1060 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1060 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
 | |
|  *
 | |
|  *  Copyright (c) 2003-2007 Jocelyn Mayer
 | |
|  *  Copyright (c) 2013 David Gibson, IBM Corporation
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| #include "qapi/error.h"
 | |
| #include "cpu.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "kvm_ppc.h"
 | |
| #include "mmu-hash64.h"
 | |
| #include "exec/log.h"
 | |
| 
 | |
| //#define DEBUG_SLB
 | |
| 
 | |
| #ifdef DEBUG_SLB
 | |
| #  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
 | |
| #else
 | |
| #  define LOG_SLB(...) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Used to indicate that a CPU has its hash page table (HPT) managed
 | |
|  * within the host kernel
 | |
|  */
 | |
| #define MMU_HASH64_KVM_MANAGED_HPT      ((void *)-1)
 | |
| 
 | |
| /*
 | |
|  * SLB handling
 | |
|  */
 | |
| 
 | |
| static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     uint64_t esid_256M, esid_1T;
 | |
|     int n;
 | |
| 
 | |
|     LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
 | |
| 
 | |
|     esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
 | |
|     esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
 | |
| 
 | |
|     for (n = 0; n < env->slb_nr; n++) {
 | |
|         ppc_slb_t *slb = &env->slb[n];
 | |
| 
 | |
|         LOG_SLB("%s: slot %d %016" PRIx64 " %016"
 | |
|                     PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
 | |
|         /* We check for 1T matches on all MMUs here - if the MMU
 | |
|          * doesn't have 1T segment support, we will have prevented 1T
 | |
|          * entries from being inserted in the slbmte code. */
 | |
|         if (((slb->esid == esid_256M) &&
 | |
|              ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
 | |
|             || ((slb->esid == esid_1T) &&
 | |
|                 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
 | |
|             return slb;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     int i;
 | |
|     uint64_t slbe, slbv;
 | |
| 
 | |
|     cpu_synchronize_state(CPU(cpu));
 | |
| 
 | |
|     cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
 | |
|     for (i = 0; i < env->slb_nr; i++) {
 | |
|         slbe = env->slb[i].esid;
 | |
|         slbv = env->slb[i].vsid;
 | |
|         if (slbe == 0 && slbv == 0) {
 | |
|             continue;
 | |
|         }
 | |
|         cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
 | |
|                     i, slbe, slbv);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_slbia(CPUPPCState *env)
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     /* XXX: Warning: slbia never invalidates the first segment */
 | |
|     for (n = 1; n < env->slb_nr; n++) {
 | |
|         ppc_slb_t *slb = &env->slb[n];
 | |
| 
 | |
|         if (slb->esid & SLB_ESID_V) {
 | |
|             slb->esid &= ~SLB_ESID_V;
 | |
|             /* XXX: given the fact that segment size is 256 MB or 1TB,
 | |
|              *      and we still don't have a tlb_flush_mask(env, n, mask)
 | |
|              *      in QEMU, we just invalidate all TLBs
 | |
|              */
 | |
|             env->tlb_need_flush = 1;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_slbie(CPUPPCState *env, target_ulong addr)
 | |
| {
 | |
|     PowerPCCPU *cpu = ppc_env_get_cpu(env);
 | |
|     ppc_slb_t *slb;
 | |
| 
 | |
|     slb = slb_lookup(cpu, addr);
 | |
|     if (!slb) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (slb->esid & SLB_ESID_V) {
 | |
|         slb->esid &= ~SLB_ESID_V;
 | |
| 
 | |
|         /* XXX: given the fact that segment size is 256 MB or 1TB,
 | |
|          *      and we still don't have a tlb_flush_mask(env, n, mask)
 | |
|          *      in QEMU, we just invalidate all TLBs
 | |
|          */
 | |
|         env->tlb_need_flush = 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
 | |
|                   target_ulong esid, target_ulong vsid)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     ppc_slb_t *slb = &env->slb[slot];
 | |
|     const struct ppc_one_seg_page_size *sps = NULL;
 | |
|     int i;
 | |
| 
 | |
|     if (slot >= env->slb_nr) {
 | |
|         return -1; /* Bad slot number */
 | |
|     }
 | |
|     if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
 | |
|         return -1; /* Reserved bits set */
 | |
|     }
 | |
|     if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
 | |
|         return -1; /* Bad segment size */
 | |
|     }
 | |
|     if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
 | |
|         return -1; /* 1T segment on MMU that doesn't support it */
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 | |
|         const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
 | |
| 
 | |
|         if (!sps1->page_shift) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
 | |
|             sps = sps1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!sps) {
 | |
|         error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
 | |
|                      " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
 | |
|                      slot, esid, vsid);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     slb->esid = esid;
 | |
|     slb->vsid = vsid;
 | |
|     slb->sps = sps;
 | |
| 
 | |
|     LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
 | |
|             " %016" PRIx64 "\n", __func__, slot, esid, vsid,
 | |
|             slb->esid, slb->vsid);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
 | |
|                              target_ulong *rt)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     int slot = rb & 0xfff;
 | |
|     ppc_slb_t *slb = &env->slb[slot];
 | |
| 
 | |
|     if (slot >= env->slb_nr) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     *rt = slb->esid;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
 | |
|                              target_ulong *rt)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     int slot = rb & 0xfff;
 | |
|     ppc_slb_t *slb = &env->slb[slot];
 | |
| 
 | |
|     if (slot >= env->slb_nr) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     *rt = slb->vsid;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
 | |
|                              target_ulong *rt)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     ppc_slb_t *slb;
 | |
| 
 | |
|     if (!msr_is_64bit(env, env->msr)) {
 | |
|         rb &= 0xffffffff;
 | |
|     }
 | |
|     slb = slb_lookup(cpu, rb);
 | |
|     if (slb == NULL) {
 | |
|         *rt = (target_ulong)-1ul;
 | |
|     } else {
 | |
|         *rt = slb->vsid;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
 | |
| {
 | |
|     PowerPCCPU *cpu = ppc_env_get_cpu(env);
 | |
| 
 | |
|     if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
 | |
|         helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 | |
|                                    POWERPC_EXCP_INVAL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
 | |
| {
 | |
|     PowerPCCPU *cpu = ppc_env_get_cpu(env);
 | |
|     target_ulong rt = 0;
 | |
| 
 | |
|     if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
 | |
|         helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 | |
|                                    POWERPC_EXCP_INVAL);
 | |
|     }
 | |
|     return rt;
 | |
| }
 | |
| 
 | |
| target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
 | |
| {
 | |
|     PowerPCCPU *cpu = ppc_env_get_cpu(env);
 | |
|     target_ulong rt = 0;
 | |
| 
 | |
|     if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
 | |
|         helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 | |
|                                    POWERPC_EXCP_INVAL);
 | |
|     }
 | |
|     return rt;
 | |
| }
 | |
| 
 | |
| target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
 | |
| {
 | |
|     PowerPCCPU *cpu = ppc_env_get_cpu(env);
 | |
|     target_ulong rt = 0;
 | |
| 
 | |
|     if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
 | |
|         helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 | |
|                                    POWERPC_EXCP_INVAL);
 | |
|     }
 | |
|     return rt;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 64-bit hash table MMU handling
 | |
|  */
 | |
| void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value,
 | |
|                          Error **errp)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     target_ulong htabsize = value & SDR_64_HTABSIZE;
 | |
| 
 | |
|     env->spr[SPR_SDR1] = value;
 | |
|     if (htabsize > 28) {
 | |
|         error_setg(errp,
 | |
|                    "Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1",
 | |
|                    htabsize);
 | |
|         htabsize = 28;
 | |
|     }
 | |
|     env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1;
 | |
|     env->htab_base = value & SDR_64_HTABORG;
 | |
| }
 | |
| 
 | |
| void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift,
 | |
|                                  Error **errp)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     if (hpt) {
 | |
|         env->external_htab = hpt;
 | |
|     } else {
 | |
|         env->external_htab = MMU_HASH64_KVM_MANAGED_HPT;
 | |
|     }
 | |
|     ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18),
 | |
|                         &local_err);
 | |
|     if (local_err) {
 | |
|         error_propagate(errp, local_err);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Not strictly necessary, but makes it clearer that an external
 | |
|      * htab is in use when debugging */
 | |
|     env->htab_base = -1;
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         if (kvmppc_put_books_sregs(cpu) < 0) {
 | |
|             error_setg(errp, "Unable to update SDR1 in KVM");
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
 | |
|                                ppc_slb_t *slb, ppc_hash_pte64_t pte)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     unsigned pp, key;
 | |
|     /* Some pp bit combinations have undefined behaviour, so default
 | |
|      * to no access in those cases */
 | |
|     int prot = 0;
 | |
| 
 | |
|     key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
 | |
|              : (slb->vsid & SLB_VSID_KS));
 | |
|     pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
 | |
| 
 | |
|     if (key == 0) {
 | |
|         switch (pp) {
 | |
|         case 0x0:
 | |
|         case 0x1:
 | |
|         case 0x2:
 | |
|             prot = PAGE_READ | PAGE_WRITE;
 | |
|             break;
 | |
| 
 | |
|         case 0x3:
 | |
|         case 0x6:
 | |
|             prot = PAGE_READ;
 | |
|             break;
 | |
|         }
 | |
|     } else {
 | |
|         switch (pp) {
 | |
|         case 0x0:
 | |
|         case 0x6:
 | |
|             prot = 0;
 | |
|             break;
 | |
| 
 | |
|         case 0x1:
 | |
|         case 0x3:
 | |
|             prot = PAGE_READ;
 | |
|             break;
 | |
| 
 | |
|         case 0x2:
 | |
|             prot = PAGE_READ | PAGE_WRITE;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* No execute if either noexec or guarded bits set */
 | |
|     if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
 | |
|         || (slb->vsid & SLB_VSID_N)) {
 | |
|         prot |= PAGE_EXEC;
 | |
|     }
 | |
| 
 | |
|     return prot;
 | |
| }
 | |
| 
 | |
| static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     int key, amrbits;
 | |
|     int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
| 
 | |
|     /* Only recent MMUs implement Virtual Page Class Key Protection */
 | |
|     if (!(env->mmu_model & POWERPC_MMU_AMR)) {
 | |
|         return prot;
 | |
|     }
 | |
| 
 | |
|     key = HPTE64_R_KEY(pte.pte1);
 | |
|     amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
 | |
| 
 | |
|     /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
 | |
|     /*         env->spr[SPR_AMR]); */
 | |
| 
 | |
|     /*
 | |
|      * A store is permitted if the AMR bit is 0. Remove write
 | |
|      * protection if it is set.
 | |
|      */
 | |
|     if (amrbits & 0x2) {
 | |
|         prot &= ~PAGE_WRITE;
 | |
|     }
 | |
|     /*
 | |
|      * A load is permitted if the AMR bit is 0. Remove read
 | |
|      * protection if it is set.
 | |
|      */
 | |
|     if (amrbits & 0x1) {
 | |
|         prot &= ~PAGE_READ;
 | |
|     }
 | |
| 
 | |
|     return prot;
 | |
| }
 | |
| 
 | |
| uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
 | |
| {
 | |
|     uint64_t token = 0;
 | |
|     hwaddr pte_offset;
 | |
| 
 | |
|     pte_offset = pte_index * HASH_PTE_SIZE_64;
 | |
|     if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
 | |
|         /*
 | |
|          * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
 | |
|          */
 | |
|         token = kvmppc_hash64_read_pteg(cpu, pte_index);
 | |
|     } else if (cpu->env.external_htab) {
 | |
|         /*
 | |
|          * HTAB is controlled by QEMU. Just point to the internally
 | |
|          * accessible PTEG.
 | |
|          */
 | |
|         token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
 | |
|     } else if (cpu->env.htab_base) {
 | |
|         token = cpu->env.htab_base + pte_offset;
 | |
|     }
 | |
|     return token;
 | |
| }
 | |
| 
 | |
| void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token)
 | |
| {
 | |
|     if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
 | |
|         kvmppc_hash64_free_pteg(token);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
 | |
|     uint64_t pte0, uint64_t pte1)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (!(pte0 & HPTE64_V_LARGE)) {
 | |
|         if (sps->page_shift != 12) {
 | |
|             /* 4kiB page in a non 4kiB segment */
 | |
|             return 0;
 | |
|         }
 | |
|         /* Normal 4kiB page */
 | |
|         return 12;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 | |
|         const struct ppc_one_page_size *ps = &sps->enc[i];
 | |
|         uint64_t mask;
 | |
| 
 | |
|         if (!ps->page_shift) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (ps->page_shift == 12) {
 | |
|             /* L bit is set so this can't be a 4kiB page */
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
 | |
| 
 | |
|         if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
 | |
|             return ps->page_shift;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0; /* Bad page size encoding */
 | |
| }
 | |
| 
 | |
| static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
 | |
|                                      const struct ppc_one_seg_page_size *sps,
 | |
|                                      target_ulong ptem,
 | |
|                                      ppc_hash_pte64_t *pte, unsigned *pshift)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     int i;
 | |
|     uint64_t token;
 | |
|     target_ulong pte0, pte1;
 | |
|     target_ulong pte_index;
 | |
| 
 | |
|     pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
 | |
|     token = ppc_hash64_start_access(cpu, pte_index);
 | |
|     if (!token) {
 | |
|         return -1;
 | |
|     }
 | |
|     for (i = 0; i < HPTES_PER_GROUP; i++) {
 | |
|         pte0 = ppc_hash64_load_hpte0(cpu, token, i);
 | |
|         pte1 = ppc_hash64_load_hpte1(cpu, token, i);
 | |
| 
 | |
|         /* This compares V, B, H (secondary) and the AVPN */
 | |
|         if (HPTE64_V_COMPARE(pte0, ptem)) {
 | |
|             *pshift = hpte_page_shift(sps, pte0, pte1);
 | |
|             /*
 | |
|              * If there is no match, ignore the PTE, it could simply
 | |
|              * be for a different segment size encoding and the
 | |
|              * architecture specifies we should not match. Linux will
 | |
|              * potentially leave behind PTEs for the wrong base page
 | |
|              * size when demoting segments.
 | |
|              */
 | |
|             if (*pshift == 0) {
 | |
|                 continue;
 | |
|             }
 | |
|             /* We don't do anything with pshift yet as qemu TLB only deals
 | |
|              * with 4K pages anyway
 | |
|              */
 | |
|             pte->pte0 = pte0;
 | |
|             pte->pte1 = pte1;
 | |
|             ppc_hash64_stop_access(cpu, token);
 | |
|             return (pte_index + i) * HASH_PTE_SIZE_64;
 | |
|         }
 | |
|     }
 | |
|     ppc_hash64_stop_access(cpu, token);
 | |
|     /*
 | |
|      * We didn't find a valid entry.
 | |
|      */
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
 | |
|                                      ppc_slb_t *slb, target_ulong eaddr,
 | |
|                                      ppc_hash_pte64_t *pte, unsigned *pshift)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     hwaddr pte_offset;
 | |
|     hwaddr hash;
 | |
|     uint64_t vsid, epnmask, epn, ptem;
 | |
|     const struct ppc_one_seg_page_size *sps = slb->sps;
 | |
| 
 | |
|     /* The SLB store path should prevent any bad page size encodings
 | |
|      * getting in there, so: */
 | |
|     assert(sps);
 | |
| 
 | |
|     /* If ISL is set in LPCR we need to clamp the page size to 4K */
 | |
|     if (env->spr[SPR_LPCR] & LPCR_ISL) {
 | |
|         /* We assume that when using TCG, 4k is first entry of SPS */
 | |
|         sps = &env->sps.sps[0];
 | |
|         assert(sps->page_shift == 12);
 | |
|     }
 | |
| 
 | |
|     epnmask = ~((1ULL << sps->page_shift) - 1);
 | |
| 
 | |
|     if (slb->vsid & SLB_VSID_B) {
 | |
|         /* 1TB segment */
 | |
|         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
 | |
|         epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
 | |
|         hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
 | |
|     } else {
 | |
|         /* 256M segment */
 | |
|         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
 | |
|         epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
 | |
|         hash = vsid ^ (epn >> sps->page_shift);
 | |
|     }
 | |
|     ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
 | |
|     ptem |= HPTE64_V_VALID;
 | |
| 
 | |
|     /* Page address translation */
 | |
|     qemu_log_mask(CPU_LOG_MMU,
 | |
|             "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
 | |
|             " hash " TARGET_FMT_plx "\n",
 | |
|             env->htab_base, env->htab_mask, hash);
 | |
| 
 | |
|     /* Primary PTEG lookup */
 | |
|     qemu_log_mask(CPU_LOG_MMU,
 | |
|             "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 | |
|             " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
 | |
|             " hash=" TARGET_FMT_plx "\n",
 | |
|             env->htab_base, env->htab_mask, vsid, ptem,  hash);
 | |
|     pte_offset = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
 | |
| 
 | |
|     if (pte_offset == -1) {
 | |
|         /* Secondary PTEG lookup */
 | |
|         ptem |= HPTE64_V_SECONDARY;
 | |
|         qemu_log_mask(CPU_LOG_MMU,
 | |
|                 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 | |
|                 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
 | |
|                 " hash=" TARGET_FMT_plx "\n", env->htab_base,
 | |
|                 env->htab_mask, vsid, ptem, ~hash);
 | |
| 
 | |
|         pte_offset = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
 | |
|     }
 | |
| 
 | |
|     return pte_offset;
 | |
| }
 | |
| 
 | |
| unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
 | |
|                                           uint64_t pte0, uint64_t pte1)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     int i;
 | |
| 
 | |
|     if (!(pte0 & HPTE64_V_LARGE)) {
 | |
|         return 12;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The encodings in env->sps need to be carefully chosen so that
 | |
|      * this gives an unambiguous result.
 | |
|      */
 | |
|     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 | |
|         const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
 | |
|         unsigned shift;
 | |
| 
 | |
|         if (!sps->page_shift) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         shift = hpte_page_shift(sps, pte0, pte1);
 | |
|         if (shift) {
 | |
|             return shift;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env,
 | |
|                                uint64_t error_code)
 | |
| {
 | |
|     bool vpm;
 | |
| 
 | |
|     if (msr_ir) {
 | |
|         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
 | |
|     } else {
 | |
|         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
 | |
|     }
 | |
|     if (vpm && !msr_hv) {
 | |
|         cs->exception_index = POWERPC_EXCP_HISI;
 | |
|     } else {
 | |
|         cs->exception_index = POWERPC_EXCP_ISI;
 | |
|     }
 | |
|     env->error_code = error_code;
 | |
| }
 | |
| 
 | |
| static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar,
 | |
|                                uint64_t dsisr)
 | |
| {
 | |
|     bool vpm;
 | |
| 
 | |
|     if (msr_dr) {
 | |
|         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
 | |
|     } else {
 | |
|         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
 | |
|     }
 | |
|     if (vpm && !msr_hv) {
 | |
|         cs->exception_index = POWERPC_EXCP_HDSI;
 | |
|         env->spr[SPR_HDAR] = dar;
 | |
|         env->spr[SPR_HDSISR] = dsisr;
 | |
|     } else {
 | |
|         cs->exception_index = POWERPC_EXCP_DSI;
 | |
|         env->spr[SPR_DAR] = dar;
 | |
|         env->spr[SPR_DSISR] = dsisr;
 | |
|    }
 | |
|     env->error_code = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
 | |
|                                 int rwx, int mmu_idx)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     ppc_slb_t *slb;
 | |
|     unsigned apshift;
 | |
|     hwaddr pte_offset;
 | |
|     ppc_hash_pte64_t pte;
 | |
|     int pp_prot, amr_prot, prot;
 | |
|     uint64_t new_pte1, dsisr;
 | |
|     const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
 | |
|     hwaddr raddr;
 | |
| 
 | |
|     assert((rwx == 0) || (rwx == 1) || (rwx == 2));
 | |
| 
 | |
|     /* Note on LPCR usage: 970 uses HID4, but our special variant
 | |
|      * of store_spr copies relevant fields into env->spr[SPR_LPCR].
 | |
|      * Similarily we filter unimplemented bits when storing into
 | |
|      * LPCR depending on the MMU version. This code can thus just
 | |
|      * use the LPCR "as-is".
 | |
|      */
 | |
| 
 | |
|     /* 1. Handle real mode accesses */
 | |
|     if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
 | |
|         /* Translation is supposedly "off"  */
 | |
|         /* In real mode the top 4 effective address bits are (mostly) ignored */
 | |
|         raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
 | |
| 
 | |
|         /* In HV mode, add HRMOR if top EA bit is clear */
 | |
|         if (msr_hv || !env->has_hv_mode) {
 | |
|             if (!(eaddr >> 63)) {
 | |
|                 raddr |= env->spr[SPR_HRMOR];
 | |
|             }
 | |
|         } else {
 | |
|             /* Otherwise, check VPM for RMA vs VRMA */
 | |
|             if (env->spr[SPR_LPCR] & LPCR_VPM0) {
 | |
|                 slb = &env->vrma_slb;
 | |
|                 if (slb->sps) {
 | |
|                     goto skip_slb_search;
 | |
|                 }
 | |
|                 /* Not much else to do here */
 | |
|                 cs->exception_index = POWERPC_EXCP_MCHECK;
 | |
|                 env->error_code = 0;
 | |
|                 return 1;
 | |
|             } else if (raddr < env->rmls) {
 | |
|                 /* RMA. Check bounds in RMLS */
 | |
|                 raddr |= env->spr[SPR_RMOR];
 | |
|             } else {
 | |
|                 /* The access failed, generate the approriate interrupt */
 | |
|                 if (rwx == 2) {
 | |
|                     ppc_hash64_set_isi(cs, env, 0x08000000);
 | |
|                 } else {
 | |
|                     dsisr = 0x08000000;
 | |
|                     if (rwx == 1) {
 | |
|                         dsisr |= 0x02000000;
 | |
|                     }
 | |
|                     ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
 | |
|                 }
 | |
|                 return 1;
 | |
|             }
 | |
|         }
 | |
|         tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
 | |
|                      PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
 | |
|                      TARGET_PAGE_SIZE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* 2. Translation is on, so look up the SLB */
 | |
|     slb = slb_lookup(cpu, eaddr);
 | |
|     if (!slb) {
 | |
|         if (rwx == 2) {
 | |
|             cs->exception_index = POWERPC_EXCP_ISEG;
 | |
|             env->error_code = 0;
 | |
|         } else {
 | |
|             cs->exception_index = POWERPC_EXCP_DSEG;
 | |
|             env->error_code = 0;
 | |
|             env->spr[SPR_DAR] = eaddr;
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
| skip_slb_search:
 | |
| 
 | |
|     /* 3. Check for segment level no-execute violation */
 | |
|     if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
 | |
|         ppc_hash64_set_isi(cs, env, 0x10000000);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* 4. Locate the PTE in the hash table */
 | |
|     pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
 | |
|     if (pte_offset == -1) {
 | |
|         dsisr = 0x40000000;
 | |
|         if (rwx == 2) {
 | |
|             ppc_hash64_set_isi(cs, env, dsisr);
 | |
|         } else {
 | |
|             if (rwx == 1) {
 | |
|                 dsisr |= 0x02000000;
 | |
|             }
 | |
|             ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
|     qemu_log_mask(CPU_LOG_MMU,
 | |
|                 "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
 | |
| 
 | |
|     /* 5. Check access permissions */
 | |
| 
 | |
|     pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
 | |
|     amr_prot = ppc_hash64_amr_prot(cpu, pte);
 | |
|     prot = pp_prot & amr_prot;
 | |
| 
 | |
|     if ((need_prot[rwx] & ~prot) != 0) {
 | |
|         /* Access right violation */
 | |
|         qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
 | |
|         if (rwx == 2) {
 | |
|             ppc_hash64_set_isi(cs, env, 0x08000000);
 | |
|         } else {
 | |
|             dsisr = 0;
 | |
|             if (need_prot[rwx] & ~pp_prot) {
 | |
|                 dsisr |= 0x08000000;
 | |
|             }
 | |
|             if (rwx == 1) {
 | |
|                 dsisr |= 0x02000000;
 | |
|             }
 | |
|             if (need_prot[rwx] & ~amr_prot) {
 | |
|                 dsisr |= 0x00200000;
 | |
|             }
 | |
|             ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
 | |
| 
 | |
|     /* 6. Update PTE referenced and changed bits if necessary */
 | |
| 
 | |
|     new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
 | |
|     if (rwx == 1) {
 | |
|         new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
 | |
|     } else {
 | |
|         /* Treat the page as read-only for now, so that a later write
 | |
|          * will pass through this function again to set the C bit */
 | |
|         prot &= ~PAGE_WRITE;
 | |
|     }
 | |
| 
 | |
|     if (new_pte1 != pte.pte1) {
 | |
|         ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64,
 | |
|                               pte.pte0, new_pte1);
 | |
|     }
 | |
| 
 | |
|     /* 7. Determine the real address from the PTE */
 | |
| 
 | |
|     raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
 | |
| 
 | |
|     tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
 | |
|                  prot, mmu_idx, 1ULL << apshift);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     ppc_slb_t *slb;
 | |
|     hwaddr pte_offset, raddr;
 | |
|     ppc_hash_pte64_t pte;
 | |
|     unsigned apshift;
 | |
| 
 | |
|     /* Handle real mode */
 | |
|     if (msr_dr == 0) {
 | |
|         /* In real mode the top 4 effective address bits are ignored */
 | |
|         raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
 | |
| 
 | |
|         /* In HV mode, add HRMOR if top EA bit is clear */
 | |
|         if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
 | |
|             return raddr | env->spr[SPR_HRMOR];
 | |
|         }
 | |
| 
 | |
|         /* Otherwise, check VPM for RMA vs VRMA */
 | |
|         if (env->spr[SPR_LPCR] & LPCR_VPM0) {
 | |
|             slb = &env->vrma_slb;
 | |
|             if (!slb->sps) {
 | |
|                 return -1;
 | |
|             }
 | |
|         } else if (raddr < env->rmls) {
 | |
|             /* RMA. Check bounds in RMLS */
 | |
|             return raddr | env->spr[SPR_RMOR];
 | |
|         } else {
 | |
|             return -1;
 | |
|         }
 | |
|     } else {
 | |
|         slb = slb_lookup(cpu, addr);
 | |
|         if (!slb) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
 | |
|     if (pte_offset == -1) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
 | |
|         & TARGET_PAGE_MASK;
 | |
| }
 | |
| 
 | |
| void ppc_hash64_store_hpte(PowerPCCPU *cpu,
 | |
|                            target_ulong pte_index,
 | |
|                            target_ulong pte0, target_ulong pte1)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
| 
 | |
|     if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
 | |
|         kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     pte_index *= HASH_PTE_SIZE_64;
 | |
|     if (env->external_htab) {
 | |
|         stq_p(env->external_htab + pte_index, pte0);
 | |
|         stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
 | |
|     } else {
 | |
|         stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0);
 | |
|         stq_phys(CPU(cpu)->as,
 | |
|                  env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu,
 | |
|                                target_ulong pte_index,
 | |
|                                target_ulong pte0, target_ulong pte1)
 | |
| {
 | |
|     /*
 | |
|      * XXX: given the fact that there are too many segments to
 | |
|      * invalidate, and we still don't have a tlb_flush_mask(env, n,
 | |
|      * mask) in QEMU, we just invalidate all TLBs
 | |
|      */
 | |
|     tlb_flush(CPU(cpu), 1);
 | |
| }
 | |
| 
 | |
| void ppc_hash64_update_rmls(CPUPPCState *env)
 | |
| {
 | |
|     uint64_t lpcr = env->spr[SPR_LPCR];
 | |
| 
 | |
|     /*
 | |
|      * This is the full 4 bits encoding of POWER8. Previous
 | |
|      * CPUs only support a subset of these but the filtering
 | |
|      * is done when writing LPCR
 | |
|      */
 | |
|     switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
 | |
|     case 0x8: /* 32MB */
 | |
|         env->rmls = 0x2000000ull;
 | |
|         break;
 | |
|     case 0x3: /* 64MB */
 | |
|         env->rmls = 0x4000000ull;
 | |
|         break;
 | |
|     case 0x7: /* 128MB */
 | |
|         env->rmls = 0x8000000ull;
 | |
|         break;
 | |
|     case 0x4: /* 256MB */
 | |
|         env->rmls = 0x10000000ull;
 | |
|         break;
 | |
|     case 0x2: /* 1GB */
 | |
|         env->rmls = 0x40000000ull;
 | |
|         break;
 | |
|     case 0x1: /* 16GB */
 | |
|         env->rmls = 0x400000000ull;
 | |
|         break;
 | |
|     default:
 | |
|         /* What to do here ??? */
 | |
|         env->rmls = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ppc_hash64_update_vrma(CPUPPCState *env)
 | |
| {
 | |
|     const struct ppc_one_seg_page_size *sps = NULL;
 | |
|     target_ulong esid, vsid, lpcr;
 | |
|     ppc_slb_t *slb = &env->vrma_slb;
 | |
|     uint32_t vrmasd;
 | |
|     int i;
 | |
| 
 | |
|     /* First clear it */
 | |
|     slb->esid = slb->vsid = 0;
 | |
|     slb->sps = NULL;
 | |
| 
 | |
|     /* Is VRMA enabled ? */
 | |
|     lpcr = env->spr[SPR_LPCR];
 | |
|     if (!(lpcr & LPCR_VPM0)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Make one up. Mostly ignore the ESID which will not be
 | |
|      * needed for translation
 | |
|      */
 | |
|     vsid = SLB_VSID_VRMA;
 | |
|     vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
 | |
|     vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
 | |
|     esid = SLB_ESID_V;
 | |
| 
 | |
|    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 | |
|         const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
 | |
| 
 | |
|         if (!sps1->page_shift) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
 | |
|             sps = sps1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!sps) {
 | |
|         error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
 | |
|                      " vsid 0x"TARGET_FMT_lx, esid, vsid);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     slb->vsid = vsid;
 | |
|     slb->esid = esid;
 | |
|     slb->sps = sps;
 | |
| }
 | |
| 
 | |
| void helper_store_lpcr(CPUPPCState *env, target_ulong val)
 | |
| {
 | |
|     uint64_t lpcr = 0;
 | |
| 
 | |
|     /* Filter out bits */
 | |
|     switch (env->mmu_model) {
 | |
|     case POWERPC_MMU_64B: /* 970 */
 | |
|         if (val & 0x40) {
 | |
|             lpcr |= LPCR_LPES0;
 | |
|         }
 | |
|         if (val & 0x8000000000000000ull) {
 | |
|             lpcr |= LPCR_LPES1;
 | |
|         }
 | |
|         if (val & 0x20) {
 | |
|             lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
 | |
|         }
 | |
|         if (val & 0x4000000000000000ull) {
 | |
|             lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
 | |
|         }
 | |
|         if (val & 0x2000000000000000ull) {
 | |
|             lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
 | |
|         }
 | |
|         env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
 | |
| 
 | |
|         /* XXX We could also write LPID from HID4 here
 | |
|          * but since we don't tag any translation on it
 | |
|          * it doesn't actually matter
 | |
|          */
 | |
|         /* XXX For proper emulation of 970 we also need
 | |
|          * to dig HRMOR out of HID5
 | |
|          */
 | |
|         break;
 | |
|     case POWERPC_MMU_2_03: /* P5p */
 | |
|         lpcr = val & (LPCR_RMLS | LPCR_ILE |
 | |
|                       LPCR_LPES0 | LPCR_LPES1 |
 | |
|                       LPCR_RMI | LPCR_HDICE);
 | |
|         break;
 | |
|     case POWERPC_MMU_2_06: /* P7 */
 | |
|         lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
 | |
|                       LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
 | |
|                       LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
 | |
|                       LPCR_MER | LPCR_TC |
 | |
|                       LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
 | |
|         break;
 | |
|     case POWERPC_MMU_2_07: /* P8 */
 | |
|         lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
 | |
|                       LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
 | |
|                       LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
 | |
|                       LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
 | |
|                       LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
 | |
|         break;
 | |
|     default:
 | |
|         ;
 | |
|     }
 | |
|     env->spr[SPR_LPCR] = lpcr;
 | |
|     ppc_hash64_update_rmls(env);
 | |
|     ppc_hash64_update_vrma(env);
 | |
| }
 |