271 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			271 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * ARM implementation of KVM hooks, 64 bit specific code
 | |
|  *
 | |
|  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/mman.h>
 | |
| 
 | |
| #include <linux/kvm.h>
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "kvm_arm.h"
 | |
| #include "cpu.h"
 | |
| #include "internals.h"
 | |
| #include "hw/arm/arm.h"
 | |
| 
 | |
| static inline void set_feature(uint64_t *features, int feature)
 | |
| {
 | |
|     *features |= 1ULL << feature;
 | |
| }
 | |
| 
 | |
| bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
 | |
| {
 | |
|     /* Identify the feature bits corresponding to the host CPU, and
 | |
|      * fill out the ARMHostCPUClass fields accordingly. To do this
 | |
|      * we have to create a scratch VM, create a single CPU inside it,
 | |
|      * and then query that CPU for the relevant ID registers.
 | |
|      * For AArch64 we currently don't care about ID registers at
 | |
|      * all; we just want to know the CPU type.
 | |
|      */
 | |
|     int fdarray[3];
 | |
|     uint64_t features = 0;
 | |
|     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
 | |
|      * we know these will only support creating one kind of guest CPU,
 | |
|      * which is its preferred CPU type. Fortunately these old kernels
 | |
|      * support only a very limited number of CPUs.
 | |
|      */
 | |
|     static const uint32_t cpus_to_try[] = {
 | |
|         KVM_ARM_TARGET_AEM_V8,
 | |
|         KVM_ARM_TARGET_FOUNDATION_V8,
 | |
|         KVM_ARM_TARGET_CORTEX_A57,
 | |
|         QEMU_KVM_ARM_TARGET_NONE
 | |
|     };
 | |
|     struct kvm_vcpu_init init;
 | |
| 
 | |
|     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     ahcc->target = init.target;
 | |
|     ahcc->dtb_compatible = "arm,arm-v8";
 | |
| 
 | |
|     kvm_arm_destroy_scratch_host_vcpu(fdarray);
 | |
| 
 | |
|    /* We can assume any KVM supporting CPU is at least a v8
 | |
|      * with VFPv4+Neon; this in turn implies most of the other
 | |
|      * feature bits.
 | |
|      */
 | |
|     set_feature(&features, ARM_FEATURE_V8);
 | |
|     set_feature(&features, ARM_FEATURE_VFP4);
 | |
|     set_feature(&features, ARM_FEATURE_NEON);
 | |
|     set_feature(&features, ARM_FEATURE_AARCH64);
 | |
| 
 | |
|     ahcc->features = features;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| int kvm_arch_init_vcpu(CPUState *cs)
 | |
| {
 | |
|     int ret;
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
| 
 | |
|     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
 | |
|         !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 | |
|         fprintf(stderr, "KVM is not supported for this guest CPU type\n");
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     /* Determine init features for this CPU */
 | |
|     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
 | |
|     if (cpu->start_powered_off) {
 | |
|         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
 | |
|     }
 | |
|     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
 | |
|         cpu->psci_version = 2;
 | |
|         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
 | |
|     }
 | |
| 
 | |
|     /* Do KVM_ARM_VCPU_INIT ioctl */
 | |
|     ret = kvm_arm_vcpu_init(cs);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* TODO : support for save/restore/reset of system regs via tuple list */
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
 | |
|                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 | |
| 
 | |
| int kvm_arch_put_registers(CPUState *cs, int level)
 | |
| {
 | |
|     struct kvm_one_reg reg;
 | |
|     uint64_t val;
 | |
|     int i;
 | |
|     int ret;
 | |
| 
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     for (i = 0; i < 31; i++) {
 | |
|         reg.id = AARCH64_CORE_REG(regs.regs[i]);
 | |
|         reg.addr = (uintptr_t) &env->xregs[i];
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 | |
|      * QEMU side we keep the current SP in xregs[31] as well.
 | |
|      */
 | |
|     aarch64_save_sp(env, 1);
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(regs.sp);
 | |
|     reg.addr = (uintptr_t) &env->sp_el[0];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(sp_el1);
 | |
|     reg.addr = (uintptr_t) &env->sp_el[1];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
 | |
|     val = pstate_read(env);
 | |
|     reg.id = AARCH64_CORE_REG(regs.pstate);
 | |
|     reg.addr = (uintptr_t) &val;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(regs.pc);
 | |
|     reg.addr = (uintptr_t) &env->pc;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(elr_el1);
 | |
|     reg.addr = (uintptr_t) &env->elr_el[1];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < KVM_NR_SPSR; i++) {
 | |
|         reg.id = AARCH64_CORE_REG(spsr[i]);
 | |
|         reg.addr = (uintptr_t) &env->banked_spsr[i - 1];
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* TODO:
 | |
|      * FP state
 | |
|      * system registers
 | |
|      */
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_arch_get_registers(CPUState *cs)
 | |
| {
 | |
|     struct kvm_one_reg reg;
 | |
|     uint64_t val;
 | |
|     int i;
 | |
|     int ret;
 | |
| 
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     for (i = 0; i < 31; i++) {
 | |
|         reg.id = AARCH64_CORE_REG(regs.regs[i]);
 | |
|         reg.addr = (uintptr_t) &env->xregs[i];
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(regs.sp);
 | |
|     reg.addr = (uintptr_t) &env->sp_el[0];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(sp_el1);
 | |
|     reg.addr = (uintptr_t) &env->sp_el[1];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(regs.pstate);
 | |
|     reg.addr = (uintptr_t) &val;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
|     pstate_write(env, val);
 | |
| 
 | |
|     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 | |
|      * QEMU side we keep the current SP in xregs[31] as well.
 | |
|      */
 | |
|     aarch64_restore_sp(env, 1);
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(regs.pc);
 | |
|     reg.addr = (uintptr_t) &env->pc;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(elr_el1);
 | |
|     reg.addr = (uintptr_t) &env->elr_el[1];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < KVM_NR_SPSR; i++) {
 | |
|         reg.id = AARCH64_CORE_REG(spsr[i]);
 | |
|         reg.addr = (uintptr_t) &env->banked_spsr[i - 1];
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* TODO: other registers */
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void kvm_arm_reset_vcpu(ARMCPU *cpu)
 | |
| {
 | |
|     /* Re-init VCPU so that all registers are set to
 | |
|      * their respective reset values.
 | |
|      */
 | |
|     kvm_arm_vcpu_init(CPU(cpu));
 | |
| }
 |