553 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			553 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  *  Helpers for floating point instructions.
 | |
|  *
 | |
|  *  Copyright (c) 2007 Jocelyn Mayer
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "cpu.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "fpu/softfloat.h"
 | |
| 
 | |
| #define FP_STATUS (env->fp_status)
 | |
| 
 | |
| 
 | |
| void helper_setroundmode(CPUAlphaState *env, uint32_t val)
 | |
| {
 | |
|     set_float_rounding_mode(val, &FP_STATUS);
 | |
| }
 | |
| 
 | |
| void helper_setflushzero(CPUAlphaState *env, uint32_t val)
 | |
| {
 | |
|     set_flush_to_zero(val, &FP_STATUS);
 | |
| }
 | |
| 
 | |
| #define CONVERT_BIT(X, SRC, DST) \
 | |
|     (SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC))
 | |
| 
 | |
| static uint32_t soft_to_fpcr_exc(CPUAlphaState *env)
 | |
| {
 | |
|     uint8_t exc = get_float_exception_flags(&FP_STATUS);
 | |
|     uint32_t ret = 0;
 | |
| 
 | |
|     if (unlikely(exc)) {
 | |
|         set_float_exception_flags(0, &FP_STATUS);
 | |
|         ret |= CONVERT_BIT(exc, float_flag_invalid, FPCR_INV);
 | |
|         ret |= CONVERT_BIT(exc, float_flag_divbyzero, FPCR_DZE);
 | |
|         ret |= CONVERT_BIT(exc, float_flag_overflow, FPCR_OVF);
 | |
|         ret |= CONVERT_BIT(exc, float_flag_underflow, FPCR_UNF);
 | |
|         ret |= CONVERT_BIT(exc, float_flag_inexact, FPCR_INE);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void fp_exc_raise1(CPUAlphaState *env, uintptr_t retaddr,
 | |
|                           uint32_t exc, uint32_t regno, uint32_t hw_exc)
 | |
| {
 | |
|     hw_exc |= CONVERT_BIT(exc, FPCR_INV, EXC_M_INV);
 | |
|     hw_exc |= CONVERT_BIT(exc, FPCR_DZE, EXC_M_DZE);
 | |
|     hw_exc |= CONVERT_BIT(exc, FPCR_OVF, EXC_M_FOV);
 | |
|     hw_exc |= CONVERT_BIT(exc, FPCR_UNF, EXC_M_UNF);
 | |
|     hw_exc |= CONVERT_BIT(exc, FPCR_INE, EXC_M_INE);
 | |
|     hw_exc |= CONVERT_BIT(exc, FPCR_IOV, EXC_M_IOV);
 | |
| 
 | |
|     arith_excp(env, retaddr, hw_exc, 1ull << regno);
 | |
| }
 | |
| 
 | |
| /* Raise exceptions for ieee fp insns without software completion.
 | |
|    In that case there are no exceptions that don't trap; the mask
 | |
|    doesn't apply.  */
 | |
| void helper_fp_exc_raise(CPUAlphaState *env, uint32_t ignore, uint32_t regno)
 | |
| {
 | |
|     uint32_t exc = env->error_code;
 | |
|     if (exc) {
 | |
|         env->fpcr |= exc;
 | |
|         exc &= ~ignore;
 | |
|         if (exc) {
 | |
|             fp_exc_raise1(env, GETPC(), exc, regno, 0);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Raise exceptions for ieee fp insns with software completion.  */
 | |
| void helper_fp_exc_raise_s(CPUAlphaState *env, uint32_t ignore, uint32_t regno)
 | |
| {
 | |
|     uint32_t exc = env->error_code & ~ignore;
 | |
|     if (exc) {
 | |
|         env->fpcr |= exc;
 | |
|         exc &= ~ignore;
 | |
|         if (exc) {
 | |
|             exc &= env->fpcr_exc_enable;
 | |
|             fp_exc_raise1(env, GETPC(), exc, regno, EXC_M_SWC);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Input handing without software completion.  Trap for all
 | |
|    non-finite numbers.  */
 | |
| void helper_ieee_input(CPUAlphaState *env, uint64_t val)
 | |
| {
 | |
|     uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
 | |
|     uint64_t frac = val & 0xfffffffffffffull;
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         /* Denormals without /S raise an exception.  */
 | |
|         if (frac != 0) {
 | |
|             arith_excp(env, GETPC(), EXC_M_INV, 0);
 | |
|         }
 | |
|     } else if (exp == 0x7ff) {
 | |
|         /* Infinity or NaN.  */
 | |
|         env->fpcr |= FPCR_INV;
 | |
|         arith_excp(env, GETPC(), EXC_M_INV, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Similar, but does not trap for infinities.  Used for comparisons.  */
 | |
| void helper_ieee_input_cmp(CPUAlphaState *env, uint64_t val)
 | |
| {
 | |
|     uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
 | |
|     uint64_t frac = val & 0xfffffffffffffull;
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         /* Denormals without /S raise an exception.  */
 | |
|         if (frac != 0) {
 | |
|             arith_excp(env, GETPC(), EXC_M_INV, 0);
 | |
|         }
 | |
|     } else if (exp == 0x7ff && frac) {
 | |
|         /* NaN.  */
 | |
|         env->fpcr |= FPCR_INV;
 | |
|         arith_excp(env, GETPC(), EXC_M_INV, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Input handing with software completion.  Trap for denorms, unless DNZ
 | |
|    is set.  If we try to support DNOD (which none of the produced hardware
 | |
|    did, AFAICS), we'll need to suppress the trap when FPCR.DNOD is set;
 | |
|    then the code downstream of that will need to cope with denorms sans
 | |
|    flush_input_to_zero.  Most of it should work sanely, but there's
 | |
|    nothing to compare with.  */
 | |
| void helper_ieee_input_s(CPUAlphaState *env, uint64_t val)
 | |
| {
 | |
|     if (unlikely(2 * val - 1 < 0x1fffffffffffffull)
 | |
|         && !env->fp_status.flush_inputs_to_zero) {
 | |
|         arith_excp(env, GETPC(), EXC_M_INV | EXC_M_SWC, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* S floating (single) */
 | |
| 
 | |
| /* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg.  */
 | |
| static inline uint64_t float32_to_s_int(uint32_t fi)
 | |
| {
 | |
|     uint32_t frac = fi & 0x7fffff;
 | |
|     uint32_t sign = fi >> 31;
 | |
|     uint32_t exp_msb = (fi >> 30) & 1;
 | |
|     uint32_t exp_low = (fi >> 23) & 0x7f;
 | |
|     uint32_t exp;
 | |
| 
 | |
|     exp = (exp_msb << 10) | exp_low;
 | |
|     if (exp_msb) {
 | |
|         if (exp_low == 0x7f) {
 | |
|             exp = 0x7ff;
 | |
|         }
 | |
|     } else {
 | |
|         if (exp_low != 0x00) {
 | |
|             exp |= 0x380;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return (((uint64_t)sign << 63)
 | |
|             | ((uint64_t)exp << 52)
 | |
|             | ((uint64_t)frac << 29));
 | |
| }
 | |
| 
 | |
| static inline uint64_t float32_to_s(float32 fa)
 | |
| {
 | |
|     CPU_FloatU a;
 | |
|     a.f = fa;
 | |
|     return float32_to_s_int(a.l);
 | |
| }
 | |
| 
 | |
| static inline uint32_t s_to_float32_int(uint64_t a)
 | |
| {
 | |
|     return ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
 | |
| }
 | |
| 
 | |
| static inline float32 s_to_float32(uint64_t a)
 | |
| {
 | |
|     CPU_FloatU r;
 | |
|     r.l = s_to_float32_int(a);
 | |
|     return r.f;
 | |
| }
 | |
| 
 | |
| uint32_t helper_s_to_memory(uint64_t a)
 | |
| {
 | |
|     return s_to_float32_int(a);
 | |
| }
 | |
| 
 | |
| uint64_t helper_memory_to_s(uint32_t a)
 | |
| {
 | |
|     return float32_to_s_int(a);
 | |
| }
 | |
| 
 | |
| uint64_t helper_adds(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_add(fa, fb, &FP_STATUS);
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subs(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_sub(fa, fb, &FP_STATUS);
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_muls(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_mul(fa, fb, &FP_STATUS);
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divs(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_div(fa, fb, &FP_STATUS);
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrts(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float32 fa, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fr = float32_sqrt(fa, &FP_STATUS);
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* T floating (double) */
 | |
| static inline float64 t_to_float64(uint64_t a)
 | |
| {
 | |
|     /* Memory format is the same as float64 */
 | |
|     CPU_DoubleU r;
 | |
|     r.ll = a;
 | |
|     return r.d;
 | |
| }
 | |
| 
 | |
| static inline uint64_t float64_to_t(float64 fa)
 | |
| {
 | |
|     /* Memory format is the same as float64 */
 | |
|     CPU_DoubleU r;
 | |
|     r.d = fa;
 | |
|     return r.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_addt(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_add(fa, fb, &FP_STATUS);
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subt(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_sub(fa, fb, &FP_STATUS);
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_mult(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_mul(fa, fb, &FP_STATUS);
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divt(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_div(fa, fb, &FP_STATUS);
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrtt(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float64 fa, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fr = float64_sqrt(fa, &FP_STATUS);
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| /* Comparisons */
 | |
| uint64_t helper_cmptun(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
|     uint64_t ret = 0;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_unordered_quiet(fa, fb, &FP_STATUS)) {
 | |
|         ret = 0x4000000000000000ULL;
 | |
|     }
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpteq(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
|     uint64_t ret = 0;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_eq_quiet(fa, fb, &FP_STATUS)) {
 | |
|         ret = 0x4000000000000000ULL;
 | |
|     }
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmptle(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
|     uint64_t ret = 0;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_le(fa, fb, &FP_STATUS)) {
 | |
|         ret = 0x4000000000000000ULL;
 | |
|     }
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmptlt(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
|     uint64_t ret = 0;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_lt(fa, fb, &FP_STATUS)) {
 | |
|         ret = 0x4000000000000000ULL;
 | |
|     }
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Floating point format conversion */
 | |
| uint64_t helper_cvtts(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float64 fa;
 | |
|     float32 fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fr = float64_to_float32(fa, &FP_STATUS);
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtst(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float32 fa;
 | |
|     float64 fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fr = float32_to_float64(fa, &FP_STATUS);
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqs(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float32 fr = int64_to_float32(a, &FP_STATUS);
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
| 
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| /* Implement float64 to uint64_t conversion without saturation -- we must
 | |
|    supply the truncated result.  This behaviour is used by the compiler
 | |
|    to get unsigned conversion for free with the same instruction.  */
 | |
| 
 | |
| static uint64_t do_cvttq(CPUAlphaState *env, uint64_t a, int roundmode)
 | |
| {
 | |
|     uint64_t frac, ret = 0;
 | |
|     uint32_t exp, sign, exc = 0;
 | |
|     int shift;
 | |
| 
 | |
|     sign = (a >> 63);
 | |
|     exp = (uint32_t)(a >> 52) & 0x7ff;
 | |
|     frac = a & 0xfffffffffffffull;
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         if (unlikely(frac != 0) && !env->fp_status.flush_inputs_to_zero) {
 | |
|             goto do_underflow;
 | |
|         }
 | |
|     } else if (exp == 0x7ff) {
 | |
|         exc = FPCR_INV;
 | |
|     } else {
 | |
|         /* Restore implicit bit.  */
 | |
|         frac |= 0x10000000000000ull;
 | |
| 
 | |
|         shift = exp - 1023 - 52;
 | |
|         if (shift >= 0) {
 | |
|             /* In this case the number is so large that we must shift
 | |
|                the fraction left.  There is no rounding to do.  */
 | |
|             if (shift < 64) {
 | |
|                 ret = frac << shift;
 | |
|             }
 | |
|             /* Check for overflow.  Note the special case of -0x1p63.  */
 | |
|             if (shift >= 11 && a != 0xC3E0000000000000ull) {
 | |
|                 exc = FPCR_IOV | FPCR_INE;
 | |
|             }
 | |
|         } else {
 | |
|             uint64_t round;
 | |
| 
 | |
|             /* In this case the number is smaller than the fraction as
 | |
|                represented by the 52 bit number.  Here we must think
 | |
|                about rounding the result.  Handle this by shifting the
 | |
|                fractional part of the number into the high bits of ROUND.
 | |
|                This will let us efficiently handle round-to-nearest.  */
 | |
|             shift = -shift;
 | |
|             if (shift < 63) {
 | |
|                 ret = frac >> shift;
 | |
|                 round = frac << (64 - shift);
 | |
|             } else {
 | |
|                 /* The exponent is so small we shift out everything.
 | |
|                    Leave a sticky bit for proper rounding below.  */
 | |
|             do_underflow:
 | |
|                 round = 1;
 | |
|             }
 | |
| 
 | |
|             if (round) {
 | |
|                 exc = FPCR_INE;
 | |
|                 switch (roundmode) {
 | |
|                 case float_round_nearest_even:
 | |
|                     if (round == (1ull << 63)) {
 | |
|                         /* Fraction is exactly 0.5; round to even.  */
 | |
|                         ret += (ret & 1);
 | |
|                     } else if (round > (1ull << 63)) {
 | |
|                         ret += 1;
 | |
|                     }
 | |
|                     break;
 | |
|                 case float_round_to_zero:
 | |
|                     break;
 | |
|                 case float_round_up:
 | |
|                     ret += 1 - sign;
 | |
|                     break;
 | |
|                 case float_round_down:
 | |
|                     ret += sign;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (sign) {
 | |
|             ret = -ret;
 | |
|         }
 | |
|     }
 | |
|     env->error_code = exc;
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvttq(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     return do_cvttq(env, a, FP_STATUS.float_rounding_mode);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvttq_c(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     return do_cvttq(env, a, float_round_to_zero);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqt(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float64 fr = int64_to_float64(a, &FP_STATUS);
 | |
|     env->error_code = soft_to_fpcr_exc(env);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtql(CPUAlphaState *env, uint64_t val)
 | |
| {
 | |
|     uint32_t exc = 0;
 | |
|     if (val != (int32_t)val) {
 | |
|         exc = FPCR_IOV | FPCR_INE;
 | |
|     }
 | |
|     env->error_code = exc;
 | |
| 
 | |
|     return ((val & 0xc0000000) << 32) | ((val & 0x3fffffff) << 29);
 | |
| }
 |