966 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			966 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
/*
 | 
						|
 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms, with or without
 | 
						|
 * modification, are permitted provided that the following conditions are met:
 | 
						|
 *     * Redistributions of source code must retain the above copyright
 | 
						|
 *       notice, this list of conditions and the following disclaimer.
 | 
						|
 *     * Redistributions in binary form must reproduce the above copyright
 | 
						|
 *       notice, this list of conditions and the following disclaimer in the
 | 
						|
 *       documentation and/or other materials provided with the distribution.
 | 
						|
 *     * Neither the name of the Open Source and Linux Lab nor the
 | 
						|
 *       names of its contributors may be used to endorse or promote products
 | 
						|
 *       derived from this software without specific prior written permission.
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | 
						|
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
						|
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 | 
						|
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 | 
						|
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | 
						|
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 | 
						|
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | 
						|
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 */
 | 
						|
 | 
						|
#include "cpu.h"
 | 
						|
#include "helper.h"
 | 
						|
#include "qemu/host-utils.h"
 | 
						|
#include "exec/softmmu_exec.h"
 | 
						|
 | 
						|
static void do_unaligned_access(CPUXtensaState *env,
 | 
						|
        target_ulong addr, int is_write, int is_user, uintptr_t retaddr);
 | 
						|
 | 
						|
#define ALIGNED_ONLY
 | 
						|
#define MMUSUFFIX _mmu
 | 
						|
 | 
						|
#define SHIFT 0
 | 
						|
#include "exec/softmmu_template.h"
 | 
						|
 | 
						|
#define SHIFT 1
 | 
						|
#include "exec/softmmu_template.h"
 | 
						|
 | 
						|
#define SHIFT 2
 | 
						|
#include "exec/softmmu_template.h"
 | 
						|
 | 
						|
#define SHIFT 3
 | 
						|
#include "exec/softmmu_template.h"
 | 
						|
 | 
						|
static void do_unaligned_access(CPUXtensaState *env,
 | 
						|
        target_ulong addr, int is_write, int is_user, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
 | 
						|
            !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
 | 
						|
        cpu_restore_state(env, retaddr);
 | 
						|
        HELPER(exception_cause_vaddr)(env,
 | 
						|
                env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_fill(CPUXtensaState *env,
 | 
						|
        target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    uint32_t paddr;
 | 
						|
    uint32_t page_size;
 | 
						|
    unsigned access;
 | 
						|
    int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
 | 
						|
            &paddr, &page_size, &access);
 | 
						|
 | 
						|
    qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
 | 
						|
            vaddr, is_write, mmu_idx, paddr, ret);
 | 
						|
 | 
						|
    if (ret == 0) {
 | 
						|
        tlb_set_page(env,
 | 
						|
                vaddr & TARGET_PAGE_MASK,
 | 
						|
                paddr & TARGET_PAGE_MASK,
 | 
						|
                access, mmu_idx, page_size);
 | 
						|
    } else {
 | 
						|
        cpu_restore_state(env, retaddr);
 | 
						|
        HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
 | 
						|
{
 | 
						|
    uint32_t paddr;
 | 
						|
    uint32_t page_size;
 | 
						|
    unsigned access;
 | 
						|
    int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
 | 
						|
            &paddr, &page_size, &access);
 | 
						|
    if (ret == 0) {
 | 
						|
        tb_invalidate_phys_addr(paddr);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
 | 
						|
{
 | 
						|
    env->exception_index = excp;
 | 
						|
    if (excp == EXCP_DEBUG) {
 | 
						|
        env->exception_taken = 0;
 | 
						|
    }
 | 
						|
    cpu_loop_exit(env);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
 | 
						|
{
 | 
						|
    uint32_t vector;
 | 
						|
 | 
						|
    env->pc = pc;
 | 
						|
    if (env->sregs[PS] & PS_EXCM) {
 | 
						|
        if (env->config->ndepc) {
 | 
						|
            env->sregs[DEPC] = pc;
 | 
						|
        } else {
 | 
						|
            env->sregs[EPC1] = pc;
 | 
						|
        }
 | 
						|
        vector = EXC_DOUBLE;
 | 
						|
    } else {
 | 
						|
        env->sregs[EPC1] = pc;
 | 
						|
        vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
 | 
						|
    }
 | 
						|
 | 
						|
    env->sregs[EXCCAUSE] = cause;
 | 
						|
    env->sregs[PS] |= PS_EXCM;
 | 
						|
 | 
						|
    HELPER(exception)(env, vector);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
 | 
						|
        uint32_t pc, uint32_t cause, uint32_t vaddr)
 | 
						|
{
 | 
						|
    env->sregs[EXCVADDR] = vaddr;
 | 
						|
    HELPER(exception_cause)(env, pc, cause);
 | 
						|
}
 | 
						|
 | 
						|
void debug_exception_env(CPUXtensaState *env, uint32_t cause)
 | 
						|
{
 | 
						|
    if (xtensa_get_cintlevel(env) < env->config->debug_level) {
 | 
						|
        HELPER(debug_exception)(env, env->pc, cause);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
 | 
						|
{
 | 
						|
    unsigned level = env->config->debug_level;
 | 
						|
 | 
						|
    env->pc = pc;
 | 
						|
    env->sregs[DEBUGCAUSE] = cause;
 | 
						|
    env->sregs[EPC1 + level - 1] = pc;
 | 
						|
    env->sregs[EPS2 + level - 2] = env->sregs[PS];
 | 
						|
    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
 | 
						|
        (level << PS_INTLEVEL_SHIFT);
 | 
						|
    HELPER(exception)(env, EXC_DEBUG);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(nsa)(uint32_t v)
 | 
						|
{
 | 
						|
    if (v & 0x80000000) {
 | 
						|
        v = ~v;
 | 
						|
    }
 | 
						|
    return v ? clz32(v) - 1 : 31;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(nsau)(uint32_t v)
 | 
						|
{
 | 
						|
    return v ? clz32(v) : 32;
 | 
						|
}
 | 
						|
 | 
						|
static void copy_window_from_phys(CPUXtensaState *env,
 | 
						|
        uint32_t window, uint32_t phys, uint32_t n)
 | 
						|
{
 | 
						|
    assert(phys < env->config->nareg);
 | 
						|
    if (phys + n <= env->config->nareg) {
 | 
						|
        memcpy(env->regs + window, env->phys_regs + phys,
 | 
						|
                n * sizeof(uint32_t));
 | 
						|
    } else {
 | 
						|
        uint32_t n1 = env->config->nareg - phys;
 | 
						|
        memcpy(env->regs + window, env->phys_regs + phys,
 | 
						|
                n1 * sizeof(uint32_t));
 | 
						|
        memcpy(env->regs + window + n1, env->phys_regs,
 | 
						|
                (n - n1) * sizeof(uint32_t));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void copy_phys_from_window(CPUXtensaState *env,
 | 
						|
        uint32_t phys, uint32_t window, uint32_t n)
 | 
						|
{
 | 
						|
    assert(phys < env->config->nareg);
 | 
						|
    if (phys + n <= env->config->nareg) {
 | 
						|
        memcpy(env->phys_regs + phys, env->regs + window,
 | 
						|
                n * sizeof(uint32_t));
 | 
						|
    } else {
 | 
						|
        uint32_t n1 = env->config->nareg - phys;
 | 
						|
        memcpy(env->phys_regs + phys, env->regs + window,
 | 
						|
                n1 * sizeof(uint32_t));
 | 
						|
        memcpy(env->phys_regs, env->regs + window + n1,
 | 
						|
                (n - n1) * sizeof(uint32_t));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
 | 
						|
{
 | 
						|
    return a & (env->config->nareg / 4 - 1);
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
 | 
						|
{
 | 
						|
    return 1 << windowbase_bound(a, env);
 | 
						|
}
 | 
						|
 | 
						|
void xtensa_sync_window_from_phys(CPUXtensaState *env)
 | 
						|
{
 | 
						|
    copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
 | 
						|
}
 | 
						|
 | 
						|
void xtensa_sync_phys_from_window(CPUXtensaState *env)
 | 
						|
{
 | 
						|
    copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
 | 
						|
}
 | 
						|
 | 
						|
static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
 | 
						|
{
 | 
						|
    xtensa_sync_phys_from_window(env);
 | 
						|
    env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
 | 
						|
    xtensa_sync_window_from_phys(env);
 | 
						|
}
 | 
						|
 | 
						|
static void rotate_window(CPUXtensaState *env, uint32_t delta)
 | 
						|
{
 | 
						|
    rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
 | 
						|
{
 | 
						|
    rotate_window_abs(env, v);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
 | 
						|
{
 | 
						|
    int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
 | 
						|
    if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
 | 
						|
        qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
 | 
						|
                pc, env->sregs[PS]);
 | 
						|
        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
 | 
						|
    } else {
 | 
						|
        env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
 | 
						|
        rotate_window(env, callinc);
 | 
						|
        env->sregs[WINDOW_START] |=
 | 
						|
            windowstart_bit(env->sregs[WINDOW_BASE], env);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
 | 
						|
{
 | 
						|
    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
 | 
						|
    uint32_t windowstart = env->sregs[WINDOW_START];
 | 
						|
    uint32_t m, n;
 | 
						|
 | 
						|
    if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    for (n = 1; ; ++n) {
 | 
						|
        if (n > w) {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if (windowstart & windowstart_bit(windowbase + n, env)) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    m = windowbase_bound(windowbase + n, env);
 | 
						|
    rotate_window(env, n);
 | 
						|
    env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
 | 
						|
        (windowbase << PS_OWB_SHIFT) | PS_EXCM;
 | 
						|
    env->sregs[EPC1] = env->pc = pc;
 | 
						|
 | 
						|
    if (windowstart & windowstart_bit(m + 1, env)) {
 | 
						|
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
 | 
						|
    } else if (windowstart & windowstart_bit(m + 2, env)) {
 | 
						|
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
 | 
						|
    } else {
 | 
						|
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
 | 
						|
{
 | 
						|
    int n = (env->regs[0] >> 30) & 0x3;
 | 
						|
    int m = 0;
 | 
						|
    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
 | 
						|
    uint32_t windowstart = env->sregs[WINDOW_START];
 | 
						|
    uint32_t ret_pc = 0;
 | 
						|
 | 
						|
    if (windowstart & windowstart_bit(windowbase - 1, env)) {
 | 
						|
        m = 1;
 | 
						|
    } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
 | 
						|
        m = 2;
 | 
						|
    } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
 | 
						|
        m = 3;
 | 
						|
    }
 | 
						|
 | 
						|
    if (n == 0 || (m != 0 && m != n) ||
 | 
						|
            ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
 | 
						|
        qemu_log("Illegal retw instruction(pc = %08x), "
 | 
						|
                "PS = %08x, m = %d, n = %d\n",
 | 
						|
                pc, env->sregs[PS], m, n);
 | 
						|
        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
 | 
						|
    } else {
 | 
						|
        int owb = windowbase;
 | 
						|
 | 
						|
        ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
 | 
						|
 | 
						|
        rotate_window(env, -n);
 | 
						|
        if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
 | 
						|
            env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
 | 
						|
        } else {
 | 
						|
            /* window underflow */
 | 
						|
            env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
 | 
						|
                (windowbase << PS_OWB_SHIFT) | PS_EXCM;
 | 
						|
            env->sregs[EPC1] = env->pc = pc;
 | 
						|
 | 
						|
            if (n == 1) {
 | 
						|
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
 | 
						|
            } else if (n == 2) {
 | 
						|
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
 | 
						|
            } else if (n == 3) {
 | 
						|
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return ret_pc;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
 | 
						|
{
 | 
						|
    rotate_window(env, imm4);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(restore_owb)(CPUXtensaState *env)
 | 
						|
{
 | 
						|
    rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
 | 
						|
{
 | 
						|
    if ((env->sregs[WINDOW_START] &
 | 
						|
            (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
 | 
						|
             windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
 | 
						|
             windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
 | 
						|
        HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
 | 
						|
{
 | 
						|
    if (env->sregs[LBEG] != v) {
 | 
						|
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
 | 
						|
        env->sregs[LBEG] = v;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
 | 
						|
{
 | 
						|
    if (env->sregs[LEND] != v) {
 | 
						|
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
 | 
						|
        env->sregs[LEND] = v;
 | 
						|
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(dump_state)(CPUXtensaState *env)
 | 
						|
{
 | 
						|
    XtensaCPU *cpu = xtensa_env_get_cpu(env);
 | 
						|
 | 
						|
    cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
 | 
						|
{
 | 
						|
    CPUState *cpu;
 | 
						|
 | 
						|
    env->pc = pc;
 | 
						|
    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
 | 
						|
        (intlevel << PS_INTLEVEL_SHIFT);
 | 
						|
    check_interrupts(env);
 | 
						|
    if (env->pending_irq_level) {
 | 
						|
        cpu_loop_exit(env);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    cpu = CPU(xtensa_env_get_cpu(env));
 | 
						|
    env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | 
						|
    cpu->halted = 1;
 | 
						|
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
 | 
						|
        xtensa_rearm_ccompare_timer(env);
 | 
						|
    }
 | 
						|
    HELPER(exception)(env, EXCP_HLT);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
 | 
						|
{
 | 
						|
    xtensa_timer_irq(env, id, active);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
 | 
						|
{
 | 
						|
    xtensa_advance_ccount(env, d);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(check_interrupts)(CPUXtensaState *env)
 | 
						|
{
 | 
						|
    check_interrupts(env);
 | 
						|
}
 | 
						|
 | 
						|
/*!
 | 
						|
 * Check vaddr accessibility/cache attributes and raise an exception if
 | 
						|
 * specified by the ATOMCTL SR.
 | 
						|
 *
 | 
						|
 * Note: local memory exclusion is not implemented
 | 
						|
 */
 | 
						|
void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
 | 
						|
{
 | 
						|
    uint32_t paddr, page_size, access;
 | 
						|
    uint32_t atomctl = env->sregs[ATOMCTL];
 | 
						|
    int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
 | 
						|
            xtensa_get_cring(env), &paddr, &page_size, &access);
 | 
						|
 | 
						|
    /*
 | 
						|
     * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
 | 
						|
     * see opcode description in the ISA
 | 
						|
     */
 | 
						|
    if (rc == 0 &&
 | 
						|
            (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
 | 
						|
        rc = STORE_PROHIBITED_CAUSE;
 | 
						|
    }
 | 
						|
 | 
						|
    if (rc) {
 | 
						|
        HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * When data cache is not configured use ATOMCTL bypass field.
 | 
						|
     * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
 | 
						|
     * under the Conditional Store Option.
 | 
						|
     */
 | 
						|
    if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
 | 
						|
        access = PAGE_CACHE_BYPASS;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (access & PAGE_CACHE_MASK) {
 | 
						|
    case PAGE_CACHE_WB:
 | 
						|
        atomctl >>= 2;
 | 
						|
        /* fall through */
 | 
						|
    case PAGE_CACHE_WT:
 | 
						|
        atomctl >>= 2;
 | 
						|
        /* fall through */
 | 
						|
    case PAGE_CACHE_BYPASS:
 | 
						|
        if ((atomctl & 0x3) == 0) {
 | 
						|
            HELPER(exception_cause_vaddr)(env, pc,
 | 
						|
                    LOAD_STORE_ERROR_CAUSE, vaddr);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
    case PAGE_CACHE_ISOLATE:
 | 
						|
        HELPER(exception_cause_vaddr)(env, pc,
 | 
						|
                LOAD_STORE_ERROR_CAUSE, vaddr);
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
 | 
						|
{
 | 
						|
    v = (v & 0xffffff00) | 0x1;
 | 
						|
    if (v != env->sregs[RASID]) {
 | 
						|
        env->sregs[RASID] = v;
 | 
						|
        tlb_flush(env, 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
 | 
						|
{
 | 
						|
    uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
 | 
						|
 | 
						|
    switch (way) {
 | 
						|
    case 4:
 | 
						|
        return (tlbcfg >> 16) & 0x3;
 | 
						|
 | 
						|
    case 5:
 | 
						|
        return (tlbcfg >> 20) & 0x1;
 | 
						|
 | 
						|
    case 6:
 | 
						|
        return (tlbcfg >> 24) & 0x1;
 | 
						|
 | 
						|
    default:
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*!
 | 
						|
 * Get bit mask for the virtual address bits translated by the TLB way
 | 
						|
 */
 | 
						|
uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
 | 
						|
{
 | 
						|
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 | 
						|
        bool varway56 = dtlb ?
 | 
						|
            env->config->dtlb.varway56 :
 | 
						|
            env->config->itlb.varway56;
 | 
						|
 | 
						|
        switch (way) {
 | 
						|
        case 4:
 | 
						|
            return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
 | 
						|
 | 
						|
        case 5:
 | 
						|
            if (varway56) {
 | 
						|
                return 0xf8000000 << get_page_size(env, dtlb, way);
 | 
						|
            } else {
 | 
						|
                return 0xf8000000;
 | 
						|
            }
 | 
						|
 | 
						|
        case 6:
 | 
						|
            if (varway56) {
 | 
						|
                return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
 | 
						|
            } else {
 | 
						|
                return 0xf0000000;
 | 
						|
            }
 | 
						|
 | 
						|
        default:
 | 
						|
            return 0xfffff000;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        return REGION_PAGE_MASK;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*!
 | 
						|
 * Get bit mask for the 'VPN without index' field.
 | 
						|
 * See ISA, 4.6.5.6, data format for RxTLB0
 | 
						|
 */
 | 
						|
static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
 | 
						|
{
 | 
						|
    if (way < 4) {
 | 
						|
        bool is32 = (dtlb ?
 | 
						|
                env->config->dtlb.nrefillentries :
 | 
						|
                env->config->itlb.nrefillentries) == 32;
 | 
						|
        return is32 ? 0xffff8000 : 0xffffc000;
 | 
						|
    } else if (way == 4) {
 | 
						|
        return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
 | 
						|
    } else if (way <= 6) {
 | 
						|
        uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
 | 
						|
        bool varway56 = dtlb ?
 | 
						|
            env->config->dtlb.varway56 :
 | 
						|
            env->config->itlb.varway56;
 | 
						|
 | 
						|
        if (varway56) {
 | 
						|
            return mask << (way == 5 ? 2 : 3);
 | 
						|
        } else {
 | 
						|
            return mask << 1;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        return 0xfffff000;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*!
 | 
						|
 * Split virtual address into VPN (with index) and entry index
 | 
						|
 * for the given TLB way
 | 
						|
 */
 | 
						|
void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
 | 
						|
        uint32_t *vpn, uint32_t wi, uint32_t *ei)
 | 
						|
{
 | 
						|
    bool varway56 = dtlb ?
 | 
						|
        env->config->dtlb.varway56 :
 | 
						|
        env->config->itlb.varway56;
 | 
						|
 | 
						|
    if (!dtlb) {
 | 
						|
        wi &= 7;
 | 
						|
    }
 | 
						|
 | 
						|
    if (wi < 4) {
 | 
						|
        bool is32 = (dtlb ?
 | 
						|
                env->config->dtlb.nrefillentries :
 | 
						|
                env->config->itlb.nrefillentries) == 32;
 | 
						|
        *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
 | 
						|
    } else {
 | 
						|
        switch (wi) {
 | 
						|
        case 4:
 | 
						|
            {
 | 
						|
                uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
 | 
						|
                *ei = (v >> eibase) & 0x3;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
        case 5:
 | 
						|
            if (varway56) {
 | 
						|
                uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
 | 
						|
                *ei = (v >> eibase) & 0x3;
 | 
						|
            } else {
 | 
						|
                *ei = (v >> 27) & 0x1;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
        case 6:
 | 
						|
            if (varway56) {
 | 
						|
                uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
 | 
						|
                *ei = (v >> eibase) & 0x7;
 | 
						|
            } else {
 | 
						|
                *ei = (v >> 28) & 0x1;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
        default:
 | 
						|
            *ei = 0;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
 | 
						|
}
 | 
						|
 | 
						|
/*!
 | 
						|
 * Split TLB address into TLB way, entry index and VPN (with index).
 | 
						|
 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
 | 
						|
 */
 | 
						|
static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
 | 
						|
        uint32_t *vpn, uint32_t *wi, uint32_t *ei)
 | 
						|
{
 | 
						|
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 | 
						|
        *wi = v & (dtlb ? 0xf : 0x7);
 | 
						|
        split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
 | 
						|
    } else {
 | 
						|
        *vpn = v & REGION_PAGE_MASK;
 | 
						|
        *wi = 0;
 | 
						|
        *ei = (v >> 29) & 0x7;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
 | 
						|
        uint32_t v, bool dtlb, uint32_t *pwi)
 | 
						|
{
 | 
						|
    uint32_t vpn;
 | 
						|
    uint32_t wi;
 | 
						|
    uint32_t ei;
 | 
						|
 | 
						|
    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
 | 
						|
    if (pwi) {
 | 
						|
        *pwi = wi;
 | 
						|
    }
 | 
						|
    return xtensa_tlb_get_entry(env, dtlb, wi, ei);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 | 
						|
{
 | 
						|
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 | 
						|
        uint32_t wi;
 | 
						|
        const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
 | 
						|
        return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
 | 
						|
    } else {
 | 
						|
        return v & REGION_PAGE_MASK;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 | 
						|
{
 | 
						|
    const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
 | 
						|
    return entry->paddr | entry->attr;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 | 
						|
{
 | 
						|
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 | 
						|
        uint32_t wi;
 | 
						|
        xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
 | 
						|
        if (entry->variable && entry->asid) {
 | 
						|
            tlb_flush_page(env, entry->vaddr);
 | 
						|
            entry->asid = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 | 
						|
{
 | 
						|
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 | 
						|
        uint32_t wi;
 | 
						|
        uint32_t ei;
 | 
						|
        uint8_t ring;
 | 
						|
        int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
 | 
						|
 | 
						|
        switch (res) {
 | 
						|
        case 0:
 | 
						|
            if (ring >= xtensa_get_ring(env)) {
 | 
						|
                return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
        case INST_TLB_MULTI_HIT_CAUSE:
 | 
						|
        case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
 | 
						|
            HELPER(exception_cause_vaddr)(env, env->pc, res, v);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    } else {
 | 
						|
        return (v & REGION_PAGE_MASK) | 0x1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
 | 
						|
        xtensa_tlb_entry *entry, bool dtlb,
 | 
						|
        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
 | 
						|
{
 | 
						|
    entry->vaddr = vpn;
 | 
						|
    entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
 | 
						|
    entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
 | 
						|
    entry->attr = pte & 0xf;
 | 
						|
}
 | 
						|
 | 
						|
void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
 | 
						|
        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
 | 
						|
{
 | 
						|
    xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
 | 
						|
 | 
						|
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 | 
						|
        if (entry->variable) {
 | 
						|
            if (entry->asid) {
 | 
						|
                tlb_flush_page(env, entry->vaddr);
 | 
						|
            }
 | 
						|
            xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
 | 
						|
            tlb_flush_page(env, entry->vaddr);
 | 
						|
        } else {
 | 
						|
            qemu_log("%s %d, %d, %d trying to set immutable entry\n",
 | 
						|
                    __func__, dtlb, wi, ei);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        tlb_flush_page(env, entry->vaddr);
 | 
						|
        if (xtensa_option_enabled(env->config,
 | 
						|
                    XTENSA_OPTION_REGION_TRANSLATION)) {
 | 
						|
            entry->paddr = pte & REGION_PAGE_MASK;
 | 
						|
        }
 | 
						|
        entry->attr = pte & 0xf;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
 | 
						|
{
 | 
						|
    uint32_t vpn;
 | 
						|
    uint32_t wi;
 | 
						|
    uint32_t ei;
 | 
						|
    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
 | 
						|
    xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
 | 
						|
{
 | 
						|
    uint32_t change = v ^ env->sregs[IBREAKENABLE];
 | 
						|
    unsigned i;
 | 
						|
 | 
						|
    for (i = 0; i < env->config->nibreak; ++i) {
 | 
						|
        if (change & (1 << i)) {
 | 
						|
            tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
 | 
						|
{
 | 
						|
    if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
 | 
						|
        tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
 | 
						|
        tb_invalidate_virtual_addr(env, v);
 | 
						|
    }
 | 
						|
    env->sregs[IBREAKA + i] = v;
 | 
						|
}
 | 
						|
 | 
						|
static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
 | 
						|
        uint32_t dbreakc)
 | 
						|
{
 | 
						|
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
 | 
						|
    uint32_t mask = dbreakc | ~DBREAKC_MASK;
 | 
						|
 | 
						|
    if (env->cpu_watchpoint[i]) {
 | 
						|
        cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
 | 
						|
    }
 | 
						|
    if (dbreakc & DBREAKC_SB) {
 | 
						|
        flags |= BP_MEM_WRITE;
 | 
						|
    }
 | 
						|
    if (dbreakc & DBREAKC_LB) {
 | 
						|
        flags |= BP_MEM_READ;
 | 
						|
    }
 | 
						|
    /* contiguous mask after inversion is one less than some power of 2 */
 | 
						|
    if ((~mask + 1) & ~mask) {
 | 
						|
        qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
 | 
						|
        /* cut mask after the first zero bit */
 | 
						|
        mask = 0xffffffff << (32 - clo32(mask));
 | 
						|
    }
 | 
						|
    if (cpu_watchpoint_insert(env, dbreaka & mask, ~mask + 1,
 | 
						|
            flags, &env->cpu_watchpoint[i])) {
 | 
						|
        env->cpu_watchpoint[i] = NULL;
 | 
						|
        qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
 | 
						|
                dbreaka & mask, ~mask + 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
 | 
						|
{
 | 
						|
    uint32_t dbreakc = env->sregs[DBREAKC + i];
 | 
						|
 | 
						|
    if ((dbreakc & DBREAKC_SB_LB) &&
 | 
						|
            env->sregs[DBREAKA + i] != v) {
 | 
						|
        set_dbreak(env, i, v, dbreakc);
 | 
						|
    }
 | 
						|
    env->sregs[DBREAKA + i] = v;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
 | 
						|
{
 | 
						|
    if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
 | 
						|
        if (v & DBREAKC_SB_LB) {
 | 
						|
            set_dbreak(env, i, env->sregs[DBREAKA + i], v);
 | 
						|
        } else {
 | 
						|
            if (env->cpu_watchpoint[i]) {
 | 
						|
                cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
 | 
						|
                env->cpu_watchpoint[i] = NULL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    env->sregs[DBREAKC + i] = v;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
 | 
						|
{
 | 
						|
    static const int rounding_mode[] = {
 | 
						|
        float_round_nearest_even,
 | 
						|
        float_round_to_zero,
 | 
						|
        float_round_up,
 | 
						|
        float_round_down,
 | 
						|
    };
 | 
						|
 | 
						|
    env->uregs[FCR] = v & 0xfffff07f;
 | 
						|
    set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
 | 
						|
}
 | 
						|
 | 
						|
float32 HELPER(abs_s)(float32 v)
 | 
						|
{
 | 
						|
    return float32_abs(v);
 | 
						|
}
 | 
						|
 | 
						|
float32 HELPER(neg_s)(float32 v)
 | 
						|
{
 | 
						|
    return float32_chs(v);
 | 
						|
}
 | 
						|
 | 
						|
float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
 | 
						|
{
 | 
						|
    return float32_add(a, b, &env->fp_status);
 | 
						|
}
 | 
						|
 | 
						|
float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
 | 
						|
{
 | 
						|
    return float32_sub(a, b, &env->fp_status);
 | 
						|
}
 | 
						|
 | 
						|
float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
 | 
						|
{
 | 
						|
    return float32_mul(a, b, &env->fp_status);
 | 
						|
}
 | 
						|
 | 
						|
float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
 | 
						|
{
 | 
						|
    return float32_muladd(b, c, a, 0,
 | 
						|
            &env->fp_status);
 | 
						|
}
 | 
						|
 | 
						|
float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
 | 
						|
{
 | 
						|
    return float32_muladd(b, c, a, float_muladd_negate_product,
 | 
						|
            &env->fp_status);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
 | 
						|
{
 | 
						|
    float_status fp_status = {0};
 | 
						|
 | 
						|
    set_float_rounding_mode(rounding_mode, &fp_status);
 | 
						|
    return float32_to_int32(
 | 
						|
            float32_scalbn(v, scale, &fp_status), &fp_status);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
 | 
						|
{
 | 
						|
    float_status fp_status = {0};
 | 
						|
    float32 res;
 | 
						|
 | 
						|
    set_float_rounding_mode(rounding_mode, &fp_status);
 | 
						|
 | 
						|
    res = float32_scalbn(v, scale, &fp_status);
 | 
						|
 | 
						|
    if (float32_is_neg(v) && !float32_is_any_nan(v)) {
 | 
						|
        return float32_to_int32(res, &fp_status);
 | 
						|
    } else {
 | 
						|
        return float32_to_uint32(res, &fp_status);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
 | 
						|
{
 | 
						|
    return float32_scalbn(int32_to_float32(v, &env->fp_status),
 | 
						|
            (int32_t)scale, &env->fp_status);
 | 
						|
}
 | 
						|
 | 
						|
float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
 | 
						|
{
 | 
						|
    return float32_scalbn(uint32_to_float32(v, &env->fp_status),
 | 
						|
            (int32_t)scale, &env->fp_status);
 | 
						|
}
 | 
						|
 | 
						|
static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
 | 
						|
{
 | 
						|
    if (v) {
 | 
						|
        env->sregs[BR] |= br;
 | 
						|
    } else {
 | 
						|
        env->sregs[BR] &= ~br;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 | 
						|
{
 | 
						|
    set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 | 
						|
{
 | 
						|
    set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 | 
						|
{
 | 
						|
    int v = float32_compare_quiet(a, b, &env->fp_status);
 | 
						|
    set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 | 
						|
{
 | 
						|
    set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 | 
						|
{
 | 
						|
    int v = float32_compare_quiet(a, b, &env->fp_status);
 | 
						|
    set_br(env, v == float_relation_less || v == float_relation_unordered, br);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 | 
						|
{
 | 
						|
    set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 | 
						|
{
 | 
						|
    int v = float32_compare_quiet(a, b, &env->fp_status);
 | 
						|
    set_br(env, v != float_relation_greater, br);
 | 
						|
}
 |