1072 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1072 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * QEMU KVM support
 | |
|  *
 | |
|  * Copyright (C) 2006-2008 Qumranet Technologies
 | |
|  * Copyright IBM, Corp. 2008
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Anthony Liguori   <aliguori@us.ibm.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <sys/types.h>
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/mman.h>
 | |
| 
 | |
| #include <linux/kvm.h>
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "sysemu.h"
 | |
| #include "kvm.h"
 | |
| #include "cpu.h"
 | |
| #include "gdbstub.h"
 | |
| #include "host-utils.h"
 | |
| 
 | |
| //#define DEBUG_KVM
 | |
| 
 | |
| #ifdef DEBUG_KVM
 | |
| #define dprintf(fmt, ...) \
 | |
|     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
 | |
| #else
 | |
| #define dprintf(fmt, ...) \
 | |
|     do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifdef KVM_CAP_EXT_CPUID
 | |
| 
 | |
| static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
 | |
| {
 | |
|     struct kvm_cpuid2 *cpuid;
 | |
|     int r, size;
 | |
| 
 | |
|     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 | |
|     cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
 | |
|     cpuid->nent = max;
 | |
|     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
 | |
|     if (r == 0 && cpuid->nent >= max) {
 | |
|         r = -E2BIG;
 | |
|     }
 | |
|     if (r < 0) {
 | |
|         if (r == -E2BIG) {
 | |
|             qemu_free(cpuid);
 | |
|             return NULL;
 | |
|         } else {
 | |
|             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
 | |
|                     strerror(-r));
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
|     return cpuid;
 | |
| }
 | |
| 
 | |
| uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
 | |
| {
 | |
|     struct kvm_cpuid2 *cpuid;
 | |
|     int i, max;
 | |
|     uint32_t ret = 0;
 | |
|     uint32_t cpuid_1_edx;
 | |
| 
 | |
|     if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
 | |
|         return -1U;
 | |
|     }
 | |
| 
 | |
|     max = 1;
 | |
|     while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
 | |
|         max *= 2;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < cpuid->nent; ++i) {
 | |
|         if (cpuid->entries[i].function == function) {
 | |
|             switch (reg) {
 | |
|             case R_EAX:
 | |
|                 ret = cpuid->entries[i].eax;
 | |
|                 break;
 | |
|             case R_EBX:
 | |
|                 ret = cpuid->entries[i].ebx;
 | |
|                 break;
 | |
|             case R_ECX:
 | |
|                 ret = cpuid->entries[i].ecx;
 | |
|                 break;
 | |
|             case R_EDX:
 | |
|                 ret = cpuid->entries[i].edx;
 | |
|                 if (function == 0x80000001) {
 | |
|                     /* On Intel, kvm returns cpuid according to the Intel spec,
 | |
|                      * so add missing bits according to the AMD spec:
 | |
|                      */
 | |
|                     cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
 | |
|                     ret |= cpuid_1_edx & 0xdfeff7ff;
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qemu_free(cpuid);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
 | |
| {
 | |
|     return -1U;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static void kvm_trim_features(uint32_t *features, uint32_t supported)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t mask;
 | |
| 
 | |
|     for (i = 0; i < 32; ++i) {
 | |
|         mask = 1U << i;
 | |
|         if ((*features & mask) && !(supported & mask)) {
 | |
|             *features &= ~mask;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int kvm_arch_init_vcpu(CPUState *env)
 | |
| {
 | |
|     struct {
 | |
|         struct kvm_cpuid2 cpuid;
 | |
|         struct kvm_cpuid_entry2 entries[100];
 | |
|     } __attribute__((packed)) cpuid_data;
 | |
|     uint32_t limit, i, j, cpuid_i;
 | |
|     uint32_t unused;
 | |
| 
 | |
|     env->mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| 
 | |
|     kvm_trim_features(&env->cpuid_features,
 | |
|         kvm_arch_get_supported_cpuid(env, 1, R_EDX));
 | |
| 
 | |
|     i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
 | |
|     kvm_trim_features(&env->cpuid_ext_features,
 | |
|         kvm_arch_get_supported_cpuid(env, 1, R_ECX));
 | |
|     env->cpuid_ext_features |= i;
 | |
| 
 | |
|     kvm_trim_features(&env->cpuid_ext2_features,
 | |
|         kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
 | |
|     kvm_trim_features(&env->cpuid_ext3_features,
 | |
|         kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
 | |
| 
 | |
|     cpuid_i = 0;
 | |
| 
 | |
|     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
 | |
| 
 | |
|     for (i = 0; i <= limit; i++) {
 | |
|         struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
 | |
| 
 | |
|         switch (i) {
 | |
|         case 2: {
 | |
|             /* Keep reading function 2 till all the input is received */
 | |
|             int times;
 | |
| 
 | |
|             c->function = i;
 | |
|             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
 | |
|                        KVM_CPUID_FLAG_STATE_READ_NEXT;
 | |
|             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 | |
|             times = c->eax & 0xff;
 | |
| 
 | |
|             for (j = 1; j < times; ++j) {
 | |
|                 c = &cpuid_data.entries[cpuid_i++];
 | |
|                 c->function = i;
 | |
|                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
 | |
|                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         case 4:
 | |
|         case 0xb:
 | |
|         case 0xd:
 | |
|             for (j = 0; ; j++) {
 | |
|                 c->function = i;
 | |
|                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 | |
|                 c->index = j;
 | |
|                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
 | |
| 
 | |
|                 if (i == 4 && c->eax == 0)
 | |
|                     break;
 | |
|                 if (i == 0xb && !(c->ecx & 0xff00))
 | |
|                     break;
 | |
|                 if (i == 0xd && c->eax == 0)
 | |
|                     break;
 | |
| 
 | |
|                 c = &cpuid_data.entries[cpuid_i++];
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             c->function = i;
 | |
|             c->flags = 0;
 | |
|             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
 | |
| 
 | |
|     for (i = 0x80000000; i <= limit; i++) {
 | |
|         struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
 | |
| 
 | |
|         c->function = i;
 | |
|         c->flags = 0;
 | |
|         cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 | |
|     }
 | |
| 
 | |
|     cpuid_data.cpuid.nent = cpuid_i;
 | |
| 
 | |
|     return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
 | |
| }
 | |
| 
 | |
| void kvm_arch_reset_vcpu(CPUState *env)
 | |
| {
 | |
|     env->interrupt_injected = -1;
 | |
|     env->nmi_injected = 0;
 | |
|     env->nmi_pending = 0;
 | |
| }
 | |
| 
 | |
| static int kvm_has_msr_star(CPUState *env)
 | |
| {
 | |
|     static int has_msr_star;
 | |
|     int ret;
 | |
| 
 | |
|     /* first time */
 | |
|     if (has_msr_star == 0) {        
 | |
|         struct kvm_msr_list msr_list, *kvm_msr_list;
 | |
| 
 | |
|         has_msr_star = -1;
 | |
| 
 | |
|         /* Obtain MSR list from KVM.  These are the MSRs that we must
 | |
|          * save/restore */
 | |
|         msr_list.nmsrs = 0;
 | |
|         ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
 | |
|         if (ret < 0 && ret != -E2BIG) {
 | |
|             return 0;
 | |
|         }
 | |
|         /* Old kernel modules had a bug and could write beyond the provided
 | |
|            memory. Allocate at least a safe amount of 1K. */
 | |
|         kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
 | |
|                                               msr_list.nmsrs *
 | |
|                                               sizeof(msr_list.indices[0])));
 | |
| 
 | |
|         kvm_msr_list->nmsrs = msr_list.nmsrs;
 | |
|         ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
 | |
|         if (ret >= 0) {
 | |
|             int i;
 | |
| 
 | |
|             for (i = 0; i < kvm_msr_list->nmsrs; i++) {
 | |
|                 if (kvm_msr_list->indices[i] == MSR_STAR) {
 | |
|                     has_msr_star = 1;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         free(kvm_msr_list);
 | |
|     }
 | |
| 
 | |
|     if (has_msr_star == 1)
 | |
|         return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_init(KVMState *s, int smp_cpus)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
 | |
|      * directly.  In order to use vm86 mode, a TSS is needed.  Since this
 | |
|      * must be part of guest physical memory, we need to allocate it.  Older
 | |
|      * versions of KVM just assumed that it would be at the end of physical
 | |
|      * memory but that doesn't work with more than 4GB of memory.  We simply
 | |
|      * refuse to work with those older versions of KVM. */
 | |
|     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
 | |
|     if (ret <= 0) {
 | |
|         fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* this address is 3 pages before the bios, and the bios should present
 | |
|      * as unavaible memory.  FIXME, need to ensure the e820 map deals with
 | |
|      * this?
 | |
|      */
 | |
|     return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
 | |
| }
 | |
|                     
 | |
| static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
 | |
| {
 | |
|     lhs->selector = rhs->selector;
 | |
|     lhs->base = rhs->base;
 | |
|     lhs->limit = rhs->limit;
 | |
|     lhs->type = 3;
 | |
|     lhs->present = 1;
 | |
|     lhs->dpl = 3;
 | |
|     lhs->db = 0;
 | |
|     lhs->s = 1;
 | |
|     lhs->l = 0;
 | |
|     lhs->g = 0;
 | |
|     lhs->avl = 0;
 | |
|     lhs->unusable = 0;
 | |
| }
 | |
| 
 | |
| static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
 | |
| {
 | |
|     unsigned flags = rhs->flags;
 | |
|     lhs->selector = rhs->selector;
 | |
|     lhs->base = rhs->base;
 | |
|     lhs->limit = rhs->limit;
 | |
|     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
 | |
|     lhs->present = (flags & DESC_P_MASK) != 0;
 | |
|     lhs->dpl = rhs->selector & 3;
 | |
|     lhs->db = (flags >> DESC_B_SHIFT) & 1;
 | |
|     lhs->s = (flags & DESC_S_MASK) != 0;
 | |
|     lhs->l = (flags >> DESC_L_SHIFT) & 1;
 | |
|     lhs->g = (flags & DESC_G_MASK) != 0;
 | |
|     lhs->avl = (flags & DESC_AVL_MASK) != 0;
 | |
|     lhs->unusable = 0;
 | |
| }
 | |
| 
 | |
| static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
 | |
| {
 | |
|     lhs->selector = rhs->selector;
 | |
|     lhs->base = rhs->base;
 | |
|     lhs->limit = rhs->limit;
 | |
|     lhs->flags =
 | |
| 	(rhs->type << DESC_TYPE_SHIFT)
 | |
| 	| (rhs->present * DESC_P_MASK)
 | |
| 	| (rhs->dpl << DESC_DPL_SHIFT)
 | |
| 	| (rhs->db << DESC_B_SHIFT)
 | |
| 	| (rhs->s * DESC_S_MASK)
 | |
| 	| (rhs->l << DESC_L_SHIFT)
 | |
| 	| (rhs->g * DESC_G_MASK)
 | |
| 	| (rhs->avl * DESC_AVL_MASK);
 | |
| }
 | |
| 
 | |
| static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
 | |
| {
 | |
|     if (set)
 | |
|         *kvm_reg = *qemu_reg;
 | |
|     else
 | |
|         *qemu_reg = *kvm_reg;
 | |
| }
 | |
| 
 | |
| static int kvm_getput_regs(CPUState *env, int set)
 | |
| {
 | |
|     struct kvm_regs regs;
 | |
|     int ret = 0;
 | |
| 
 | |
|     if (!set) {
 | |
|         ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
 | |
|     kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
 | |
|     kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
 | |
|     kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
 | |
|     kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
 | |
|     kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
 | |
|     kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
 | |
|     kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
 | |
| #ifdef TARGET_X86_64
 | |
|     kvm_getput_reg(®s.r8, &env->regs[8], set);
 | |
|     kvm_getput_reg(®s.r9, &env->regs[9], set);
 | |
|     kvm_getput_reg(®s.r10, &env->regs[10], set);
 | |
|     kvm_getput_reg(®s.r11, &env->regs[11], set);
 | |
|     kvm_getput_reg(®s.r12, &env->regs[12], set);
 | |
|     kvm_getput_reg(®s.r13, &env->regs[13], set);
 | |
|     kvm_getput_reg(®s.r14, &env->regs[14], set);
 | |
|     kvm_getput_reg(®s.r15, &env->regs[15], set);
 | |
| #endif
 | |
| 
 | |
|     kvm_getput_reg(®s.rflags, &env->eflags, set);
 | |
|     kvm_getput_reg(®s.rip, &env->eip, set);
 | |
| 
 | |
|     if (set)
 | |
|         ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_put_fpu(CPUState *env)
 | |
| {
 | |
|     struct kvm_fpu fpu;
 | |
|     int i;
 | |
| 
 | |
|     memset(&fpu, 0, sizeof fpu);
 | |
|     fpu.fsw = env->fpus & ~(7 << 11);
 | |
|     fpu.fsw |= (env->fpstt & 7) << 11;
 | |
|     fpu.fcw = env->fpuc;
 | |
|     for (i = 0; i < 8; ++i)
 | |
| 	fpu.ftwx |= (!env->fptags[i]) << i;
 | |
|     memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
 | |
|     memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
 | |
|     fpu.mxcsr = env->mxcsr;
 | |
| 
 | |
|     return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
 | |
| }
 | |
| 
 | |
| static int kvm_put_sregs(CPUState *env)
 | |
| {
 | |
|     struct kvm_sregs sregs;
 | |
| 
 | |
|     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
 | |
|     if (env->interrupt_injected >= 0) {
 | |
|         sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
 | |
|                 (uint64_t)1 << (env->interrupt_injected % 64);
 | |
|     }
 | |
| 
 | |
|     if ((env->eflags & VM_MASK)) {
 | |
| 	    set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
 | |
| 	    set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
 | |
| 	    set_v8086_seg(&sregs.es, &env->segs[R_ES]);
 | |
| 	    set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
 | |
| 	    set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
 | |
| 	    set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
 | |
|     } else {
 | |
| 	    set_seg(&sregs.cs, &env->segs[R_CS]);
 | |
| 	    set_seg(&sregs.ds, &env->segs[R_DS]);
 | |
| 	    set_seg(&sregs.es, &env->segs[R_ES]);
 | |
| 	    set_seg(&sregs.fs, &env->segs[R_FS]);
 | |
| 	    set_seg(&sregs.gs, &env->segs[R_GS]);
 | |
| 	    set_seg(&sregs.ss, &env->segs[R_SS]);
 | |
| 
 | |
| 	    if (env->cr[0] & CR0_PE_MASK) {
 | |
| 		/* force ss cpl to cs cpl */
 | |
| 		sregs.ss.selector = (sregs.ss.selector & ~3) |
 | |
| 			(sregs.cs.selector & 3);
 | |
| 		sregs.ss.dpl = sregs.ss.selector & 3;
 | |
| 	    }
 | |
|     }
 | |
| 
 | |
|     set_seg(&sregs.tr, &env->tr);
 | |
|     set_seg(&sregs.ldt, &env->ldt);
 | |
| 
 | |
|     sregs.idt.limit = env->idt.limit;
 | |
|     sregs.idt.base = env->idt.base;
 | |
|     sregs.gdt.limit = env->gdt.limit;
 | |
|     sregs.gdt.base = env->gdt.base;
 | |
| 
 | |
|     sregs.cr0 = env->cr[0];
 | |
|     sregs.cr2 = env->cr[2];
 | |
|     sregs.cr3 = env->cr[3];
 | |
|     sregs.cr4 = env->cr[4];
 | |
| 
 | |
|     sregs.cr8 = cpu_get_apic_tpr(env);
 | |
|     sregs.apic_base = cpu_get_apic_base(env);
 | |
| 
 | |
|     sregs.efer = env->efer;
 | |
| 
 | |
|     return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
 | |
| }
 | |
| 
 | |
| static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
 | |
|                               uint32_t index, uint64_t value)
 | |
| {
 | |
|     entry->index = index;
 | |
|     entry->data = value;
 | |
| }
 | |
| 
 | |
| static int kvm_put_msrs(CPUState *env)
 | |
| {
 | |
|     struct {
 | |
|         struct kvm_msrs info;
 | |
|         struct kvm_msr_entry entries[100];
 | |
|     } msr_data;
 | |
|     struct kvm_msr_entry *msrs = msr_data.entries;
 | |
|     int n = 0;
 | |
| 
 | |
|     kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
 | |
|     kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
 | |
|     kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
 | |
|     if (kvm_has_msr_star(env))
 | |
| 	kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
 | |
|     kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
 | |
| #ifdef TARGET_X86_64
 | |
|     /* FIXME if lm capable */
 | |
|     kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
 | |
|     kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
 | |
|     kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
 | |
|     kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
 | |
| #endif
 | |
|     msr_data.info.nmsrs = n;
 | |
| 
 | |
|     return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| static int kvm_get_fpu(CPUState *env)
 | |
| {
 | |
|     struct kvm_fpu fpu;
 | |
|     int i, ret;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     env->fpstt = (fpu.fsw >> 11) & 7;
 | |
|     env->fpus = fpu.fsw;
 | |
|     env->fpuc = fpu.fcw;
 | |
|     for (i = 0; i < 8; ++i)
 | |
| 	env->fptags[i] = !((fpu.ftwx >> i) & 1);
 | |
|     memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
 | |
|     memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
 | |
|     env->mxcsr = fpu.mxcsr;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_get_sregs(CPUState *env)
 | |
| {
 | |
|     struct kvm_sregs sregs;
 | |
|     uint32_t hflags;
 | |
|     int bit, i, ret;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     /* There can only be one pending IRQ set in the bitmap at a time, so try
 | |
|        to find it and save its number instead (-1 for none). */
 | |
|     env->interrupt_injected = -1;
 | |
|     for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
 | |
|         if (sregs.interrupt_bitmap[i]) {
 | |
|             bit = ctz64(sregs.interrupt_bitmap[i]);
 | |
|             env->interrupt_injected = i * 64 + bit;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     get_seg(&env->segs[R_CS], &sregs.cs);
 | |
|     get_seg(&env->segs[R_DS], &sregs.ds);
 | |
|     get_seg(&env->segs[R_ES], &sregs.es);
 | |
|     get_seg(&env->segs[R_FS], &sregs.fs);
 | |
|     get_seg(&env->segs[R_GS], &sregs.gs);
 | |
|     get_seg(&env->segs[R_SS], &sregs.ss);
 | |
| 
 | |
|     get_seg(&env->tr, &sregs.tr);
 | |
|     get_seg(&env->ldt, &sregs.ldt);
 | |
| 
 | |
|     env->idt.limit = sregs.idt.limit;
 | |
|     env->idt.base = sregs.idt.base;
 | |
|     env->gdt.limit = sregs.gdt.limit;
 | |
|     env->gdt.base = sregs.gdt.base;
 | |
| 
 | |
|     env->cr[0] = sregs.cr0;
 | |
|     env->cr[2] = sregs.cr2;
 | |
|     env->cr[3] = sregs.cr3;
 | |
|     env->cr[4] = sregs.cr4;
 | |
| 
 | |
|     cpu_set_apic_base(env, sregs.apic_base);
 | |
| 
 | |
|     env->efer = sregs.efer;
 | |
|     //cpu_set_apic_tpr(env, sregs.cr8);
 | |
| 
 | |
| #define HFLAG_COPY_MASK ~( \
 | |
| 			HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
 | |
| 			HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
 | |
| 			HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
 | |
| 			HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
 | |
| 
 | |
| 
 | |
| 
 | |
|     hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
 | |
|     hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
 | |
|     hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
 | |
| 	    (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
 | |
|     hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
 | |
|     hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
 | |
| 	    (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
 | |
| 
 | |
|     if (env->efer & MSR_EFER_LMA) {
 | |
|         hflags |= HF_LMA_MASK;
 | |
|     }
 | |
| 
 | |
|     if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
 | |
|         hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
 | |
|     } else {
 | |
|         hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
 | |
| 		(DESC_B_SHIFT - HF_CS32_SHIFT);
 | |
|         hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
 | |
| 		(DESC_B_SHIFT - HF_SS32_SHIFT);
 | |
|         if (!(env->cr[0] & CR0_PE_MASK) ||
 | |
|                    (env->eflags & VM_MASK) ||
 | |
|                    !(hflags & HF_CS32_MASK)) {
 | |
|                 hflags |= HF_ADDSEG_MASK;
 | |
|             } else {
 | |
|                 hflags |= ((env->segs[R_DS].base |
 | |
|                                 env->segs[R_ES].base |
 | |
|                                 env->segs[R_SS].base) != 0) <<
 | |
|                     HF_ADDSEG_SHIFT;
 | |
|             }
 | |
|     }
 | |
|     env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_get_msrs(CPUState *env)
 | |
| {
 | |
|     struct {
 | |
|         struct kvm_msrs info;
 | |
|         struct kvm_msr_entry entries[100];
 | |
|     } msr_data;
 | |
|     struct kvm_msr_entry *msrs = msr_data.entries;
 | |
|     int ret, i, n;
 | |
| 
 | |
|     n = 0;
 | |
|     msrs[n++].index = MSR_IA32_SYSENTER_CS;
 | |
|     msrs[n++].index = MSR_IA32_SYSENTER_ESP;
 | |
|     msrs[n++].index = MSR_IA32_SYSENTER_EIP;
 | |
|     if (kvm_has_msr_star(env))
 | |
| 	msrs[n++].index = MSR_STAR;
 | |
|     msrs[n++].index = MSR_IA32_TSC;
 | |
| #ifdef TARGET_X86_64
 | |
|     /* FIXME lm_capable_kernel */
 | |
|     msrs[n++].index = MSR_CSTAR;
 | |
|     msrs[n++].index = MSR_KERNELGSBASE;
 | |
|     msrs[n++].index = MSR_FMASK;
 | |
|     msrs[n++].index = MSR_LSTAR;
 | |
| #endif
 | |
|     msr_data.info.nmsrs = n;
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     for (i = 0; i < ret; i++) {
 | |
|         switch (msrs[i].index) {
 | |
|         case MSR_IA32_SYSENTER_CS:
 | |
|             env->sysenter_cs = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_IA32_SYSENTER_ESP:
 | |
|             env->sysenter_esp = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_IA32_SYSENTER_EIP:
 | |
|             env->sysenter_eip = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_STAR:
 | |
|             env->star = msrs[i].data;
 | |
|             break;
 | |
| #ifdef TARGET_X86_64
 | |
|         case MSR_CSTAR:
 | |
|             env->cstar = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_KERNELGSBASE:
 | |
|             env->kernelgsbase = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_FMASK:
 | |
|             env->fmask = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_LSTAR:
 | |
|             env->lstar = msrs[i].data;
 | |
|             break;
 | |
| #endif
 | |
|         case MSR_IA32_TSC:
 | |
|             env->tsc = msrs[i].data;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_put_mp_state(CPUState *env)
 | |
| {
 | |
|     struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
 | |
| 
 | |
|     return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
 | |
| }
 | |
| 
 | |
| static int kvm_get_mp_state(CPUState *env)
 | |
| {
 | |
|     struct kvm_mp_state mp_state;
 | |
|     int ret;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     env->mp_state = mp_state.mp_state;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_put_vcpu_events(CPUState *env)
 | |
| {
 | |
| #ifdef KVM_CAP_VCPU_EVENTS
 | |
|     struct kvm_vcpu_events events;
 | |
| 
 | |
|     if (!kvm_has_vcpu_events()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     events.exception.injected = (env->exception_index >= 0);
 | |
|     events.exception.nr = env->exception_index;
 | |
|     events.exception.has_error_code = env->has_error_code;
 | |
|     events.exception.error_code = env->error_code;
 | |
| 
 | |
|     events.interrupt.injected = (env->interrupt_injected >= 0);
 | |
|     events.interrupt.nr = env->interrupt_injected;
 | |
|     events.interrupt.soft = env->soft_interrupt;
 | |
| 
 | |
|     events.nmi.injected = env->nmi_injected;
 | |
|     events.nmi.pending = env->nmi_pending;
 | |
|     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
 | |
| 
 | |
|     events.sipi_vector = env->sipi_vector;
 | |
| 
 | |
|     return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int kvm_get_vcpu_events(CPUState *env)
 | |
| {
 | |
| #ifdef KVM_CAP_VCPU_EVENTS
 | |
|     struct kvm_vcpu_events events;
 | |
|     int ret;
 | |
| 
 | |
|     if (!kvm_has_vcpu_events()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
 | |
|     if (ret < 0) {
 | |
|        return ret;
 | |
|     }
 | |
|     env->exception_index =
 | |
|        events.exception.injected ? events.exception.nr : -1;
 | |
|     env->has_error_code = events.exception.has_error_code;
 | |
|     env->error_code = events.exception.error_code;
 | |
| 
 | |
|     env->interrupt_injected =
 | |
|         events.interrupt.injected ? events.interrupt.nr : -1;
 | |
|     env->soft_interrupt = events.interrupt.soft;
 | |
| 
 | |
|     env->nmi_injected = events.nmi.injected;
 | |
|     env->nmi_pending = events.nmi.pending;
 | |
|     if (events.nmi.masked) {
 | |
|         env->hflags2 |= HF2_NMI_MASK;
 | |
|     } else {
 | |
|         env->hflags2 &= ~HF2_NMI_MASK;
 | |
|     }
 | |
| 
 | |
|     env->sipi_vector = events.sipi_vector;
 | |
| #endif
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_put_registers(CPUState *env)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     ret = kvm_getput_regs(env, 1);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     ret = kvm_put_fpu(env);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     ret = kvm_put_sregs(env);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     ret = kvm_put_msrs(env);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     ret = kvm_put_mp_state(env);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     ret = kvm_put_vcpu_events(env);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_get_registers(CPUState *env)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     ret = kvm_getput_regs(env, 0);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     ret = kvm_get_fpu(env);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     ret = kvm_get_sregs(env);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     ret = kvm_get_msrs(env);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     ret = kvm_get_mp_state(env);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     ret = kvm_get_vcpu_events(env);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
 | |
| {
 | |
|     /* Try to inject an interrupt if the guest can accept it */
 | |
|     if (run->ready_for_interrupt_injection &&
 | |
|         (env->interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
|         (env->eflags & IF_MASK)) {
 | |
|         int irq;
 | |
| 
 | |
|         env->interrupt_request &= ~CPU_INTERRUPT_HARD;
 | |
|         irq = cpu_get_pic_interrupt(env);
 | |
|         if (irq >= 0) {
 | |
|             struct kvm_interrupt intr;
 | |
|             intr.irq = irq;
 | |
|             /* FIXME: errors */
 | |
|             dprintf("injected interrupt %d\n", irq);
 | |
|             kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* If we have an interrupt but the guest is not ready to receive an
 | |
|      * interrupt, request an interrupt window exit.  This will
 | |
|      * cause a return to userspace as soon as the guest is ready to
 | |
|      * receive interrupts. */
 | |
|     if ((env->interrupt_request & CPU_INTERRUPT_HARD))
 | |
|         run->request_interrupt_window = 1;
 | |
|     else
 | |
|         run->request_interrupt_window = 0;
 | |
| 
 | |
|     dprintf("setting tpr\n");
 | |
|     run->cr8 = cpu_get_apic_tpr(env);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
 | |
| {
 | |
|     if (run->if_flag)
 | |
|         env->eflags |= IF_MASK;
 | |
|     else
 | |
|         env->eflags &= ~IF_MASK;
 | |
|     
 | |
|     cpu_set_apic_tpr(env, run->cr8);
 | |
|     cpu_set_apic_base(env, run->apic_base);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_handle_halt(CPUState *env)
 | |
| {
 | |
|     if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
|           (env->eflags & IF_MASK)) &&
 | |
|         !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
 | |
|         env->halted = 1;
 | |
|         env->exception_index = EXCP_HLT;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     switch (run->exit_reason) {
 | |
|     case KVM_EXIT_HLT:
 | |
|         dprintf("handle_hlt\n");
 | |
|         ret = kvm_handle_halt(env);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #ifdef KVM_CAP_SET_GUEST_DEBUG
 | |
| int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
 | |
| {
 | |
|     static const uint8_t int3 = 0xcc;
 | |
| 
 | |
|     if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
 | |
|         cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
 | |
|         return -EINVAL;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
 | |
| {
 | |
|     uint8_t int3;
 | |
| 
 | |
|     if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
 | |
|         cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
 | |
|         return -EINVAL;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static struct {
 | |
|     target_ulong addr;
 | |
|     int len;
 | |
|     int type;
 | |
| } hw_breakpoint[4];
 | |
| 
 | |
| static int nb_hw_breakpoint;
 | |
| 
 | |
| static int find_hw_breakpoint(target_ulong addr, int len, int type)
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     for (n = 0; n < nb_hw_breakpoint; n++)
 | |
|         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
 | |
|             (hw_breakpoint[n].len == len || len == -1))
 | |
|             return n;
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 | |
|                                   target_ulong len, int type)
 | |
| {
 | |
|     switch (type) {
 | |
|     case GDB_BREAKPOINT_HW:
 | |
|         len = 1;
 | |
|         break;
 | |
|     case GDB_WATCHPOINT_WRITE:
 | |
|     case GDB_WATCHPOINT_ACCESS:
 | |
|         switch (len) {
 | |
|         case 1:
 | |
|             break;
 | |
|         case 2:
 | |
|         case 4:
 | |
|         case 8:
 | |
|             if (addr & (len - 1))
 | |
|                 return -EINVAL;
 | |
|             break;
 | |
|         default:
 | |
|             return -EINVAL;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| 
 | |
|     if (nb_hw_breakpoint == 4)
 | |
|         return -ENOBUFS;
 | |
| 
 | |
|     if (find_hw_breakpoint(addr, len, type) >= 0)
 | |
|         return -EEXIST;
 | |
| 
 | |
|     hw_breakpoint[nb_hw_breakpoint].addr = addr;
 | |
|     hw_breakpoint[nb_hw_breakpoint].len = len;
 | |
|     hw_breakpoint[nb_hw_breakpoint].type = type;
 | |
|     nb_hw_breakpoint++;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 | |
|                                   target_ulong len, int type)
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
 | |
|     if (n < 0)
 | |
|         return -ENOENT;
 | |
| 
 | |
|     nb_hw_breakpoint--;
 | |
|     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_remove_all_hw_breakpoints(void)
 | |
| {
 | |
|     nb_hw_breakpoint = 0;
 | |
| }
 | |
| 
 | |
| static CPUWatchpoint hw_watchpoint;
 | |
| 
 | |
| int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
 | |
| {
 | |
|     int handle = 0;
 | |
|     int n;
 | |
| 
 | |
|     if (arch_info->exception == 1) {
 | |
|         if (arch_info->dr6 & (1 << 14)) {
 | |
|             if (cpu_single_env->singlestep_enabled)
 | |
|                 handle = 1;
 | |
|         } else {
 | |
|             for (n = 0; n < 4; n++)
 | |
|                 if (arch_info->dr6 & (1 << n))
 | |
|                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
 | |
|                     case 0x0:
 | |
|                         handle = 1;
 | |
|                         break;
 | |
|                     case 0x1:
 | |
|                         handle = 1;
 | |
|                         cpu_single_env->watchpoint_hit = &hw_watchpoint;
 | |
|                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
 | |
|                         hw_watchpoint.flags = BP_MEM_WRITE;
 | |
|                         break;
 | |
|                     case 0x3:
 | |
|                         handle = 1;
 | |
|                         cpu_single_env->watchpoint_hit = &hw_watchpoint;
 | |
|                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
 | |
|                         hw_watchpoint.flags = BP_MEM_ACCESS;
 | |
|                         break;
 | |
|                     }
 | |
|         }
 | |
|     } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
 | |
|         handle = 1;
 | |
| 
 | |
|     if (!handle)
 | |
|         kvm_update_guest_debug(cpu_single_env,
 | |
|                         (arch_info->exception == 1) ?
 | |
|                         KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
 | |
| 
 | |
|     return handle;
 | |
| }
 | |
| 
 | |
| void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
 | |
| {
 | |
|     const uint8_t type_code[] = {
 | |
|         [GDB_BREAKPOINT_HW] = 0x0,
 | |
|         [GDB_WATCHPOINT_WRITE] = 0x1,
 | |
|         [GDB_WATCHPOINT_ACCESS] = 0x3
 | |
|     };
 | |
|     const uint8_t len_code[] = {
 | |
|         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
 | |
|     };
 | |
|     int n;
 | |
| 
 | |
|     if (kvm_sw_breakpoints_active(env))
 | |
|         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
 | |
| 
 | |
|     if (nb_hw_breakpoint > 0) {
 | |
|         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
 | |
|         dbg->arch.debugreg[7] = 0x0600;
 | |
|         for (n = 0; n < nb_hw_breakpoint; n++) {
 | |
|             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
 | |
|             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
 | |
|                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
 | |
|                 (len_code[hw_breakpoint[n].len] << (18 + n*4));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif /* KVM_CAP_SET_GUEST_DEBUG */
 |