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
 | |
|             if (env->slb[i].esid & SLB_ESID_V) {
 | |
|                 sregs.u.s.ppc64.slb[i].slbe |= i;
 | |
|             }
 | |
|             sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         /* Sync SRs */
 | |
|         for (i = 0; i < 16; i++) {
 | |
|             sregs.u.s.ppc32.sr[i] = env->sr[i];
 | |
|         }
 | |
| 
 | |
|         /* Sync BATs */
 | |
|         for (i = 0; i < 8; i++) {
 | |
|             /* Beware. We have to swap upper and lower bits here */
 | |
|             sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
 | |
|                 | env->DBAT[1][i];
 | |
|             sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
 | |
|                 | env->IBAT[1][i];
 | |
|         }
 | |
| 
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
 | |
|         kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
 | |
|     }
 | |
| 
 | |
|     if (cap_one_reg) {
 | |
|         int i;
 | |
| 
 | |
|         /* We deliberately ignore errors here, for kernels which have
 | |
|          * the ONE_REG calls, but don't support the specific
 | |
|          * registers, there's a reasonable chance things will still
 | |
|          * work, at least until we try to migrate. */
 | |
|         for (i = 0; i < 1024; i++) {
 | |
|             uint64_t id = env->spr_cb[i].one_reg_id;
 | |
| 
 | |
|             if (id != 0) {
 | |
|                 kvm_put_one_spr(cs, id, i);
 | |
|             }
 | |
|         }
 | |
| 
 | |
| #ifdef TARGET_PPC64
 | |
|         if (msr_ts) {
 | |
|             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
 | |
|                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
 | |
|             }
 | |
|             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
 | |
|                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
 | |
|             }
 | |
|             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
 | |
|             kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
 | |
|             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
 | |
|             kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
 | |
|             kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
 | |
|             kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
 | |
|             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
 | |
|             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
 | |
|             kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
 | |
|             kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
 | |
|         }
 | |
| 
 | |
|         if (cap_papr) {
 | |
|             if (kvm_put_vpa(cs) < 0) {
 | |
|                 DPRINTF("Warning: Unable to set VPA information to KVM\n");
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
 | |
| #endif /* TARGET_PPC64 */
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
 | |
| {
 | |
|      env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
 | |
| }
 | |
| 
 | |
| int kvm_arch_get_registers(CPUState *cs)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     struct kvm_regs regs;
 | |
|     struct kvm_sregs sregs;
 | |
|     uint32_t cr;
 | |
|     int i, ret;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     cr = regs.cr;
 | |
|     for (i = 7; i >= 0; i--) {
 | |
|         env->crf[i] = cr & 15;
 | |
|         cr >>= 4;
 | |
|     }
 | |
| 
 | |
|     env->ctr = regs.ctr;
 | |
|     env->lr = regs.lr;
 | |
|     cpu_write_xer(env, regs.xer);
 | |
|     env->msr = regs.msr;
 | |
|     env->nip = regs.pc;
 | |
| 
 | |
|     env->spr[SPR_SRR0] = regs.srr0;
 | |
|     env->spr[SPR_SRR1] = regs.srr1;
 | |
| 
 | |
|     env->spr[SPR_SPRG0] = regs.sprg0;
 | |
|     env->spr[SPR_SPRG1] = regs.sprg1;
 | |
|     env->spr[SPR_SPRG2] = regs.sprg2;
 | |
|     env->spr[SPR_SPRG3] = regs.sprg3;
 | |
|     env->spr[SPR_SPRG4] = regs.sprg4;
 | |
|     env->spr[SPR_SPRG5] = regs.sprg5;
 | |
|     env->spr[SPR_SPRG6] = regs.sprg6;
 | |
|     env->spr[SPR_SPRG7] = regs.sprg7;
 | |
| 
 | |
|     env->spr[SPR_BOOKE_PID] = regs.pid;
 | |
| 
 | |
|     for (i = 0;i < 32; i++)
 | |
|         env->gpr[i] = regs.gpr[i];
 | |
| 
 | |
|     kvm_get_fp(cs);
 | |
| 
 | |
|     if (cap_booke_sregs) {
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
 | |
|         if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_E_BASE) {
 | |
|             env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
 | |
|             env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
 | |
|             env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
 | |
|             env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
 | |
|             env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
 | |
|             env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
 | |
|             env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
 | |
|             env->spr[SPR_DECR] = sregs.u.e.dec;
 | |
|             env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
 | |
|             env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
 | |
|             env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
 | |
|             env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
 | |
|             env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
 | |
|             env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
 | |
|             env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
 | |
|             env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_E_64) {
 | |
|             env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
 | |
|             env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
 | |
|             env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
 | |
|             env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
 | |
|             env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
 | |
|             env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
 | |
|             env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
 | |
|             env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
 | |
|             env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
 | |
|             env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
 | |
|             env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
 | |
|             env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
 | |
|             env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
 | |
|             env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
 | |
|             env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
 | |
|             env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
 | |
|             env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
 | |
|             env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
 | |
|             kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
 | |
| 
 | |
|             if (sregs.u.e.features & KVM_SREGS_E_SPE) {
 | |
|                 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
 | |
|                 kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
 | |
|                 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
 | |
|                 kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
 | |
|                 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
 | |
|                 kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
 | |
|             }
 | |
| 
 | |
|             if (sregs.u.e.features & KVM_SREGS_E_PM) {
 | |
|                 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
 | |
|                 kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
 | |
|             }
 | |
| 
 | |
|             if (sregs.u.e.features & KVM_SREGS_E_PC) {
 | |
|                 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
 | |
|                 kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
 | |
|                 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
 | |
|                 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
 | |
|             env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
 | |
|             env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
 | |
|             env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
 | |
|             env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
 | |
|             env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
 | |
|             env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
 | |
|             env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
 | |
|             env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
 | |
|             env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
 | |
|             env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_EXP) {
 | |
|             env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_E_PD) {
 | |
|             env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
 | |
|             env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
 | |
|             env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
 | |
|             env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
 | |
|             env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
 | |
| 
 | |
|             if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
 | |
|                 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
 | |
|                 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (cap_segstate) {
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
 | |
|         if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         if (!env->external_htab) {
 | |
|             ppc_store_sdr1(env, sregs.u.s.sdr1);
 | |
|         }
 | |
| 
 | |
|         /* Sync SLB */
 | |
| #ifdef TARGET_PPC64
 | |
|         /*
 | |
|          * The packed SLB array we get from KVM_GET_SREGS only contains
 | |
|          * information about valid entries. So we flush our internal
 | |
|          * copy to get rid of stale ones, then put all valid SLB entries
 | |
|          * back in.
 | |
|          */
 | |
|         memset(env->slb, 0, sizeof(env->slb));
 | |
|         for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
 | |
|             target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
 | |
|             target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
 | |
|             /*
 | |
|              * Only restore valid entries
 | |
|              */
 | |
|             if (rb & SLB_ESID_V) {
 | |
|                 ppc_store_slb(env, rb, rs);
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         /* Sync SRs */
 | |
|         for (i = 0; i < 16; i++) {
 | |
|             env->sr[i] = sregs.u.s.ppc32.sr[i];
 | |
|         }
 | |
| 
 | |
|         /* Sync BATs */
 | |
|         for (i = 0; i < 8; i++) {
 | |
|             env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
 | |
|             env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
 | |
|             env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
 | |
|             env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (cap_hior) {
 | |
|         kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
 | |
|     }
 | |
| 
 | |
|     if (cap_one_reg) {
 | |
|         int i;
 | |
| 
 | |
|         /* We deliberately ignore errors here, for kernels which have
 | |
|          * the ONE_REG calls, but don't support the specific
 | |
|          * registers, there's a reasonable chance things will still
 | |
|          * work, at least until we try to migrate. */
 | |
|         for (i = 0; i < 1024; i++) {
 | |
|             uint64_t id = env->spr_cb[i].one_reg_id;
 | |
| 
 | |
|             if (id != 0) {
 | |
|                 kvm_get_one_spr(cs, id, i);
 | |
|             }
 | |
|         }
 | |
| 
 | |
| #ifdef TARGET_PPC64
 | |
|         if (msr_ts) {
 | |
|             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
 | |
|                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
 | |
|             }
 | |
|             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
 | |
|                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
 | |
|             }
 | |
|             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
 | |
|             kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
 | |
|             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
 | |
|             kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
 | |
|             kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
 | |
|             kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
 | |
|             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
 | |
|             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
 | |
|             kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
 | |
|             kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
 | |
|         }
 | |
| 
 | |
|         if (cap_papr) {
 | |
|             if (kvm_get_vpa(cs) < 0) {
 | |
|                 DPRINTF("Warning: Unable to get VPA information from KVM\n");
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
 | |
| {
 | |
|     unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
 | |
| 
 | |
|     if (irq != PPC_INTERRUPT_EXT) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_PPCEMB)
 | |
| #define PPC_INPUT_INT PPC40x_INPUT_INT
 | |
| #elif defined(TARGET_PPC64)
 | |
| #define PPC_INPUT_INT PPC970_INPUT_INT
 | |
| #else
 | |
| #define PPC_INPUT_INT PPC6xx_INPUT_INT
 | |
| #endif
 | |
| 
 | |
| void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     int r;
 | |
|     unsigned irq;
 | |
| 
 | |
|     qemu_mutex_lock_iothread();
 | |
| 
 | |
|     /* PowerPC QEMU tracks the various core input pins (interrupt, critical
 | |
|      * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
 | |
|     if (!cap_interrupt_level &&
 | |
|         run->ready_for_interrupt_injection &&
 | |
|         (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
|         (env->irq_input_state & (1<<PPC_INPUT_INT)))
 | |
|     {
 | |
|         /* For now KVM disregards the 'irq' argument. However, in the
 | |
|          * future KVM could cache it in-kernel to avoid a heavyweight exit
 | |
|          * when reading the UIC.
 | |
|          */
 | |
|         irq = KVM_INTERRUPT_SET;
 | |
| 
 | |
|         DPRINTF("injected interrupt %d\n", irq);
 | |
|         r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
 | |
|         if (r < 0) {
 | |
|             printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
 | |
|         }
 | |
| 
 | |
|         /* Always wake up soon in case the interrupt was level based */
 | |
|         timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
 | |
|                        (get_ticks_per_sec() / 50));
 | |
|     }
 | |
| 
 | |
|     /* We don't know if there are more interrupts pending after this. However,
 | |
|      * the guest will return to userspace in the course of handling this one
 | |
|      * anyways, so we will get a chance to deliver the rest. */
 | |
| 
 | |
|     qemu_mutex_unlock_iothread();
 | |
| }
 | |
| 
 | |
| MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 | |
| {
 | |
|     return MEMTXATTRS_UNSPECIFIED;
 | |
| }
 | |
| 
 | |
| int kvm_arch_process_async_events(CPUState *cs)
 | |
| {
 | |
|     return cs->halted;
 | |
| }
 | |
| 
 | |
| static int kvmppc_handle_halt(PowerPCCPU *cpu)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
| 
 | |
|     if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
 | |
|         cs->halted = 1;
 | |
|         cs->exception_index = EXCP_HLT;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* map dcr access to existing qemu dcr emulation */
 | |
| static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
 | |
| {
 | |
|     if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
 | |
|         fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
 | |
| {
 | |
|     if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
 | |
|         fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 | |
| {
 | |
|     /* Mixed endian case is not handled */
 | |
|     uint32_t sc = debug_inst_opcode;
 | |
| 
 | |
|     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
 | |
|                             sizeof(sc), 0) ||
 | |
|         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 | |
| {
 | |
|     uint32_t sc;
 | |
| 
 | |
|     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
 | |
|         sc != debug_inst_opcode ||
 | |
|         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
 | |
|                             sizeof(sc), 1)) {
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int find_hw_breakpoint(target_ulong addr, int type)
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     assert((nb_hw_breakpoint + nb_hw_watchpoint)
 | |
|            <= ARRAY_SIZE(hw_debug_points));
 | |
| 
 | |
|     for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
 | |
|         if (hw_debug_points[n].addr == addr &&
 | |
|              hw_debug_points[n].type == type) {
 | |
|             return n;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static int find_hw_watchpoint(target_ulong addr, int *flag)
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
 | |
|     if (n >= 0) {
 | |
|         *flag = BP_MEM_ACCESS;
 | |
|         return n;
 | |
|     }
 | |
| 
 | |
|     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
 | |
|     if (n >= 0) {
 | |
|         *flag = BP_MEM_WRITE;
 | |
|         return n;
 | |
|     }
 | |
| 
 | |
|     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
 | |
|     if (n >= 0) {
 | |
|         *flag = BP_MEM_READ;
 | |
|         return n;
 | |
|     }
 | |
| 
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 | |
|                                   target_ulong len, int type)
 | |
| {
 | |
|     if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
 | |
|         return -ENOBUFS;
 | |
|     }
 | |
| 
 | |
|     hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
 | |
|     hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
 | |
| 
 | |
|     switch (type) {
 | |
|     case GDB_BREAKPOINT_HW:
 | |
|         if (nb_hw_breakpoint >= max_hw_breakpoint) {
 | |
|             return -ENOBUFS;
 | |
|         }
 | |
| 
 | |
|         if (find_hw_breakpoint(addr, type) >= 0) {
 | |
|             return -EEXIST;
 | |
|         }
 | |
| 
 | |
|         nb_hw_breakpoint++;
 | |
|         break;
 | |
| 
 | |
|     case GDB_WATCHPOINT_WRITE:
 | |
|     case GDB_WATCHPOINT_READ:
 | |
|     case GDB_WATCHPOINT_ACCESS:
 | |
|         if (nb_hw_watchpoint >= max_hw_watchpoint) {
 | |
|             return -ENOBUFS;
 | |
|         }
 | |
| 
 | |
|         if (find_hw_breakpoint(addr, type) >= 0) {
 | |
|             return -EEXIST;
 | |
|         }
 | |
| 
 | |
|         nb_hw_watchpoint++;
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 | |
|                                   target_ulong len, int type)
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     n = find_hw_breakpoint(addr, type);
 | |
|     if (n < 0) {
 | |
|         return -ENOENT;
 | |
|     }
 | |
| 
 | |
|     switch (type) {
 | |
|     case GDB_BREAKPOINT_HW:
 | |
|         nb_hw_breakpoint--;
 | |
|         break;
 | |
| 
 | |
|     case GDB_WATCHPOINT_WRITE:
 | |
|     case GDB_WATCHPOINT_READ:
 | |
|     case GDB_WATCHPOINT_ACCESS:
 | |
|         nb_hw_watchpoint--;
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         return -ENOSYS;
 | |
|     }
 | |
|     hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_remove_all_hw_breakpoints(void)
 | |
| {
 | |
|     nb_hw_breakpoint = nb_hw_watchpoint = 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     /* Software Breakpoint updates */
 | |
|     if (kvm_sw_breakpoints_active(cs)) {
 | |
|         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
 | |
|     }
 | |
| 
 | |
|     assert((nb_hw_breakpoint + nb_hw_watchpoint)
 | |
|            <= ARRAY_SIZE(hw_debug_points));
 | |
|     assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
 | |
| 
 | |
|     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
 | |
|         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
 | |
|         memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
 | |
|         for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
 | |
|             switch (hw_debug_points[n].type) {
 | |
|             case GDB_BREAKPOINT_HW:
 | |
|                 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
 | |
|                 break;
 | |
|             case GDB_WATCHPOINT_WRITE:
 | |
|                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
 | |
|                 break;
 | |
|             case GDB_WATCHPOINT_READ:
 | |
|                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
 | |
|                 break;
 | |
|             case GDB_WATCHPOINT_ACCESS:
 | |
|                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
 | |
|                                         KVMPPC_DEBUG_WATCH_READ;
 | |
|                 break;
 | |
|             default:
 | |
|                 cpu_abort(cs, "Unsupported breakpoint type\n");
 | |
|             }
 | |
|             dbg->arch.bp[n].addr = hw_debug_points[n].addr;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
 | |
|     int handle = 0;
 | |
|     int n;
 | |
|     int flag = 0;
 | |
| 
 | |
|     if (cs->singlestep_enabled) {
 | |
|         handle = 1;
 | |
|     } else if (arch_info->status) {
 | |
|         if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
 | |
|             if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
 | |
|                 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
 | |
|                 if (n >= 0) {
 | |
|                     handle = 1;
 | |
|                 }
 | |
|             } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
 | |
|                                             KVMPPC_DEBUG_WATCH_WRITE)) {
 | |
|                 n = find_hw_watchpoint(arch_info->address,  &flag);
 | |
|                 if (n >= 0) {
 | |
|                     handle = 1;
 | |
|                     cs->watchpoint_hit = &hw_watchpoint;
 | |
|                     hw_watchpoint.vaddr = hw_debug_points[n].addr;
 | |
|                     hw_watchpoint.flags = flag;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
 | |
|         handle = 1;
 | |
|     } else {
 | |
|         /* QEMU is not able to handle debug exception, so inject
 | |
|          * program exception to guest;
 | |
|          * Yes program exception NOT debug exception !!
 | |
|          * When QEMU is using debug resources then debug exception must
 | |
|          * be always set. To achieve this we set MSR_DE and also set
 | |
|          * MSRP_DEP so guest cannot change MSR_DE.
 | |
|          * When emulating debug resource for guest we want guest
 | |
|          * to control MSR_DE (enable/disable debug interrupt on need).
 | |
|          * Supporting both configurations are NOT possible.
 | |
|          * So the result is that we cannot share debug resources
 | |
|          * between QEMU and Guest on BOOKE architecture.
 | |
|          * In the current design QEMU gets the priority over guest,
 | |
|          * this means that if QEMU is using debug resources then guest
 | |
|          * cannot use them;
 | |
|          * For software breakpoint QEMU uses a privileged instruction;
 | |
|          * So there cannot be any reason that we are here for guest
 | |
|          * set debug exception, only possibility is guest executed a
 | |
|          * privileged / illegal instruction and that's why we are
 | |
|          * injecting a program interrupt.
 | |
|          */
 | |
| 
 | |
|         cpu_synchronize_state(cs);
 | |
|         /* env->nip is PC, so increment this by 4 to use
 | |
|          * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
 | |
|          */
 | |
|         env->nip += 4;
 | |
|         cs->exception_index = POWERPC_EXCP_PROGRAM;
 | |
|         env->error_code = POWERPC_EXCP_INVAL;
 | |
|         ppc_cpu_do_interrupt(cs);
 | |
|     }
 | |
| 
 | |
|     return handle;
 | |
| }
 | |
| 
 | |
| int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     int ret;
 | |
| 
 | |
|     qemu_mutex_lock_iothread();
 | |
| 
 | |
|     switch (run->exit_reason) {
 | |
|     case KVM_EXIT_DCR:
 | |
|         if (run->dcr.is_write) {
 | |
|             DPRINTF("handle dcr write\n");
 | |
|             ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
 | |
|         } else {
 | |
|             DPRINTF("handle dcr read\n");
 | |
|             ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
 | |
|         }
 | |
|         break;
 | |
|     case KVM_EXIT_HLT:
 | |
|         DPRINTF("handle halt\n");
 | |
|         ret = kvmppc_handle_halt(cpu);
 | |
|         break;
 | |
| #if defined(TARGET_PPC64)
 | |
|     case KVM_EXIT_PAPR_HCALL:
 | |
|         DPRINTF("handle PAPR hypercall\n");
 | |
|         run->papr_hcall.ret = spapr_hypercall(cpu,
 | |
|                                               run->papr_hcall.nr,
 | |
|                                               run->papr_hcall.args);
 | |
|         ret = 0;
 | |
|         break;
 | |
| #endif
 | |
|     case KVM_EXIT_EPR:
 | |
|         DPRINTF("handle epr\n");
 | |
|         run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
 | |
|         ret = 0;
 | |
|         break;
 | |
|     case KVM_EXIT_WATCHDOG:
 | |
|         DPRINTF("handle watchdog expiry\n");
 | |
|         watchdog_perform_action();
 | |
|         ret = 0;
 | |
|         break;
 | |
| 
 | |
|     case KVM_EXIT_DEBUG:
 | |
|         DPRINTF("handle debug exception\n");
 | |
|         if (kvm_handle_debug(cpu, run)) {
 | |
|             ret = EXCP_DEBUG;
 | |
|             break;
 | |
|         }
 | |
|         /* re-enter, this exception was guest-internal */
 | |
|         ret = 0;
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
 | |
|         ret = -1;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     qemu_mutex_unlock_iothread();
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     uint32_t bits = tsr_bits;
 | |
|     struct kvm_one_reg reg = {
 | |
|         .id = KVM_REG_PPC_OR_TSR,
 | |
|         .addr = (uintptr_t) &bits,
 | |
|     };
 | |
| 
 | |
|     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
| }
 | |
| 
 | |
| int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
 | |
| {
 | |
| 
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     uint32_t bits = tsr_bits;
 | |
|     struct kvm_one_reg reg = {
 | |
|         .id = KVM_REG_PPC_CLEAR_TSR,
 | |
|         .addr = (uintptr_t) &bits,
 | |
|     };
 | |
| 
 | |
|     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
| }
 | |
| 
 | |
| int kvmppc_set_tcr(PowerPCCPU *cpu)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     uint32_t tcr = env->spr[SPR_BOOKE_TCR];
 | |
| 
 | |
|     struct kvm_one_reg reg = {
 | |
|         .id = KVM_REG_PPC_TCR,
 | |
|         .addr = (uintptr_t) &tcr,
 | |
|     };
 | |
| 
 | |
|     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
| }
 | |
| 
 | |
| int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     int ret;
 | |
| 
 | |
|     if (!kvm_enabled()) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!cap_ppc_watchdog) {
 | |
|         printf("warning: KVM does not support watchdog");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
 | |
|                 __func__, strerror(-ret));
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int read_cpuinfo(const char *field, char *value, int len)
 | |
| {
 | |
|     FILE *f;
 | |
|     int ret = -1;
 | |
|     int field_len = strlen(field);
 | |
|     char line[512];
 | |
| 
 | |
|     f = fopen("/proc/cpuinfo", "r");
 | |
|     if (!f) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         if (!fgets(line, sizeof(line), f)) {
 | |
|             break;
 | |
|         }
 | |
|         if (!strncmp(line, field, field_len)) {
 | |
|             pstrcpy(value, len, line);
 | |
|             ret = 0;
 | |
|             break;
 | |
|         }
 | |
|     } while(*line);
 | |
| 
 | |
|     fclose(f);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| uint32_t kvmppc_get_tbfreq(void)
 | |
| {
 | |
|     char line[512];
 | |
|     char *ns;
 | |
|     uint32_t retval = get_ticks_per_sec();
 | |
| 
 | |
|     if (read_cpuinfo("timebase", line, sizeof(line))) {
 | |
|         return retval;
 | |
|     }
 | |
| 
 | |
|     if (!(ns = strchr(line, ':'))) {
 | |
|         return retval;
 | |
|     }
 | |
| 
 | |
|     ns++;
 | |
| 
 | |
|     retval = atoi(ns);
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| bool kvmppc_get_host_serial(char **value)
 | |
| {
 | |
|     return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
 | |
|                                NULL);
 | |
| }
 | |
| 
 | |
| bool kvmppc_get_host_model(char **value)
 | |
| {
 | |
|     return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
 | |
| }
 | |
| 
 | |
| /* Try to find a device tree node for a CPU with clock-frequency property */
 | |
| static int kvmppc_find_cpu_dt(char *buf, int buf_len)
 | |
| {
 | |
|     struct dirent *dirp;
 | |
|     DIR *dp;
 | |
| 
 | |
|     if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
 | |
|         printf("Can't open directory " PROC_DEVTREE_CPU "\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     buf[0] = '\0';
 | |
|     while ((dirp = readdir(dp)) != NULL) {
 | |
|         FILE *f;
 | |
|         snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
 | |
|                  dirp->d_name);
 | |
|         f = fopen(buf, "r");
 | |
|         if (f) {
 | |
|             snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
 | |
|             fclose(f);
 | |
|             break;
 | |
|         }
 | |
|         buf[0] = '\0';
 | |
|     }
 | |
|     closedir(dp);
 | |
|     if (buf[0] == '\0') {
 | |
|         printf("Unknown host!\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Read a CPU node property from the host device tree that's a single
 | |
|  * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
 | |
|  * (can't find or open the property, or doesn't understand the
 | |
|  * format) */
 | |
| static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
 | |
| {
 | |
|     char buf[PATH_MAX], *tmp;
 | |
|     union {
 | |
|         uint32_t v32;
 | |
|         uint64_t v64;
 | |
|     } u;
 | |
|     FILE *f;
 | |
|     int len;
 | |
| 
 | |
|     if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     tmp = g_strdup_printf("%s/%s", buf, propname);
 | |
| 
 | |
|     f = fopen(tmp, "rb");
 | |
|     g_free(tmp);
 | |
|     if (!f) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     len = fread(&u, 1, sizeof(u), f);
 | |
|     fclose(f);
 | |
|     switch (len) {
 | |
|     case 4:
 | |
|         /* property is a 32-bit quantity */
 | |
|         return be32_to_cpu(u.v32);
 | |
|     case 8:
 | |
|         return be64_to_cpu(u.v64);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| uint64_t kvmppc_get_clockfreq(void)
 | |
| {
 | |
|     return kvmppc_read_int_cpu_dt("clock-frequency");
 | |
| }
 | |
| 
 | |
| uint32_t kvmppc_get_vmx(void)
 | |
| {
 | |
|     return kvmppc_read_int_cpu_dt("ibm,vmx");
 | |
| }
 | |
| 
 | |
| uint32_t kvmppc_get_dfp(void)
 | |
| {
 | |
|     return kvmppc_read_int_cpu_dt("ibm,dfp");
 | |
| }
 | |
| 
 | |
| static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
 | |
|  {
 | |
|      PowerPCCPU *cpu = ppc_env_get_cpu(env);
 | |
|      CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
 | |
|         !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int kvmppc_get_hasidle(CPUPPCState *env)
 | |
| {
 | |
|     struct kvm_ppc_pvinfo pvinfo;
 | |
| 
 | |
|     if (!kvmppc_get_pvinfo(env, &pvinfo) &&
 | |
|         (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
 | |
| {
 | |
|     uint32_t *hc = (uint32_t*)buf;
 | |
|     struct kvm_ppc_pvinfo pvinfo;
 | |
| 
 | |
|     if (!kvmppc_get_pvinfo(env, &pvinfo)) {
 | |
|         memcpy(buf, pvinfo.hcall, buf_len);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Fallback to always fail hypercalls regardless of endianness:
 | |
|      *
 | |
|      *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
 | |
|      *     li r3, -1
 | |
|      *     b .+8       (becomes nop in wrong endian)
 | |
|      *     bswap32(li r3, -1)
 | |
|      */
 | |
| 
 | |
|     hc[0] = cpu_to_be32(0x08000048);
 | |
|     hc[1] = cpu_to_be32(0x3860ffff);
 | |
|     hc[2] = cpu_to_be32(0x48000008);
 | |
|     hc[3] = cpu_to_be32(bswap32(0x3860ffff));
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
 | |
| {
 | |
|     return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
 | |
| }
 | |
| 
 | |
| void kvmppc_enable_logical_ci_hcalls(void)
 | |
| {
 | |
|     /*
 | |
|      * FIXME: it would be nice if we could detect the cases where
 | |
|      * we're using a device which requires the in kernel
 | |
|      * implementation of these hcalls, but the kernel lacks them and
 | |
|      * produce a warning.
 | |
|      */
 | |
|     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
 | |
|     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
 | |
| }
 | |
| 
 | |
| void kvmppc_set_papr(PowerPCCPU *cpu)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     int ret;
 | |
| 
 | |
|     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
 | |
|     if (ret) {
 | |
|         cpu_abort(cs, "This KVM version does not support PAPR\n");
 | |
|     }
 | |
| 
 | |
|     /* Update the capability flag so we sync the right information
 | |
|      * with kvm */
 | |
|     cap_papr = 1;
 | |
| }
 | |
| 
 | |
| int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t cpu_version)
 | |
| {
 | |
|     return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &cpu_version);
 | |
| }
 | |
| 
 | |
| void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     int ret;
 | |
| 
 | |
|     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
 | |
|     if (ret && mpic_proxy) {
 | |
|         cpu_abort(cs, "This KVM version does not support EPR\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| int kvmppc_smt_threads(void)
 | |
| {
 | |
|     return cap_ppc_smt ? cap_ppc_smt : 1;
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_PPC64
 | |
| off_t kvmppc_alloc_rma(void **rma)
 | |
| {
 | |
|     off_t size;
 | |
|     int fd;
 | |
|     struct kvm_allocate_rma ret;
 | |
| 
 | |
|     /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
 | |
|      * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
 | |
|      *                      not necessary on this hardware
 | |
|      * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
 | |
|      *
 | |
|      * FIXME: We should allow the user to force contiguous RMA
 | |
|      * allocation in the cap_ppc_rma==1 case.
 | |
|      */
 | |
|     if (cap_ppc_rma < 2) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
 | |
|     if (fd < 0) {
 | |
|         fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
 | |
|                 strerror(errno));
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     size = MIN(ret.rma_size, 256ul << 20);
 | |
| 
 | |
|     *rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 | |
|     if (*rma == MAP_FAILED) {
 | |
|         fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
 | |
|         return -1;
 | |
|     };
 | |
| 
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
 | |
| {
 | |
|     struct kvm_ppc_smmu_info info;
 | |
|     long rampagesize, best_page_shift;
 | |
|     int i;
 | |
| 
 | |
|     if (cap_ppc_rma >= 2) {
 | |
|         return current_size;
 | |
|     }
 | |
| 
 | |
|     /* Find the largest hardware supported page size that's less than
 | |
|      * or equal to the (logical) backing page size of guest RAM */
 | |
|     kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info);
 | |
|     rampagesize = getrampagesize();
 | |
|     best_page_shift = 0;
 | |
| 
 | |
|     for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
 | |
|         struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
 | |
| 
 | |
|         if (!sps->page_shift) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if ((sps->page_shift > best_page_shift)
 | |
|             && ((1UL << sps->page_shift) <= rampagesize)) {
 | |
|             best_page_shift = sps->page_shift;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return MIN(current_size,
 | |
|                1ULL << (best_page_shift + hash_shift - 7));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| bool kvmppc_spapr_use_multitce(void)
 | |
| {
 | |
|     return cap_spapr_multitce;
 | |
| }
 | |
| 
 | |
| void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd,
 | |
|                               bool vfio_accel)
 | |
| {
 | |
|     struct kvm_create_spapr_tce args = {
 | |
|         .liobn = liobn,
 | |
|         .window_size = window_size,
 | |
|     };
 | |
|     long len;
 | |
|     int fd;
 | |
|     void *table;
 | |
| 
 | |
|     /* Must set fd to -1 so we don't try to munmap when called for
 | |
|      * destroying the table, which the upper layers -will- do
 | |
|      */
 | |
|     *pfd = -1;
 | |
|     if (!cap_spapr_tce || (vfio_accel && !cap_spapr_vfio)) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
 | |
|     if (fd < 0) {
 | |
|         fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
 | |
|                 liobn);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t);
 | |
|     /* FIXME: round this up to page size */
 | |
| 
 | |
|     table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 | |
|     if (table == MAP_FAILED) {
 | |
|         fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
 | |
|                 liobn);
 | |
|         close(fd);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     *pfd = fd;
 | |
|     return table;
 | |
| }
 | |
| 
 | |
| int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
 | |
| {
 | |
|     long len;
 | |
| 
 | |
|     if (fd < 0) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     len = nb_table * sizeof(uint64_t);
 | |
|     if ((munmap(table, len) < 0) ||
 | |
|         (close(fd) < 0)) {
 | |
|         fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
 | |
|                 strerror(errno));
 | |
|         /* Leak the table */
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvmppc_reset_htab(int shift_hint)
 | |
| {
 | |
|     uint32_t shift = shift_hint;
 | |
| 
 | |
|     if (!kvm_enabled()) {
 | |
|         /* Full emulation, tell caller to allocate htab itself */
 | |
|         return 0;
 | |
|     }
 | |
|     if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
 | |
|         int ret;
 | |
|         ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
 | |
|         if (ret == -ENOTTY) {
 | |
|             /* At least some versions of PR KVM advertise the
 | |
|              * capability, but don't implement the ioctl().  Oops.
 | |
|              * Return 0 so that we allocate the htab in qemu, as is
 | |
|              * correct for PR. */
 | |
|             return 0;
 | |
|         } else if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
|         return shift;
 | |
|     }
 | |
| 
 | |
|     /* We have a kernel that predates the htab reset calls.  For PR
 | |
|      * KVM, we need to allocate the htab ourselves, for an HV KVM of
 | |
|      * this era, it has allocated a 16MB fixed size hash table
 | |
|      * already.  Kernels of this era have the GET_PVINFO capability
 | |
|      * only on PR, so we use this hack to determine the right
 | |
|      * answer */
 | |
|     if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
 | |
|         /* PR - tell caller to allocate htab */
 | |
|         return 0;
 | |
|     } else {
 | |
|         /* HV - assume 16MB kernel allocated htab */
 | |
|         return 24;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline uint32_t mfpvr(void)
 | |
| {
 | |
|     uint32_t pvr;
 | |
| 
 | |
|     asm ("mfpvr %0"
 | |
|          : "=r"(pvr));
 | |
|     return pvr;
 | |
| }
 | |
| 
 | |
| static void alter_insns(uint64_t *word, uint64_t flags, bool on)
 | |
| {
 | |
|     if (on) {
 | |
|         *word |= flags;
 | |
|     } else {
 | |
|         *word &= ~flags;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvmppc_host_cpu_initfn(Object *obj)
 | |
| {
 | |
|     assert(kvm_enabled());
 | |
| }
 | |
| 
 | |
| static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
 | |
|     uint32_t vmx = kvmppc_get_vmx();
 | |
|     uint32_t dfp = kvmppc_get_dfp();
 | |
|     uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
 | |
|     uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
 | |
| 
 | |
|     /* Now fix up the class with information we can query from the host */
 | |
|     pcc->pvr = mfpvr();
 | |
| 
 | |
|     if (vmx != -1) {
 | |
|         /* Only override when we know what the host supports */
 | |
|         alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0);
 | |
|         alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1);
 | |
|     }
 | |
|     if (dfp != -1) {
 | |
|         /* Only override when we know what the host supports */
 | |
|         alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp);
 | |
|     }
 | |
| 
 | |
|     if (dcache_size != -1) {
 | |
|         pcc->l1_dcache_size = dcache_size;
 | |
|     }
 | |
| 
 | |
|     if (icache_size != -1) {
 | |
|         pcc->l1_icache_size = icache_size;
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool kvmppc_has_cap_epr(void)
 | |
| {
 | |
|     return cap_epr;
 | |
| }
 | |
| 
 | |
| bool kvmppc_has_cap_htab_fd(void)
 | |
| {
 | |
|     return cap_htab_fd;
 | |
| }
 | |
| 
 | |
| bool kvmppc_has_cap_fixup_hcalls(void)
 | |
| {
 | |
|     return cap_fixup_hcalls;
 | |
| }
 | |
| 
 | |
| static PowerPCCPUClass *ppc_cpu_get_family_class(PowerPCCPUClass *pcc)
 | |
| {
 | |
|     ObjectClass *oc = OBJECT_CLASS(pcc);
 | |
| 
 | |
|     while (oc && !object_class_is_abstract(oc)) {
 | |
|         oc = object_class_get_parent(oc);
 | |
|     }
 | |
|     assert(oc);
 | |
| 
 | |
|     return POWERPC_CPU_CLASS(oc);
 | |
| }
 | |
| 
 | |
| static int kvm_ppc_register_host_cpu_type(void)
 | |
| {
 | |
|     TypeInfo type_info = {
 | |
|         .name = TYPE_HOST_POWERPC_CPU,
 | |
|         .instance_init = kvmppc_host_cpu_initfn,
 | |
|         .class_init = kvmppc_host_cpu_class_init,
 | |
|     };
 | |
|     uint32_t host_pvr = mfpvr();
 | |
|     PowerPCCPUClass *pvr_pcc;
 | |
|     DeviceClass *dc;
 | |
| 
 | |
|     pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
 | |
|     if (pvr_pcc == NULL) {
 | |
|         pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
 | |
|     }
 | |
|     if (pvr_pcc == NULL) {
 | |
|         return -1;
 | |
|     }
 | |
|     type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
 | |
|     type_register(&type_info);
 | |
| 
 | |
|     /* Register generic family CPU class for a family */
 | |
|     pvr_pcc = ppc_cpu_get_family_class(pvr_pcc);
 | |
|     dc = DEVICE_CLASS(pvr_pcc);
 | |
|     type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
 | |
|     type_info.name = g_strdup_printf("%s-"TYPE_POWERPC_CPU, dc->desc);
 | |
|     type_register(&type_info);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
 | |
| {
 | |
|     struct kvm_rtas_token_args args = {
 | |
|         .token = token,
 | |
|     };
 | |
| 
 | |
|     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
 | |
|         return -ENOENT;
 | |
|     }
 | |
| 
 | |
|     strncpy(args.name, function, sizeof(args.name));
 | |
| 
 | |
|     return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
 | |
| }
 | |
| 
 | |
| int kvmppc_get_htab_fd(bool write)
 | |
| {
 | |
|     struct kvm_get_htab_fd s = {
 | |
|         .flags = write ? KVM_GET_HTAB_WRITE : 0,
 | |
|         .start_index = 0,
 | |
|     };
 | |
| 
 | |
|     if (!cap_htab_fd) {
 | |
|         fprintf(stderr, "KVM version doesn't support saving the hash table\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
 | |
| }
 | |
| 
 | |
| int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
 | |
| {
 | |
|     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 | |
|     uint8_t buf[bufsize];
 | |
|     ssize_t rc;
 | |
| 
 | |
|     do {
 | |
|         rc = read(fd, buf, bufsize);
 | |
|         if (rc < 0) {
 | |
|             fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
 | |
|                     strerror(errno));
 | |
|             return rc;
 | |
|         } else if (rc) {
 | |
|             uint8_t *buffer = buf;
 | |
|             ssize_t n = rc;
 | |
|             while (n) {
 | |
|                 struct kvm_get_htab_header *head =
 | |
|                     (struct kvm_get_htab_header *) buffer;
 | |
|                 size_t chunksize = sizeof(*head) +
 | |
|                      HASH_PTE_SIZE_64 * head->n_valid;
 | |
| 
 | |
|                 qemu_put_be32(f, head->index);
 | |
|                 qemu_put_be16(f, head->n_valid);
 | |
|                 qemu_put_be16(f, head->n_invalid);
 | |
|                 qemu_put_buffer(f, (void *)(head + 1),
 | |
|                                 HASH_PTE_SIZE_64 * head->n_valid);
 | |
| 
 | |
|                 buffer += chunksize;
 | |
|                 n -= chunksize;
 | |
|             }
 | |
|         }
 | |
|     } while ((rc != 0)
 | |
|              && ((max_ns < 0)
 | |
|                  || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
 | |
| 
 | |
|     return (rc == 0) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
 | |
|                            uint16_t n_valid, uint16_t n_invalid)
 | |
| {
 | |
|     struct kvm_get_htab_header *buf;
 | |
|     size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64;
 | |
|     ssize_t rc;
 | |
| 
 | |
|     buf = alloca(chunksize);
 | |
|     buf->index = index;
 | |
|     buf->n_valid = n_valid;
 | |
|     buf->n_invalid = n_invalid;
 | |
| 
 | |
|     qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid);
 | |
| 
 | |
|     rc = write(fd, buf, chunksize);
 | |
|     if (rc < 0) {
 | |
|         fprintf(stderr, "Error writing KVM hash table: %s\n",
 | |
|                 strerror(errno));
 | |
|         return rc;
 | |
|     }
 | |
|     if (rc != chunksize) {
 | |
|         /* We should never get a short write on a single chunk */
 | |
|         fprintf(stderr, "Short write, restoring KVM hash table\n");
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
 | |
| {
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int kvm_arch_on_sigbus(int code, void *addr)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void kvm_arch_init_irq_routing(KVMState *s)
 | |
| {
 | |
| }
 | |
| 
 | |
| struct kvm_get_htab_buf {
 | |
|     struct kvm_get_htab_header header;
 | |
|     /*
 | |
|      * We require one extra byte for read
 | |
|      */
 | |
|     target_ulong hpte[(HPTES_PER_GROUP * 2) + 1];
 | |
| };
 | |
| 
 | |
| uint64_t kvmppc_hash64_read_pteg(PowerPCCPU *cpu, target_ulong pte_index)
 | |
| {
 | |
|     int htab_fd;
 | |
|     struct kvm_get_htab_fd ghf;
 | |
|     struct kvm_get_htab_buf  *hpte_buf;
 | |
| 
 | |
|     ghf.flags = 0;
 | |
|     ghf.start_index = pte_index;
 | |
|     htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
 | |
|     if (htab_fd < 0) {
 | |
|         goto error_out;
 | |
|     }
 | |
| 
 | |
|     hpte_buf = g_malloc0(sizeof(*hpte_buf));
 | |
|     /*
 | |
|      * Read the hpte group
 | |
|      */
 | |
|     if (read(htab_fd, hpte_buf, sizeof(*hpte_buf)) < 0) {
 | |
|         goto out_close;
 | |
|     }
 | |
| 
 | |
|     close(htab_fd);
 | |
|     return (uint64_t)(uintptr_t) hpte_buf->hpte;
 | |
| 
 | |
| out_close:
 | |
|     g_free(hpte_buf);
 | |
|     close(htab_fd);
 | |
| error_out:
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void kvmppc_hash64_free_pteg(uint64_t token)
 | |
| {
 | |
|     struct kvm_get_htab_buf *htab_buf;
 | |
| 
 | |
|     htab_buf = container_of((void *)(uintptr_t) token, struct kvm_get_htab_buf,
 | |
|                             hpte);
 | |
|     g_free(htab_buf);
 | |
|     return;
 | |
| }
 | |
| 
 | |
| void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index,
 | |
|                              target_ulong pte0, target_ulong pte1)
 | |
| {
 | |
|     int htab_fd;
 | |
|     struct kvm_get_htab_fd ghf;
 | |
|     struct kvm_get_htab_buf hpte_buf;
 | |
| 
 | |
|     ghf.flags = 0;
 | |
|     ghf.start_index = 0;     /* Ignored */
 | |
|     htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
 | |
|     if (htab_fd < 0) {
 | |
|         goto error_out;
 | |
|     }
 | |
| 
 | |
|     hpte_buf.header.n_valid = 1;
 | |
|     hpte_buf.header.n_invalid = 0;
 | |
|     hpte_buf.header.index = pte_index;
 | |
|     hpte_buf.hpte[0] = pte0;
 | |
|     hpte_buf.hpte[1] = pte1;
 | |
|     /*
 | |
|      * Write the hpte entry.
 | |
|      * CAUTION: write() has the warn_unused_result attribute. Hence we
 | |
|      * need to check the return value, even though we do nothing.
 | |
|      */
 | |
|     if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) {
 | |
|         goto out_close;
 | |
|     }
 | |
| 
 | |
| out_close:
 | |
|     close(htab_fd);
 | |
|     return;
 | |
| 
 | |
| error_out:
 | |
|     return;
 | |
| }
 | |
| 
 | |
| int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
 | |
|                              uint64_t address, uint32_t data)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_msi_data_to_gsi(uint32_t data)
 | |
| {
 | |
|     return data & 0xffff;
 | |
| }
 |