736 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			736 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  *  emulator main execution loop
 | |
|  *
 | |
|  *  Copyright (c) 2003-2005 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include "config.h"
 | |
| #include "cpu.h"
 | |
| #include "disas/disas.h"
 | |
| #include "tcg.h"
 | |
| #include "qemu/atomic.h"
 | |
| #include "sysemu/qtest.h"
 | |
| 
 | |
| bool qemu_cpu_has_work(CPUState *cpu)
 | |
| {
 | |
|     return cpu_has_work(cpu);
 | |
| }
 | |
| 
 | |
| void cpu_loop_exit(CPUArchState *env)
 | |
| {
 | |
|     CPUState *cpu = ENV_GET_CPU(env);
 | |
| 
 | |
|     cpu->current_tb = NULL;
 | |
|     siglongjmp(env->jmp_env, 1);
 | |
| }
 | |
| 
 | |
| /* exit the current TB from a signal handler. The host registers are
 | |
|    restored in a state compatible with the CPU emulator
 | |
|  */
 | |
| #if defined(CONFIG_SOFTMMU)
 | |
| void cpu_resume_from_signal(CPUArchState *env, void *puc)
 | |
| {
 | |
|     /* XXX: restore cpu registers saved in host registers */
 | |
| 
 | |
|     env->exception_index = -1;
 | |
|     siglongjmp(env->jmp_env, 1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Execute a TB, and fix up the CPU state afterwards if necessary */
 | |
| static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, uint8_t *tb_ptr)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     uintptr_t next_tb;
 | |
| 
 | |
| #if defined(DEBUG_DISAS)
 | |
|     if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
 | |
| #if defined(TARGET_I386)
 | |
|         log_cpu_state(cpu, CPU_DUMP_CCOP);
 | |
| #elif defined(TARGET_M68K)
 | |
|         /* ??? Should not modify env state for dumping.  */
 | |
|         cpu_m68k_flush_flags(env, env->cc_op);
 | |
|         env->cc_op = CC_OP_FLAGS;
 | |
|         env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4);
 | |
|         log_cpu_state(cpu, 0);
 | |
| #else
 | |
|         log_cpu_state(cpu, 0);
 | |
| #endif
 | |
|     }
 | |
| #endif /* DEBUG_DISAS */
 | |
| 
 | |
|     next_tb = tcg_qemu_tb_exec(env, tb_ptr);
 | |
|     if ((next_tb & TB_EXIT_MASK) > TB_EXIT_IDX1) {
 | |
|         /* We didn't start executing this TB (eg because the instruction
 | |
|          * counter hit zero); we must restore the guest PC to the address
 | |
|          * of the start of the TB.
 | |
|          */
 | |
|         CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
|         TranslationBlock *tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK);
 | |
|         if (cc->synchronize_from_tb) {
 | |
|             cc->synchronize_from_tb(cpu, tb);
 | |
|         } else {
 | |
|             assert(cc->set_pc);
 | |
|             cc->set_pc(cpu, tb->pc);
 | |
|         }
 | |
|     }
 | |
|     if ((next_tb & TB_EXIT_MASK) == TB_EXIT_REQUESTED) {
 | |
|         /* We were asked to stop executing TBs (probably a pending
 | |
|          * interrupt. We've now stopped, so clear the flag.
 | |
|          */
 | |
|         cpu->tcg_exit_req = 0;
 | |
|     }
 | |
|     return next_tb;
 | |
| }
 | |
| 
 | |
| /* Execute the code without caching the generated code. An interpreter
 | |
|    could be used if available. */
 | |
| static void cpu_exec_nocache(CPUArchState *env, int max_cycles,
 | |
|                              TranslationBlock *orig_tb)
 | |
| {
 | |
|     CPUState *cpu = ENV_GET_CPU(env);
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     /* Should never happen.
 | |
|        We only end up here when an existing TB is too long.  */
 | |
|     if (max_cycles > CF_COUNT_MASK)
 | |
|         max_cycles = CF_COUNT_MASK;
 | |
| 
 | |
|     tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
 | |
|                      max_cycles);
 | |
|     cpu->current_tb = tb;
 | |
|     /* execute the generated code */
 | |
|     cpu_tb_exec(cpu, tb->tc_ptr);
 | |
|     cpu->current_tb = NULL;
 | |
|     tb_phys_invalidate(tb, -1);
 | |
|     tb_free(tb);
 | |
| }
 | |
| 
 | |
| static TranslationBlock *tb_find_slow(CPUArchState *env,
 | |
|                                       target_ulong pc,
 | |
|                                       target_ulong cs_base,
 | |
|                                       uint64_t flags)
 | |
| {
 | |
|     TranslationBlock *tb, **ptb1;
 | |
|     unsigned int h;
 | |
|     tb_page_addr_t phys_pc, phys_page1;
 | |
|     target_ulong virt_page2;
 | |
| 
 | |
|     tcg_ctx.tb_ctx.tb_invalidated_flag = 0;
 | |
| 
 | |
|     /* find translated block using physical mappings */
 | |
|     phys_pc = get_page_addr_code(env, pc);
 | |
|     phys_page1 = phys_pc & TARGET_PAGE_MASK;
 | |
|     h = tb_phys_hash_func(phys_pc);
 | |
|     ptb1 = &tcg_ctx.tb_ctx.tb_phys_hash[h];
 | |
|     for(;;) {
 | |
|         tb = *ptb1;
 | |
|         if (!tb)
 | |
|             goto not_found;
 | |
|         if (tb->pc == pc &&
 | |
|             tb->page_addr[0] == phys_page1 &&
 | |
|             tb->cs_base == cs_base &&
 | |
|             tb->flags == flags) {
 | |
|             /* check next page if needed */
 | |
|             if (tb->page_addr[1] != -1) {
 | |
|                 tb_page_addr_t phys_page2;
 | |
| 
 | |
|                 virt_page2 = (pc & TARGET_PAGE_MASK) +
 | |
|                     TARGET_PAGE_SIZE;
 | |
|                 phys_page2 = get_page_addr_code(env, virt_page2);
 | |
|                 if (tb->page_addr[1] == phys_page2)
 | |
|                     goto found;
 | |
|             } else {
 | |
|                 goto found;
 | |
|             }
 | |
|         }
 | |
|         ptb1 = &tb->phys_hash_next;
 | |
|     }
 | |
|  not_found:
 | |
|    /* if no translated code available, then translate it now */
 | |
|     tb = tb_gen_code(env, pc, cs_base, flags, 0);
 | |
| 
 | |
|  found:
 | |
|     /* Move the last found TB to the head of the list */
 | |
|     if (likely(*ptb1)) {
 | |
|         *ptb1 = tb->phys_hash_next;
 | |
|         tb->phys_hash_next = tcg_ctx.tb_ctx.tb_phys_hash[h];
 | |
|         tcg_ctx.tb_ctx.tb_phys_hash[h] = tb;
 | |
|     }
 | |
|     /* we add the TB in the virtual pc hash table */
 | |
|     env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
 | |
|     return tb;
 | |
| }
 | |
| 
 | |
| static inline TranslationBlock *tb_find_fast(CPUArchState *env)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     target_ulong cs_base, pc;
 | |
|     int flags;
 | |
| 
 | |
|     /* we record a subset of the CPU state. It will
 | |
|        always be the same before a given translated block
 | |
|        is executed. */
 | |
|     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
 | |
|     tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
 | |
|     if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
 | |
|                  tb->flags != flags)) {
 | |
|         tb = tb_find_slow(env, pc, cs_base, flags);
 | |
|     }
 | |
|     return tb;
 | |
| }
 | |
| 
 | |
| static CPUDebugExcpHandler *debug_excp_handler;
 | |
| 
 | |
| void cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
 | |
| {
 | |
|     debug_excp_handler = handler;
 | |
| }
 | |
| 
 | |
| static void cpu_handle_debug_exception(CPUArchState *env)
 | |
| {
 | |
|     CPUWatchpoint *wp;
 | |
| 
 | |
|     if (!env->watchpoint_hit) {
 | |
|         QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | |
|             wp->flags &= ~BP_WATCHPOINT_HIT;
 | |
|         }
 | |
|     }
 | |
|     if (debug_excp_handler) {
 | |
|         debug_excp_handler(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* main execution loop */
 | |
| 
 | |
| volatile sig_atomic_t exit_request;
 | |
| 
 | |
| int cpu_exec(CPUArchState *env)
 | |
| {
 | |
|     CPUState *cpu = ENV_GET_CPU(env);
 | |
| #if !(defined(CONFIG_USER_ONLY) && \
 | |
|       (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X)))
 | |
|     CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
| #endif
 | |
| #ifdef TARGET_I386
 | |
|     X86CPU *x86_cpu = X86_CPU(cpu);
 | |
| #endif
 | |
|     int ret, interrupt_request;
 | |
|     TranslationBlock *tb;
 | |
|     uint8_t *tc_ptr;
 | |
|     uintptr_t next_tb;
 | |
| 
 | |
|     if (cpu->halted) {
 | |
|         if (!cpu_has_work(cpu)) {
 | |
|             return EXCP_HALTED;
 | |
|         }
 | |
| 
 | |
|         cpu->halted = 0;
 | |
|     }
 | |
| 
 | |
|     current_cpu = cpu;
 | |
| 
 | |
|     /* As long as current_cpu is null, up to the assignment just above,
 | |
|      * requests by other threads to exit the execution loop are expected to
 | |
|      * be issued using the exit_request global. We must make sure that our
 | |
|      * evaluation of the global value is performed past the current_cpu
 | |
|      * value transition point, which requires a memory barrier as well as
 | |
|      * an instruction scheduling constraint on modern architectures.  */
 | |
|     smp_mb();
 | |
| 
 | |
|     if (unlikely(exit_request)) {
 | |
|         cpu->exit_request = 1;
 | |
|     }
 | |
| 
 | |
| #if defined(TARGET_I386)
 | |
|     /* put eflags in CPU temporary format */
 | |
|     CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
 | |
|     env->df = 1 - (2 * ((env->eflags >> 10) & 1));
 | |
|     CC_OP = CC_OP_EFLAGS;
 | |
|     env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
 | |
| #elif defined(TARGET_SPARC)
 | |
| #elif defined(TARGET_M68K)
 | |
|     env->cc_op = CC_OP_FLAGS;
 | |
|     env->cc_dest = env->sr & 0xf;
 | |
|     env->cc_x = (env->sr >> 4) & 1;
 | |
| #elif defined(TARGET_ALPHA)
 | |
| #elif defined(TARGET_ARM)
 | |
| #elif defined(TARGET_UNICORE32)
 | |
| #elif defined(TARGET_PPC)
 | |
|     env->reserve_addr = -1;
 | |
| #elif defined(TARGET_LM32)
 | |
| #elif defined(TARGET_MICROBLAZE)
 | |
| #elif defined(TARGET_MIPS)
 | |
| #elif defined(TARGET_MOXIE)
 | |
| #elif defined(TARGET_OPENRISC)
 | |
| #elif defined(TARGET_SH4)
 | |
| #elif defined(TARGET_CRIS)
 | |
| #elif defined(TARGET_S390X)
 | |
| #elif defined(TARGET_XTENSA)
 | |
|     /* XXXXX */
 | |
| #else
 | |
| #error unsupported target CPU
 | |
| #endif
 | |
|     env->exception_index = -1;
 | |
| 
 | |
|     /* prepare setjmp context for exception handling */
 | |
|     for(;;) {
 | |
|         if (sigsetjmp(env->jmp_env, 0) == 0) {
 | |
|             /* if an exception is pending, we execute it here */
 | |
|             if (env->exception_index >= 0) {
 | |
|                 if (env->exception_index >= EXCP_INTERRUPT) {
 | |
|                     /* exit request from the cpu execution loop */
 | |
|                     ret = env->exception_index;
 | |
|                     if (ret == EXCP_DEBUG) {
 | |
|                         cpu_handle_debug_exception(env);
 | |
|                     }
 | |
|                     break;
 | |
|                 } else {
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|                     /* if user mode only, we simulate a fake exception
 | |
|                        which will be handled outside the cpu execution
 | |
|                        loop */
 | |
| #if defined(TARGET_I386)
 | |
|                     cc->do_interrupt(cpu);
 | |
| #endif
 | |
|                     ret = env->exception_index;
 | |
|                     break;
 | |
| #else
 | |
|                     cc->do_interrupt(cpu);
 | |
|                     env->exception_index = -1;
 | |
| #endif
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             next_tb = 0; /* force lookup of first TB */
 | |
|             for(;;) {
 | |
|                 interrupt_request = cpu->interrupt_request;
 | |
|                 if (unlikely(interrupt_request)) {
 | |
|                     if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
 | |
|                         /* Mask out external interrupts for this step. */
 | |
|                         interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
 | |
|                     }
 | |
|                     if (interrupt_request & CPU_INTERRUPT_DEBUG) {
 | |
|                         cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
 | |
|                         env->exception_index = EXCP_DEBUG;
 | |
|                         cpu_loop_exit(env);
 | |
|                     }
 | |
| #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
 | |
|     defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
 | |
|     defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
 | |
|                     if (interrupt_request & CPU_INTERRUPT_HALT) {
 | |
|                         cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
 | |
|                         cpu->halted = 1;
 | |
|                         env->exception_index = EXCP_HLT;
 | |
|                         cpu_loop_exit(env);
 | |
|                     }
 | |
| #endif
 | |
| #if defined(TARGET_I386)
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|                     if (interrupt_request & CPU_INTERRUPT_POLL) {
 | |
|                         cpu->interrupt_request &= ~CPU_INTERRUPT_POLL;
 | |
|                         apic_poll_irq(x86_cpu->apic_state);
 | |
|                     }
 | |
| #endif
 | |
|                     if (interrupt_request & CPU_INTERRUPT_INIT) {
 | |
|                             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT,
 | |
|                                                           0);
 | |
|                             do_cpu_init(x86_cpu);
 | |
|                             env->exception_index = EXCP_HALTED;
 | |
|                             cpu_loop_exit(env);
 | |
|                     } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
 | |
|                             do_cpu_sipi(x86_cpu);
 | |
|                     } else if (env->hflags2 & HF2_GIF_MASK) {
 | |
|                         if ((interrupt_request & CPU_INTERRUPT_SMI) &&
 | |
|                             !(env->hflags & HF_SMM_MASK)) {
 | |
|                             cpu_svm_check_intercept_param(env, SVM_EXIT_SMI,
 | |
|                                                           0);
 | |
|                             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
 | |
|                             do_smm_enter(x86_cpu);
 | |
|                             next_tb = 0;
 | |
|                         } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
 | |
|                                    !(env->hflags2 & HF2_NMI_MASK)) {
 | |
|                             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
 | |
|                             env->hflags2 |= HF2_NMI_MASK;
 | |
|                             do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
 | |
|                             next_tb = 0;
 | |
|                         } else if (interrupt_request & CPU_INTERRUPT_MCE) {
 | |
|                             cpu->interrupt_request &= ~CPU_INTERRUPT_MCE;
 | |
|                             do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
 | |
|                             next_tb = 0;
 | |
|                         } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
|                                    (((env->hflags2 & HF2_VINTR_MASK) && 
 | |
|                                      (env->hflags2 & HF2_HIF_MASK)) ||
 | |
|                                     (!(env->hflags2 & HF2_VINTR_MASK) && 
 | |
|                                      (env->eflags & IF_MASK && 
 | |
|                                       !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
 | |
|                             int intno;
 | |
|                             cpu_svm_check_intercept_param(env, SVM_EXIT_INTR,
 | |
|                                                           0);
 | |
|                             cpu->interrupt_request &= ~(CPU_INTERRUPT_HARD |
 | |
|                                                         CPU_INTERRUPT_VIRQ);
 | |
|                             intno = cpu_get_pic_interrupt(env);
 | |
|                             qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
 | |
|                             do_interrupt_x86_hardirq(env, intno, 1);
 | |
|                             /* ensure that no TB jump will be modified as
 | |
|                                the program flow was changed */
 | |
|                             next_tb = 0;
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|                         } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
 | |
|                                    (env->eflags & IF_MASK) && 
 | |
|                                    !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
 | |
|                             int intno;
 | |
|                             /* FIXME: this should respect TPR */
 | |
|                             cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR,
 | |
|                                                           0);
 | |
|                             intno = ldl_phys(cpu->as,
 | |
|                                              env->vm_vmcb
 | |
|                                              + offsetof(struct vmcb,
 | |
|                                                         control.int_vector));
 | |
|                             qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
 | |
|                             do_interrupt_x86_hardirq(env, intno, 1);
 | |
|                             cpu->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
 | |
|                             next_tb = 0;
 | |
| #endif
 | |
|                         }
 | |
|                     }
 | |
| #elif defined(TARGET_PPC)
 | |
|                     if ((interrupt_request & CPU_INTERRUPT_RESET)) {
 | |
|                         cpu_reset(cpu);
 | |
|                     }
 | |
|                     if (interrupt_request & CPU_INTERRUPT_HARD) {
 | |
|                         ppc_hw_interrupt(env);
 | |
|                         if (env->pending_interrupts == 0) {
 | |
|                             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
 | |
|                         }
 | |
|                         next_tb = 0;
 | |
|                     }
 | |
| #elif defined(TARGET_LM32)
 | |
|                     if ((interrupt_request & CPU_INTERRUPT_HARD)
 | |
|                         && (env->ie & IE_IE)) {
 | |
|                         env->exception_index = EXCP_IRQ;
 | |
|                         cc->do_interrupt(cpu);
 | |
|                         next_tb = 0;
 | |
|                     }
 | |
| #elif defined(TARGET_MICROBLAZE)
 | |
|                     if ((interrupt_request & CPU_INTERRUPT_HARD)
 | |
|                         && (env->sregs[SR_MSR] & MSR_IE)
 | |
|                         && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
 | |
|                         && !(env->iflags & (D_FLAG | IMM_FLAG))) {
 | |
|                         env->exception_index = EXCP_IRQ;
 | |
|                         cc->do_interrupt(cpu);
 | |
|                         next_tb = 0;
 | |
|                     }
 | |
| #elif defined(TARGET_MIPS)
 | |
|                     if ((interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
|                         cpu_mips_hw_interrupts_pending(env)) {
 | |
|                         /* Raise it */
 | |
|                         env->exception_index = EXCP_EXT_INTERRUPT;
 | |
|                         env->error_code = 0;
 | |
|                         cc->do_interrupt(cpu);
 | |
|                         next_tb = 0;
 | |
|                     }
 | |
| #elif defined(TARGET_OPENRISC)
 | |
|                     {
 | |
|                         int idx = -1;
 | |
|                         if ((interrupt_request & CPU_INTERRUPT_HARD)
 | |
|                             && (env->sr & SR_IEE)) {
 | |
|                             idx = EXCP_INT;
 | |
|                         }
 | |
|                         if ((interrupt_request & CPU_INTERRUPT_TIMER)
 | |
|                             && (env->sr & SR_TEE)) {
 | |
|                             idx = EXCP_TICK;
 | |
|                         }
 | |
|                         if (idx >= 0) {
 | |
|                             env->exception_index = idx;
 | |
|                             cc->do_interrupt(cpu);
 | |
|                             next_tb = 0;
 | |
|                         }
 | |
|                     }
 | |
| #elif defined(TARGET_SPARC)
 | |
|                     if (interrupt_request & CPU_INTERRUPT_HARD) {
 | |
|                         if (cpu_interrupts_enabled(env) &&
 | |
|                             env->interrupt_index > 0) {
 | |
|                             int pil = env->interrupt_index & 0xf;
 | |
|                             int type = env->interrupt_index & 0xf0;
 | |
| 
 | |
|                             if (((type == TT_EXTINT) &&
 | |
|                                   cpu_pil_allowed(env, pil)) ||
 | |
|                                   type != TT_EXTINT) {
 | |
|                                 env->exception_index = env->interrupt_index;
 | |
|                                 cc->do_interrupt(cpu);
 | |
|                                 next_tb = 0;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
| #elif defined(TARGET_ARM)
 | |
|                     if (interrupt_request & CPU_INTERRUPT_FIQ
 | |
|                         && !(env->daif & PSTATE_F)) {
 | |
|                         env->exception_index = EXCP_FIQ;
 | |
|                         cc->do_interrupt(cpu);
 | |
|                         next_tb = 0;
 | |
|                     }
 | |
|                     /* ARMv7-M interrupt return works by loading a magic value
 | |
|                        into the PC.  On real hardware the load causes the
 | |
|                        return to occur.  The qemu implementation performs the
 | |
|                        jump normally, then does the exception return when the
 | |
|                        CPU tries to execute code at the magic address.
 | |
|                        This will cause the magic PC value to be pushed to
 | |
|                        the stack if an interrupt occurred at the wrong time.
 | |
|                        We avoid this by disabling interrupts when
 | |
|                        pc contains a magic address.  */
 | |
|                     if (interrupt_request & CPU_INTERRUPT_HARD
 | |
|                         && ((IS_M(env) && env->regs[15] < 0xfffffff0)
 | |
|                             || !(env->daif & PSTATE_I))) {
 | |
|                         env->exception_index = EXCP_IRQ;
 | |
|                         cc->do_interrupt(cpu);
 | |
|                         next_tb = 0;
 | |
|                     }
 | |
| #elif defined(TARGET_UNICORE32)
 | |
|                     if (interrupt_request & CPU_INTERRUPT_HARD
 | |
|                         && !(env->uncached_asr & ASR_I)) {
 | |
|                         env->exception_index = UC32_EXCP_INTR;
 | |
|                         cc->do_interrupt(cpu);
 | |
|                         next_tb = 0;
 | |
|                     }
 | |
| #elif defined(TARGET_SH4)
 | |
|                     if (interrupt_request & CPU_INTERRUPT_HARD) {
 | |
|                         cc->do_interrupt(cpu);
 | |
|                         next_tb = 0;
 | |
|                     }
 | |
| #elif defined(TARGET_ALPHA)
 | |
|                     {
 | |
|                         int idx = -1;
 | |
|                         /* ??? This hard-codes the OSF/1 interrupt levels.  */
 | |
|                         switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
 | |
|                         case 0 ... 3:
 | |
|                             if (interrupt_request & CPU_INTERRUPT_HARD) {
 | |
|                                 idx = EXCP_DEV_INTERRUPT;
 | |
|                             }
 | |
|                             /* FALLTHRU */
 | |
|                         case 4:
 | |
|                             if (interrupt_request & CPU_INTERRUPT_TIMER) {
 | |
|                                 idx = EXCP_CLK_INTERRUPT;
 | |
|                             }
 | |
|                             /* FALLTHRU */
 | |
|                         case 5:
 | |
|                             if (interrupt_request & CPU_INTERRUPT_SMP) {
 | |
|                                 idx = EXCP_SMP_INTERRUPT;
 | |
|                             }
 | |
|                             /* FALLTHRU */
 | |
|                         case 6:
 | |
|                             if (interrupt_request & CPU_INTERRUPT_MCHK) {
 | |
|                                 idx = EXCP_MCHK;
 | |
|                             }
 | |
|                         }
 | |
|                         if (idx >= 0) {
 | |
|                             env->exception_index = idx;
 | |
|                             env->error_code = 0;
 | |
|                             cc->do_interrupt(cpu);
 | |
|                             next_tb = 0;
 | |
|                         }
 | |
|                     }
 | |
| #elif defined(TARGET_CRIS)
 | |
|                     if (interrupt_request & CPU_INTERRUPT_HARD
 | |
|                         && (env->pregs[PR_CCS] & I_FLAG)
 | |
|                         && !env->locked_irq) {
 | |
|                         env->exception_index = EXCP_IRQ;
 | |
|                         cc->do_interrupt(cpu);
 | |
|                         next_tb = 0;
 | |
|                     }
 | |
|                     if (interrupt_request & CPU_INTERRUPT_NMI) {
 | |
|                         unsigned int m_flag_archval;
 | |
|                         if (env->pregs[PR_VR] < 32) {
 | |
|                             m_flag_archval = M_FLAG_V10;
 | |
|                         } else {
 | |
|                             m_flag_archval = M_FLAG_V32;
 | |
|                         }
 | |
|                         if ((env->pregs[PR_CCS] & m_flag_archval)) {
 | |
|                             env->exception_index = EXCP_NMI;
 | |
|                             cc->do_interrupt(cpu);
 | |
|                             next_tb = 0;
 | |
|                         }
 | |
|                     }
 | |
| #elif defined(TARGET_M68K)
 | |
|                     if (interrupt_request & CPU_INTERRUPT_HARD
 | |
|                         && ((env->sr & SR_I) >> SR_I_SHIFT)
 | |
|                             < env->pending_level) {
 | |
|                         /* Real hardware gets the interrupt vector via an
 | |
|                            IACK cycle at this point.  Current emulated
 | |
|                            hardware doesn't rely on this, so we
 | |
|                            provide/save the vector when the interrupt is
 | |
|                            first signalled.  */
 | |
|                         env->exception_index = env->pending_vector;
 | |
|                         do_interrupt_m68k_hardirq(env);
 | |
|                         next_tb = 0;
 | |
|                     }
 | |
| #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
 | |
|                     if ((interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
|                         (env->psw.mask & PSW_MASK_EXT)) {
 | |
|                         cc->do_interrupt(cpu);
 | |
|                         next_tb = 0;
 | |
|                     }
 | |
| #elif defined(TARGET_XTENSA)
 | |
|                     if (interrupt_request & CPU_INTERRUPT_HARD) {
 | |
|                         env->exception_index = EXC_IRQ;
 | |
|                         cc->do_interrupt(cpu);
 | |
|                         next_tb = 0;
 | |
|                     }
 | |
| #endif
 | |
|                    /* Don't use the cached interrupt_request value,
 | |
|                       do_interrupt may have updated the EXITTB flag. */
 | |
|                     if (cpu->interrupt_request & CPU_INTERRUPT_EXITTB) {
 | |
|                         cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
 | |
|                         /* ensure that no TB jump will be modified as
 | |
|                            the program flow was changed */
 | |
|                         next_tb = 0;
 | |
|                     }
 | |
|                 }
 | |
|                 if (unlikely(cpu->exit_request)) {
 | |
|                     cpu->exit_request = 0;
 | |
|                     env->exception_index = EXCP_INTERRUPT;
 | |
|                     cpu_loop_exit(env);
 | |
|                 }
 | |
|                 spin_lock(&tcg_ctx.tb_ctx.tb_lock);
 | |
|                 tb = tb_find_fast(env);
 | |
|                 /* Note: we do it here to avoid a gcc bug on Mac OS X when
 | |
|                    doing it in tb_find_slow */
 | |
|                 if (tcg_ctx.tb_ctx.tb_invalidated_flag) {
 | |
|                     /* as some TB could have been invalidated because
 | |
|                        of memory exceptions while generating the code, we
 | |
|                        must recompute the hash index here */
 | |
|                     next_tb = 0;
 | |
|                     tcg_ctx.tb_ctx.tb_invalidated_flag = 0;
 | |
|                 }
 | |
|                 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
 | |
|                     qemu_log("Trace %p [" TARGET_FMT_lx "] %s\n",
 | |
|                              tb->tc_ptr, tb->pc, lookup_symbol(tb->pc));
 | |
|                 }
 | |
|                 /* see if we can patch the calling TB. When the TB
 | |
|                    spans two pages, we cannot safely do a direct
 | |
|                    jump. */
 | |
|                 if (next_tb != 0 && tb->page_addr[1] == -1) {
 | |
|                     tb_add_jump((TranslationBlock *)(next_tb & ~TB_EXIT_MASK),
 | |
|                                 next_tb & TB_EXIT_MASK, tb);
 | |
|                 }
 | |
|                 spin_unlock(&tcg_ctx.tb_ctx.tb_lock);
 | |
| 
 | |
|                 /* cpu_interrupt might be called while translating the
 | |
|                    TB, but before it is linked into a potentially
 | |
|                    infinite loop and becomes env->current_tb. Avoid
 | |
|                    starting execution if there is a pending interrupt. */
 | |
|                 cpu->current_tb = tb;
 | |
|                 barrier();
 | |
|                 if (likely(!cpu->exit_request)) {
 | |
|                     tc_ptr = tb->tc_ptr;
 | |
|                     /* execute the generated code */
 | |
|                     next_tb = cpu_tb_exec(cpu, tc_ptr);
 | |
|                     switch (next_tb & TB_EXIT_MASK) {
 | |
|                     case TB_EXIT_REQUESTED:
 | |
|                         /* Something asked us to stop executing
 | |
|                          * chained TBs; just continue round the main
 | |
|                          * loop. Whatever requested the exit will also
 | |
|                          * have set something else (eg exit_request or
 | |
|                          * interrupt_request) which we will handle
 | |
|                          * next time around the loop.
 | |
|                          */
 | |
|                         tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK);
 | |
|                         next_tb = 0;
 | |
|                         break;
 | |
|                     case TB_EXIT_ICOUNT_EXPIRED:
 | |
|                     {
 | |
|                         /* Instruction counter expired.  */
 | |
|                         int insns_left;
 | |
|                         tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK);
 | |
|                         insns_left = env->icount_decr.u32;
 | |
|                         if (env->icount_extra && insns_left >= 0) {
 | |
|                             /* Refill decrementer and continue execution.  */
 | |
|                             env->icount_extra += insns_left;
 | |
|                             if (env->icount_extra > 0xffff) {
 | |
|                                 insns_left = 0xffff;
 | |
|                             } else {
 | |
|                                 insns_left = env->icount_extra;
 | |
|                             }
 | |
|                             env->icount_extra -= insns_left;
 | |
|                             env->icount_decr.u16.low = insns_left;
 | |
|                         } else {
 | |
|                             if (insns_left > 0) {
 | |
|                                 /* Execute remaining instructions.  */
 | |
|                                 cpu_exec_nocache(env, insns_left, tb);
 | |
|                             }
 | |
|                             env->exception_index = EXCP_INTERRUPT;
 | |
|                             next_tb = 0;
 | |
|                             cpu_loop_exit(env);
 | |
|                         }
 | |
|                         break;
 | |
|                     }
 | |
|                     default:
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 cpu->current_tb = NULL;
 | |
|                 /* reset soft MMU for next block (it can currently
 | |
|                    only be set by a memory fault) */
 | |
|             } /* for(;;) */
 | |
|         } else {
 | |
|             /* Reload env after longjmp - the compiler may have smashed all
 | |
|              * local variables as longjmp is marked 'noreturn'. */
 | |
|             cpu = current_cpu;
 | |
|             env = cpu->env_ptr;
 | |
| #if !(defined(CONFIG_USER_ONLY) && \
 | |
|       (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X)))
 | |
|             cc = CPU_GET_CLASS(cpu);
 | |
| #endif
 | |
| #ifdef TARGET_I386
 | |
|             x86_cpu = X86_CPU(cpu);
 | |
| #endif
 | |
|         }
 | |
|     } /* for(;;) */
 | |
| 
 | |
| 
 | |
| #if defined(TARGET_I386)
 | |
|     /* restore flags in standard format */
 | |
|     env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
 | |
|         | (env->df & DF_MASK);
 | |
| #elif defined(TARGET_ARM)
 | |
|     /* XXX: Save/restore host fpu exception state?.  */
 | |
| #elif defined(TARGET_UNICORE32)
 | |
| #elif defined(TARGET_SPARC)
 | |
| #elif defined(TARGET_PPC)
 | |
| #elif defined(TARGET_LM32)
 | |
| #elif defined(TARGET_M68K)
 | |
|     cpu_m68k_flush_flags(env, env->cc_op);
 | |
|     env->cc_op = CC_OP_FLAGS;
 | |
|     env->sr = (env->sr & 0xffe0)
 | |
|               | env->cc_dest | (env->cc_x << 4);
 | |
| #elif defined(TARGET_MICROBLAZE)
 | |
| #elif defined(TARGET_MIPS)
 | |
| #elif defined(TARGET_MOXIE)
 | |
| #elif defined(TARGET_OPENRISC)
 | |
| #elif defined(TARGET_SH4)
 | |
| #elif defined(TARGET_ALPHA)
 | |
| #elif defined(TARGET_CRIS)
 | |
| #elif defined(TARGET_S390X)
 | |
| #elif defined(TARGET_XTENSA)
 | |
|     /* XXXXX */
 | |
| #else
 | |
| #error unsupported target CPU
 | |
| #endif
 | |
| 
 | |
|     /* fail safe : never use current_cpu outside cpu_exec() */
 | |
|     current_cpu = NULL;
 | |
|     return ret;
 | |
| }
 |