650 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			650 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * ARM implementation of KVM hooks
 | |
|  *
 | |
|  * Copyright Christoffer Dall 2009-2010
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/mman.h>
 | |
| 
 | |
| #include <linux/kvm.h>
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "kvm_arm.h"
 | |
| #include "cpu.h"
 | |
| #include "hw/arm/arm.h"
 | |
| 
 | |
| /* Check that cpu.h's idea of coprocessor fields matches KVM's */
 | |
| #if (CP_REG_SIZE_SHIFT != KVM_REG_SIZE_SHIFT) || \
 | |
|     (CP_REG_SIZE_MASK != KVM_REG_SIZE_MASK) ||   \
 | |
|     (CP_REG_SIZE_U32 != KVM_REG_SIZE_U32) || \
 | |
|     (CP_REG_SIZE_U64 != KVM_REG_SIZE_U64) || \
 | |
|     (CP_REG_ARM != KVM_REG_ARM)
 | |
| #error mismatch between cpu.h and KVM header definitions
 | |
| #endif
 | |
| 
 | |
| const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
 | |
|     KVM_CAP_LAST_INFO
 | |
| };
 | |
| 
 | |
| int kvm_arch_init(KVMState *s)
 | |
| {
 | |
|     /* For ARM interrupt delivery is always asynchronous,
 | |
|      * whether we are using an in-kernel VGIC or not.
 | |
|      */
 | |
|     kvm_async_interrupts_allowed = true;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 | |
| {
 | |
|     return cpu->cpu_index;
 | |
| }
 | |
| 
 | |
| static bool reg_syncs_via_tuple_list(uint64_t regidx)
 | |
| {
 | |
|     /* Return true if the regidx is a register we should synchronize
 | |
|      * via the cpreg_tuples array (ie is not a core reg we sync by
 | |
|      * hand in kvm_arch_get/put_registers())
 | |
|      */
 | |
|     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
 | |
|     case KVM_REG_ARM_CORE:
 | |
|     case KVM_REG_ARM_VFP:
 | |
|         return false;
 | |
|     default:
 | |
|         return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int compare_u64(const void *a, const void *b)
 | |
| {
 | |
|     return *(uint64_t *)a - *(uint64_t *)b;
 | |
| }
 | |
| 
 | |
| int kvm_arch_init_vcpu(CPUState *cs)
 | |
| {
 | |
|     struct kvm_vcpu_init init;
 | |
|     int i, ret, arraylen;
 | |
|     uint64_t v;
 | |
|     struct kvm_one_reg r;
 | |
|     struct kvm_reg_list rl;
 | |
|     struct kvm_reg_list *rlp;
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
| 
 | |
|     init.target = KVM_ARM_TARGET_CORTEX_A15;
 | |
|     memset(init.features, 0, sizeof(init.features));
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
|     /* Query the kernel to make sure it supports 32 VFP
 | |
|      * registers: QEMU's "cortex-a15" CPU is always a
 | |
|      * VFP-D32 core. The simplest way to do this is just
 | |
|      * to attempt to read register d31.
 | |
|      */
 | |
|     r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
 | |
|     r.addr = (uintptr_t)(&v);
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 | |
|     if (ret == -ENOENT) {
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     /* Populate the cpreg list based on the kernel's idea
 | |
|      * of what registers exist (and throw away the TCG-created list).
 | |
|      */
 | |
|     rl.n = 0;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
 | |
|     if (ret != -E2BIG) {
 | |
|         return ret;
 | |
|     }
 | |
|     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
 | |
|     rlp->n = rl.n;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
 | |
|     if (ret) {
 | |
|         goto out;
 | |
|     }
 | |
|     /* Sort the list we get back from the kernel, since cpreg_tuples
 | |
|      * must be in strictly ascending order.
 | |
|      */
 | |
|     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
 | |
| 
 | |
|     for (i = 0, arraylen = 0; i < rlp->n; i++) {
 | |
|         if (!reg_syncs_via_tuple_list(rlp->reg[i])) {
 | |
|             continue;
 | |
|         }
 | |
|         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
 | |
|         case KVM_REG_SIZE_U32:
 | |
|         case KVM_REG_SIZE_U64:
 | |
|             break;
 | |
|         default:
 | |
|             fprintf(stderr, "Can't handle size of register in kernel list\n");
 | |
|             ret = -EINVAL;
 | |
|             goto out;
 | |
|         }
 | |
| 
 | |
|         arraylen++;
 | |
|     }
 | |
| 
 | |
|     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
 | |
|     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
 | |
|     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
 | |
|                                          arraylen);
 | |
|     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
 | |
|                                         arraylen);
 | |
|     cpu->cpreg_array_len = arraylen;
 | |
|     cpu->cpreg_vmstate_array_len = arraylen;
 | |
| 
 | |
|     for (i = 0, arraylen = 0; i < rlp->n; i++) {
 | |
|         uint64_t regidx = rlp->reg[i];
 | |
|         if (!reg_syncs_via_tuple_list(regidx)) {
 | |
|             continue;
 | |
|         }
 | |
|         cpu->cpreg_indexes[arraylen] = regidx;
 | |
|         arraylen++;
 | |
|     }
 | |
|     assert(cpu->cpreg_array_len == arraylen);
 | |
| 
 | |
|     if (!write_kvmstate_to_list(cpu)) {
 | |
|         /* Shouldn't happen unless kernel is inconsistent about
 | |
|          * what registers exist.
 | |
|          */
 | |
|         fprintf(stderr, "Initial read of kernel register state failed\n");
 | |
|         ret = -EINVAL;
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /* Save a copy of the initial register values so that we can
 | |
|      * feed it back to the kernel on VCPU reset.
 | |
|      */
 | |
|     cpu->cpreg_reset_values = g_memdup(cpu->cpreg_values,
 | |
|                                        cpu->cpreg_array_len *
 | |
|                                        sizeof(cpu->cpreg_values[0]));
 | |
| 
 | |
| out:
 | |
|     g_free(rlp);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* We track all the KVM devices which need their memory addresses
 | |
|  * passing to the kernel in a list of these structures.
 | |
|  * When board init is complete we run through the list and
 | |
|  * tell the kernel the base addresses of the memory regions.
 | |
|  * We use a MemoryListener to track mapping and unmapping of
 | |
|  * the regions during board creation, so the board models don't
 | |
|  * need to do anything special for the KVM case.
 | |
|  */
 | |
| typedef struct KVMDevice {
 | |
|     struct kvm_arm_device_addr kda;
 | |
|     MemoryRegion *mr;
 | |
|     QSLIST_ENTRY(KVMDevice) entries;
 | |
| } KVMDevice;
 | |
| 
 | |
| static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
 | |
| 
 | |
| static void kvm_arm_devlistener_add(MemoryListener *listener,
 | |
|                                     MemoryRegionSection *section)
 | |
| {
 | |
|     KVMDevice *kd;
 | |
| 
 | |
|     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 | |
|         if (section->mr == kd->mr) {
 | |
|             kd->kda.addr = section->offset_within_address_space;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_arm_devlistener_del(MemoryListener *listener,
 | |
|                                     MemoryRegionSection *section)
 | |
| {
 | |
|     KVMDevice *kd;
 | |
| 
 | |
|     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 | |
|         if (section->mr == kd->mr) {
 | |
|             kd->kda.addr = -1;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static MemoryListener devlistener = {
 | |
|     .region_add = kvm_arm_devlistener_add,
 | |
|     .region_del = kvm_arm_devlistener_del,
 | |
| };
 | |
| 
 | |
| static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
 | |
| {
 | |
|     KVMDevice *kd, *tkd;
 | |
| 
 | |
|     memory_listener_unregister(&devlistener);
 | |
|     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
 | |
|         if (kd->kda.addr != -1) {
 | |
|             if (kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR,
 | |
|                              &kd->kda) < 0) {
 | |
|                 fprintf(stderr, "KVM_ARM_SET_DEVICE_ADDRESS failed: %s\n",
 | |
|                         strerror(errno));
 | |
|                 abort();
 | |
|             }
 | |
|         }
 | |
|         memory_region_unref(kd->mr);
 | |
|         g_free(kd);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static Notifier notify = {
 | |
|     .notify = kvm_arm_machine_init_done,
 | |
| };
 | |
| 
 | |
| void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid)
 | |
| {
 | |
|     KVMDevice *kd;
 | |
| 
 | |
|     if (!kvm_irqchip_in_kernel()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (QSLIST_EMPTY(&kvm_devices_head)) {
 | |
|         memory_listener_register(&devlistener, NULL);
 | |
|         qemu_add_machine_init_done_notifier(¬ify);
 | |
|     }
 | |
|     kd = g_new0(KVMDevice, 1);
 | |
|     kd->mr = mr;
 | |
|     kd->kda.id = devid;
 | |
|     kd->kda.addr = -1;
 | |
|     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
 | |
|     memory_region_ref(kd->mr);
 | |
| }
 | |
| 
 | |
| bool write_kvmstate_to_list(ARMCPU *cpu)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     int i;
 | |
|     bool ok = true;
 | |
| 
 | |
|     for (i = 0; i < cpu->cpreg_array_len; i++) {
 | |
|         struct kvm_one_reg r;
 | |
|         uint64_t regidx = cpu->cpreg_indexes[i];
 | |
|         uint32_t v32;
 | |
|         int ret;
 | |
| 
 | |
|         r.id = regidx;
 | |
| 
 | |
|         switch (regidx & KVM_REG_SIZE_MASK) {
 | |
|         case KVM_REG_SIZE_U32:
 | |
|             r.addr = (uintptr_t)&v32;
 | |
|             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 | |
|             if (!ret) {
 | |
|                 cpu->cpreg_values[i] = v32;
 | |
|             }
 | |
|             break;
 | |
|         case KVM_REG_SIZE_U64:
 | |
|             r.addr = (uintptr_t)(cpu->cpreg_values + i);
 | |
|             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 | |
|             break;
 | |
|         default:
 | |
|             abort();
 | |
|         }
 | |
|         if (ret) {
 | |
|             ok = false;
 | |
|         }
 | |
|     }
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| bool write_list_to_kvmstate(ARMCPU *cpu)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     int i;
 | |
|     bool ok = true;
 | |
| 
 | |
|     for (i = 0; i < cpu->cpreg_array_len; i++) {
 | |
|         struct kvm_one_reg r;
 | |
|         uint64_t regidx = cpu->cpreg_indexes[i];
 | |
|         uint32_t v32;
 | |
|         int ret;
 | |
| 
 | |
|         r.id = regidx;
 | |
|         switch (regidx & KVM_REG_SIZE_MASK) {
 | |
|         case KVM_REG_SIZE_U32:
 | |
|             v32 = cpu->cpreg_values[i];
 | |
|             r.addr = (uintptr_t)&v32;
 | |
|             break;
 | |
|         case KVM_REG_SIZE_U64:
 | |
|             r.addr = (uintptr_t)(cpu->cpreg_values + i);
 | |
|             break;
 | |
|         default:
 | |
|             abort();
 | |
|         }
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 | |
|         if (ret) {
 | |
|             /* We might fail for "unknown register" and also for
 | |
|              * "you tried to set a register which is constant with
 | |
|              * a different value from what it actually contains".
 | |
|              */
 | |
|             ok = false;
 | |
|         }
 | |
|     }
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| typedef struct Reg {
 | |
|     uint64_t id;
 | |
|     int offset;
 | |
| } Reg;
 | |
| 
 | |
| #define COREREG(KERNELNAME, QEMUFIELD)                       \
 | |
|     {                                                        \
 | |
|         KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
 | |
|         KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
 | |
|         offsetof(CPUARMState, QEMUFIELD)                     \
 | |
|     }
 | |
| 
 | |
| #define VFPSYSREG(R)                                       \
 | |
|     {                                                      \
 | |
|         KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
 | |
|         KVM_REG_ARM_VFP_##R,                               \
 | |
|         offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R])      \
 | |
|     }
 | |
| 
 | |
| static const Reg regs[] = {
 | |
|     /* R0_usr .. R14_usr */
 | |
|     COREREG(usr_regs.uregs[0], regs[0]),
 | |
|     COREREG(usr_regs.uregs[1], regs[1]),
 | |
|     COREREG(usr_regs.uregs[2], regs[2]),
 | |
|     COREREG(usr_regs.uregs[3], regs[3]),
 | |
|     COREREG(usr_regs.uregs[4], regs[4]),
 | |
|     COREREG(usr_regs.uregs[5], regs[5]),
 | |
|     COREREG(usr_regs.uregs[6], regs[6]),
 | |
|     COREREG(usr_regs.uregs[7], regs[7]),
 | |
|     COREREG(usr_regs.uregs[8], usr_regs[0]),
 | |
|     COREREG(usr_regs.uregs[9], usr_regs[1]),
 | |
|     COREREG(usr_regs.uregs[10], usr_regs[2]),
 | |
|     COREREG(usr_regs.uregs[11], usr_regs[3]),
 | |
|     COREREG(usr_regs.uregs[12], usr_regs[4]),
 | |
|     COREREG(usr_regs.uregs[13], banked_r13[0]),
 | |
|     COREREG(usr_regs.uregs[14], banked_r14[0]),
 | |
|     /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
 | |
|     COREREG(svc_regs[0], banked_r13[1]),
 | |
|     COREREG(svc_regs[1], banked_r14[1]),
 | |
|     COREREG(svc_regs[2], banked_spsr[1]),
 | |
|     COREREG(abt_regs[0], banked_r13[2]),
 | |
|     COREREG(abt_regs[1], banked_r14[2]),
 | |
|     COREREG(abt_regs[2], banked_spsr[2]),
 | |
|     COREREG(und_regs[0], banked_r13[3]),
 | |
|     COREREG(und_regs[1], banked_r14[3]),
 | |
|     COREREG(und_regs[2], banked_spsr[3]),
 | |
|     COREREG(irq_regs[0], banked_r13[4]),
 | |
|     COREREG(irq_regs[1], banked_r14[4]),
 | |
|     COREREG(irq_regs[2], banked_spsr[4]),
 | |
|     /* R8_fiq .. R14_fiq and SPSR_fiq */
 | |
|     COREREG(fiq_regs[0], fiq_regs[0]),
 | |
|     COREREG(fiq_regs[1], fiq_regs[1]),
 | |
|     COREREG(fiq_regs[2], fiq_regs[2]),
 | |
|     COREREG(fiq_regs[3], fiq_regs[3]),
 | |
|     COREREG(fiq_regs[4], fiq_regs[4]),
 | |
|     COREREG(fiq_regs[5], banked_r13[5]),
 | |
|     COREREG(fiq_regs[6], banked_r14[5]),
 | |
|     COREREG(fiq_regs[7], banked_spsr[5]),
 | |
|     /* R15 */
 | |
|     COREREG(usr_regs.uregs[15], regs[15]),
 | |
|     /* VFP system registers */
 | |
|     VFPSYSREG(FPSID),
 | |
|     VFPSYSREG(MVFR1),
 | |
|     VFPSYSREG(MVFR0),
 | |
|     VFPSYSREG(FPEXC),
 | |
|     VFPSYSREG(FPINST),
 | |
|     VFPSYSREG(FPINST2),
 | |
| };
 | |
| 
 | |
| int kvm_arch_put_registers(CPUState *cs, int level)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     struct kvm_one_reg r;
 | |
|     int mode, bn;
 | |
|     int ret, i;
 | |
|     uint32_t cpsr, fpscr;
 | |
| 
 | |
|     /* Make sure the banked regs are properly set */
 | |
|     mode = env->uncached_cpsr & CPSR_M;
 | |
|     bn = bank_number(mode);
 | |
|     if (mode == ARM_CPU_MODE_FIQ) {
 | |
|         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
 | |
|     } else {
 | |
|         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
 | |
|     }
 | |
|     env->banked_r13[bn] = env->regs[13];
 | |
|     env->banked_r14[bn] = env->regs[14];
 | |
|     env->banked_spsr[bn] = env->spsr;
 | |
| 
 | |
|     /* Now we can safely copy stuff down to the kernel */
 | |
|     for (i = 0; i < ARRAY_SIZE(regs); i++) {
 | |
|         r.id = regs[i].id;
 | |
|         r.addr = (uintptr_t)(env) + regs[i].offset;
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Special cases which aren't a single CPUARMState field */
 | |
|     cpsr = cpsr_read(env);
 | |
|     r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
 | |
|         KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
 | |
|     r.addr = (uintptr_t)(&cpsr);
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* VFP registers */
 | |
|     r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         r.addr = (uintptr_t)(&env->vfp.regs[i]);
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|         r.id++;
 | |
|     }
 | |
| 
 | |
|     r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
 | |
|         KVM_REG_ARM_VFP_FPSCR;
 | |
|     fpscr = vfp_get_fpscr(env);
 | |
|     r.addr = (uintptr_t)&fpscr;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* Note that we do not call write_cpustate_to_list()
 | |
|      * here, so we are only writing the tuple list back to
 | |
|      * KVM. This is safe because nothing can change the
 | |
|      * CPUARMState cp15 fields (in particular gdb accesses cannot)
 | |
|      * and so there are no changes to sync. In fact syncing would
 | |
|      * be wrong at this point: for a constant register where TCG and
 | |
|      * KVM disagree about its value, the preceding write_list_to_cpustate()
 | |
|      * would not have had any effect on the CPUARMState value (since the
 | |
|      * register is read-only), and a write_cpustate_to_list() here would
 | |
|      * then try to write the TCG value back into KVM -- this would either
 | |
|      * fail or incorrectly change the value the guest sees.
 | |
|      *
 | |
|      * If we ever want to allow the user to modify cp15 registers via
 | |
|      * the gdb stub, we would need to be more clever here (for instance
 | |
|      * tracking the set of registers kvm_arch_get_registers() successfully
 | |
|      * managed to update the CPUARMState with, and only allowing those
 | |
|      * to be written back up into the kernel).
 | |
|      */
 | |
|     if (!write_list_to_kvmstate(cpu)) {
 | |
|         return EINVAL;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_arch_get_registers(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     struct kvm_one_reg r;
 | |
|     int mode, bn;
 | |
|     int ret, i;
 | |
|     uint32_t cpsr, fpscr;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(regs); i++) {
 | |
|         r.id = regs[i].id;
 | |
|         r.addr = (uintptr_t)(env) + regs[i].offset;
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Special cases which aren't a single CPUARMState field */
 | |
|     r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
 | |
|         KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
 | |
|     r.addr = (uintptr_t)(&cpsr);
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
|     cpsr_write(env, cpsr, 0xffffffff);
 | |
| 
 | |
|     /* Make sure the current mode regs are properly set */
 | |
|     mode = env->uncached_cpsr & CPSR_M;
 | |
|     bn = bank_number(mode);
 | |
|     if (mode == ARM_CPU_MODE_FIQ) {
 | |
|         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
 | |
|     } else {
 | |
|         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
 | |
|     }
 | |
|     env->regs[13] = env->banked_r13[bn];
 | |
|     env->regs[14] = env->banked_r14[bn];
 | |
|     env->spsr = env->banked_spsr[bn];
 | |
| 
 | |
|     /* VFP registers */
 | |
|     r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         r.addr = (uintptr_t)(&env->vfp.regs[i]);
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|         r.id++;
 | |
|     }
 | |
| 
 | |
|     r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
 | |
|         KVM_REG_ARM_VFP_FPSCR;
 | |
|     r.addr = (uintptr_t)&fpscr;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
|     vfp_set_fpscr(env, fpscr);
 | |
| 
 | |
|     if (!write_kvmstate_to_list(cpu)) {
 | |
|         return EINVAL;
 | |
|     }
 | |
|     /* Note that it's OK to have registers which aren't in CPUState,
 | |
|      * so we can ignore a failure return here.
 | |
|      */
 | |
|     write_list_to_cpustate(cpu);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
 | |
| {
 | |
| }
 | |
| 
 | |
| void kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 | |
| {
 | |
| }
 | |
| 
 | |
| int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_reset_vcpu(CPUState *cs)
 | |
| {
 | |
|     /* Feed the kernel back its initial register state */
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
| 
 | |
|     memmove(cpu->cpreg_values, cpu->cpreg_reset_values,
 | |
|             cpu->cpreg_array_len * sizeof(cpu->cpreg_values[0]));
 | |
| 
 | |
|     if (!write_list_to_kvmstate(cpu)) {
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool kvm_arch_stop_on_emulation_error(CPUState *cs)
 | |
| {
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| int kvm_arch_process_async_events(CPUState *cs)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int kvm_arch_on_sigbus(int code, void *addr)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | |
| }
 | |
| 
 | |
| int kvm_arch_insert_sw_breakpoint(CPUState *cs,
 | |
|                                   struct kvm_sw_breakpoint *bp)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 | |
|                                   target_ulong len, int type)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 | |
|                                   target_ulong len, int type)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| int kvm_arch_remove_sw_breakpoint(CPUState *cs,
 | |
|                                   struct kvm_sw_breakpoint *bp)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| void kvm_arch_remove_all_hw_breakpoints(void)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | |
| }
 | |
| 
 | |
| void kvm_arch_init_irq_routing(KVMState *s)
 | |
| {
 | |
| }
 |