355 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			355 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  *  Helpers for vax floating point instructions.
 | |
|  *
 | |
|  *  Copyright (c) 2007 Jocelyn Mayer
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "cpu.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "fpu/softfloat.h"
 | |
| 
 | |
| #define FP_STATUS (env->fp_status)
 | |
| 
 | |
| 
 | |
| /* F floating (VAX) */
 | |
| static uint64_t float32_to_f(float32 fa)
 | |
| {
 | |
|     uint64_t r, exp, mant, sig;
 | |
|     CPU_FloatU a;
 | |
| 
 | |
|     a.f = fa;
 | |
|     sig = ((uint64_t)a.l & 0x80000000) << 32;
 | |
|     exp = (a.l >> 23) & 0xff;
 | |
|     mant = ((uint64_t)a.l & 0x007fffff) << 29;
 | |
| 
 | |
|     if (exp == 255) {
 | |
|         /* NaN or infinity */
 | |
|         r = 1; /* VAX dirty zero */
 | |
|     } else if (exp == 0) {
 | |
|         if (mant == 0) {
 | |
|             /* Zero */
 | |
|             r = 0;
 | |
|         } else {
 | |
|             /* Denormalized */
 | |
|             r = sig | ((exp + 1) << 52) | mant;
 | |
|         }
 | |
|     } else {
 | |
|         if (exp >= 253) {
 | |
|             /* Overflow */
 | |
|             r = 1; /* VAX dirty zero */
 | |
|         } else {
 | |
|             r = sig | ((exp + 2) << 52);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static float32 f_to_float32(CPUAlphaState *env, uintptr_t retaddr, uint64_t a)
 | |
| {
 | |
|     uint32_t exp, mant_sig;
 | |
|     CPU_FloatU r;
 | |
| 
 | |
|     exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
 | |
|     mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
 | |
| 
 | |
|     if (unlikely(!exp && mant_sig)) {
 | |
|         /* Reserved operands / Dirty zero */
 | |
|         dynamic_excp(env, retaddr, EXCP_OPCDEC, 0);
 | |
|     }
 | |
| 
 | |
|     if (exp < 3) {
 | |
|         /* Underflow */
 | |
|         r.l = 0;
 | |
|     } else {
 | |
|         r.l = ((exp - 2) << 23) | mant_sig;
 | |
|     }
 | |
| 
 | |
|     return r.f;
 | |
| }
 | |
| 
 | |
| uint32_t helper_f_to_memory(uint64_t a)
 | |
| {
 | |
|     uint32_t r;
 | |
|     r =  (a & 0x00001fffe0000000ull) >> 13;
 | |
|     r |= (a & 0x07ffe00000000000ull) >> 45;
 | |
|     r |= (a & 0xc000000000000000ull) >> 48;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint64_t helper_memory_to_f(uint32_t a)
 | |
| {
 | |
|     uint64_t r;
 | |
|     r =  ((uint64_t)(a & 0x0000c000)) << 48;
 | |
|     r |= ((uint64_t)(a & 0x003fffff)) << 45;
 | |
|     r |= ((uint64_t)(a & 0xffff0000)) << 13;
 | |
|     if (!(a & 0x00004000)) {
 | |
|         r |= 0x7ll << 59;
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong.  We should
 | |
|    either implement VAX arithmetic properly or just signal invalid opcode.  */
 | |
| 
 | |
| uint64_t helper_addf(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(env, GETPC(), a);
 | |
|     fb = f_to_float32(env, GETPC(), b);
 | |
|     fr = float32_add(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subf(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(env, GETPC(), a);
 | |
|     fb = f_to_float32(env, GETPC(), b);
 | |
|     fr = float32_sub(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_mulf(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(env, GETPC(), a);
 | |
|     fb = f_to_float32(env, GETPC(), b);
 | |
|     fr = float32_mul(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divf(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(env, GETPC(), a);
 | |
|     fb = f_to_float32(env, GETPC(), b);
 | |
|     fr = float32_div(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrtf(CPUAlphaState *env, uint64_t t)
 | |
| {
 | |
|     float32 ft, fr;
 | |
| 
 | |
|     ft = f_to_float32(env, GETPC(), t);
 | |
|     fr = float32_sqrt(ft, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* G floating (VAX) */
 | |
| static uint64_t float64_to_g(float64 fa)
 | |
| {
 | |
|     uint64_t r, exp, mant, sig;
 | |
|     CPU_DoubleU a;
 | |
| 
 | |
|     a.d = fa;
 | |
|     sig = a.ll & 0x8000000000000000ull;
 | |
|     exp = (a.ll >> 52) & 0x7ff;
 | |
|     mant = a.ll & 0x000fffffffffffffull;
 | |
| 
 | |
|     if (exp == 2047) {
 | |
|         /* NaN or infinity */
 | |
|         r = 1; /* VAX dirty zero */
 | |
|     } else if (exp == 0) {
 | |
|         if (mant == 0) {
 | |
|             /* Zero */
 | |
|             r = 0;
 | |
|         } else {
 | |
|             /* Denormalized */
 | |
|             r = sig | ((exp + 1) << 52) | mant;
 | |
|         }
 | |
|     } else {
 | |
|         if (exp >= 2045) {
 | |
|             /* Overflow */
 | |
|             r = 1; /* VAX dirty zero */
 | |
|         } else {
 | |
|             r = sig | ((exp + 2) << 52);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static float64 g_to_float64(CPUAlphaState *env, uintptr_t retaddr, uint64_t a)
 | |
| {
 | |
|     uint64_t exp, mant_sig;
 | |
|     CPU_DoubleU r;
 | |
| 
 | |
|     exp = (a >> 52) & 0x7ff;
 | |
|     mant_sig = a & 0x800fffffffffffffull;
 | |
| 
 | |
|     if (!exp && mant_sig) {
 | |
|         /* Reserved operands / Dirty zero */
 | |
|         dynamic_excp(env, retaddr, EXCP_OPCDEC, 0);
 | |
|     }
 | |
| 
 | |
|     if (exp < 3) {
 | |
|         /* Underflow */
 | |
|         r.ll = 0;
 | |
|     } else {
 | |
|         r.ll = ((exp - 2) << 52) | mant_sig;
 | |
|     }
 | |
| 
 | |
|     return r.d;
 | |
| }
 | |
| 
 | |
| uint64_t helper_g_to_memory(uint64_t a)
 | |
| {
 | |
|     uint64_t r;
 | |
|     r =  (a & 0x000000000000ffffull) << 48;
 | |
|     r |= (a & 0x00000000ffff0000ull) << 16;
 | |
|     r |= (a & 0x0000ffff00000000ull) >> 16;
 | |
|     r |= (a & 0xffff000000000000ull) >> 48;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint64_t helper_memory_to_g(uint64_t a)
 | |
| {
 | |
|     uint64_t r;
 | |
|     r =  (a & 0x000000000000ffffull) << 48;
 | |
|     r |= (a & 0x00000000ffff0000ull) << 16;
 | |
|     r |= (a & 0x0000ffff00000000ull) >> 16;
 | |
|     r |= (a & 0xffff000000000000ull) >> 48;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint64_t helper_addg(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fb = g_to_float64(env, GETPC(), b);
 | |
|     fr = float64_add(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subg(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fb = g_to_float64(env, GETPC(), b);
 | |
|     fr = float64_sub(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_mulg(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fb = g_to_float64(env, GETPC(), b);
 | |
|     fr = float64_mul(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divg(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fb = g_to_float64(env, GETPC(), b);
 | |
|     fr = float64_div(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrtg(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float64 fa, fr;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fr = float64_sqrt(fa, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpgeq(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fb = g_to_float64(env, GETPC(), b);
 | |
| 
 | |
|     if (float64_eq_quiet(fa, fb, &FP_STATUS)) {
 | |
|         return 0x4000000000000000ULL;
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpgle(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fb = g_to_float64(env, GETPC(), b);
 | |
| 
 | |
|     if (float64_le(fa, fb, &FP_STATUS)) {
 | |
|         return 0x4000000000000000ULL;
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpglt(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fb = g_to_float64(env, GETPC(), b);
 | |
| 
 | |
|     if (float64_lt(fa, fb, &FP_STATUS)) {
 | |
|         return 0x4000000000000000ULL;
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqf(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float32 fr = int64_to_float32(a, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtgf(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float64 fa;
 | |
|     float32 fr;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fr = float64_to_float32(fa, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtgq(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float64 fa = g_to_float64(env, GETPC(), a);
 | |
|     return float64_to_int64_round_to_zero(fa, &FP_STATUS);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqg(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float64 fr;
 | |
|     fr = int64_to_float64(a, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 |