1807 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1807 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
| #include "exec.h"
 | |
| #include "host-utils.h"
 | |
| 
 | |
| //#define DEBUG_PCALL
 | |
| //#define DEBUG_MMU
 | |
| //#define DEBUG_MXCC
 | |
| //#define DEBUG_UNALIGNED
 | |
| //#define DEBUG_UNASSIGNED
 | |
| 
 | |
| #ifdef DEBUG_MMU
 | |
| #define DPRINTF_MMU(fmt, args...) \
 | |
| do { printf("MMU: " fmt , ##args); } while (0)
 | |
| #else
 | |
| #define DPRINTF_MMU(fmt, args...)
 | |
| #endif
 | |
| 
 | |
| #ifdef DEBUG_MXCC
 | |
| #define DPRINTF_MXCC(fmt, args...) \
 | |
| do { printf("MXCC: " fmt , ##args); } while (0)
 | |
| #else
 | |
| #define DPRINTF_MXCC(fmt, args...)
 | |
| #endif
 | |
| 
 | |
| void raise_exception(int tt)
 | |
| {
 | |
|     env->exception_index = tt;
 | |
|     cpu_loop_exit();
 | |
| }
 | |
| 
 | |
| void check_ieee_exceptions()
 | |
| {
 | |
|      T0 = get_float_exception_flags(&env->fp_status);
 | |
|      if (T0)
 | |
|      {
 | |
|         /* Copy IEEE 754 flags into FSR */
 | |
|         if (T0 & float_flag_invalid)
 | |
|             env->fsr |= FSR_NVC;
 | |
|         if (T0 & float_flag_overflow)
 | |
|             env->fsr |= FSR_OFC;
 | |
|         if (T0 & float_flag_underflow)
 | |
|             env->fsr |= FSR_UFC;
 | |
|         if (T0 & float_flag_divbyzero)
 | |
|             env->fsr |= FSR_DZC;
 | |
|         if (T0 & float_flag_inexact)
 | |
|             env->fsr |= FSR_NXC;
 | |
| 
 | |
|         if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
 | |
|         {
 | |
|             /* Unmasked exception, generate a trap */
 | |
|             env->fsr |= FSR_FTT_IEEE_EXCP;
 | |
|             raise_exception(TT_FP_EXCP);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             /* Accumulate exceptions */
 | |
|             env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
 | |
|         }
 | |
|      }
 | |
| }
 | |
| 
 | |
| #ifdef USE_INT_TO_FLOAT_HELPERS
 | |
| void do_fitos(void)
 | |
| {
 | |
|     set_float_exception_flags(0, &env->fp_status);
 | |
|     FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
 | |
|     check_ieee_exceptions();
 | |
| }
 | |
| 
 | |
| void do_fitod(void)
 | |
| {
 | |
|     DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
 | |
| }
 | |
| #ifdef TARGET_SPARC64
 | |
| void do_fxtos(void)
 | |
| {
 | |
|     set_float_exception_flags(0, &env->fp_status);
 | |
|     FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
 | |
|     check_ieee_exceptions();
 | |
| }
 | |
| 
 | |
| void do_fxtod(void)
 | |
| {
 | |
|     set_float_exception_flags(0, &env->fp_status);
 | |
|     DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
 | |
|     check_ieee_exceptions();
 | |
| }
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| void do_fabss(void)
 | |
| {
 | |
|     FT0 = float32_abs(FT1);
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_SPARC64
 | |
| void do_fabsd(void)
 | |
| {
 | |
|     DT0 = float64_abs(DT1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void do_fsqrts(void)
 | |
| {
 | |
|     set_float_exception_flags(0, &env->fp_status);
 | |
|     FT0 = float32_sqrt(FT1, &env->fp_status);
 | |
|     check_ieee_exceptions();
 | |
| }
 | |
| 
 | |
| void do_fsqrtd(void)
 | |
| {
 | |
|     set_float_exception_flags(0, &env->fp_status);
 | |
|     DT0 = float64_sqrt(DT1, &env->fp_status);
 | |
|     check_ieee_exceptions();
 | |
| }
 | |
| 
 | |
| #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
 | |
|     void glue(do_, name) (void)                                         \
 | |
|     {                                                                   \
 | |
|         env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
 | |
|         switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
 | |
|         case float_relation_unordered:                                  \
 | |
|             T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
 | |
|             if ((env->fsr & FSR_NVM) || TRAP) {                         \
 | |
|                 env->fsr |= T0;                                         \
 | |
|                 env->fsr |= FSR_NVC;                                    \
 | |
|                 env->fsr |= FSR_FTT_IEEE_EXCP;                          \
 | |
|                 raise_exception(TT_FP_EXCP);                            \
 | |
|             } else {                                                    \
 | |
|                 env->fsr |= FSR_NVA;                                    \
 | |
|             }                                                           \
 | |
|             break;                                                      \
 | |
|         case float_relation_less:                                       \
 | |
|             T0 = FSR_FCC0 << FS;                                        \
 | |
|             break;                                                      \
 | |
|         case float_relation_greater:                                    \
 | |
|             T0 = FSR_FCC1 << FS;                                        \
 | |
|             break;                                                      \
 | |
|         default:                                                        \
 | |
|             T0 = 0;                                                     \
 | |
|             break;                                                      \
 | |
|         }                                                               \
 | |
|         env->fsr |= T0;                                                 \
 | |
|     }
 | |
| 
 | |
| GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
 | |
| GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
 | |
| 
 | |
| GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
 | |
| GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
 | |
| 
 | |
| #ifdef TARGET_SPARC64
 | |
| GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
 | |
| GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
 | |
| 
 | |
| GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
 | |
| GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
 | |
| 
 | |
| GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
 | |
| GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
 | |
| 
 | |
| GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
 | |
| GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
 | |
| 
 | |
| GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
 | |
| GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
 | |
| 
 | |
| GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
 | |
| GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
 | |
| #endif
 | |
| 
 | |
| #ifndef TARGET_SPARC64
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| 
 | |
| #ifdef DEBUG_MXCC
 | |
| static void dump_mxcc(CPUState *env)
 | |
| {
 | |
|     printf("mxccdata: %016llx %016llx %016llx %016llx\n",
 | |
|         env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]);
 | |
|     printf("mxccregs: %016llx %016llx %016llx %016llx\n"
 | |
|            "          %016llx %016llx %016llx %016llx\n",
 | |
|         env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3],
 | |
|         env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void helper_ld_asi(int asi, int size, int sign)
 | |
| {
 | |
|     uint32_t ret = 0;
 | |
|     uint64_t tmp;
 | |
| #ifdef DEBUG_MXCC
 | |
|     uint32_t last_T0 = T0;
 | |
| #endif
 | |
| 
 | |
|     switch (asi) {
 | |
|     case 2: /* SuperSparc MXCC registers */
 | |
|         switch (T0) {
 | |
|         case 0x01c00a00: /* MXCC control register */
 | |
|             if (size == 8) {
 | |
|                 ret = env->mxccregs[3];
 | |
|                 T0 = env->mxccregs[3] >> 32;
 | |
|             } else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
 | |
|             break;
 | |
|         case 0x01c00a04: /* MXCC control register */
 | |
|             if (size == 4)
 | |
|                 ret = env->mxccregs[3];
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
 | |
|             break;
 | |
|         case 0x01c00c00: /* Module reset register */
 | |
|             if (size == 8) {
 | |
|                 ret = env->mxccregs[5] >> 32;
 | |
|                 T0 = env->mxccregs[5];
 | |
|                 // should we do something here?
 | |
|             } else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
 | |
|             break;
 | |
|         case 0x01c00f00: /* MBus port address register */
 | |
|             if (size == 8) {
 | |
|                 ret = env->mxccregs[7];
 | |
|                 T0 = env->mxccregs[7] >> 32;
 | |
|             } else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
 | |
|             break;
 | |
|         default:
 | |
|             DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
 | |
|             break;
 | |
|         }
 | |
|         DPRINTF_MXCC("asi = %d, size = %d, sign = %d, T0 = %08x -> ret = %08x,"
 | |
|                      "T0 = %08x\n", asi, size, sign, last_T0, ret, T0);
 | |
| #ifdef DEBUG_MXCC
 | |
|         dump_mxcc(env);
 | |
| #endif
 | |
|         break;
 | |
|     case 3: /* MMU probe */
 | |
|         {
 | |
|             int mmulev;
 | |
| 
 | |
|             mmulev = (T0 >> 8) & 15;
 | |
|             if (mmulev > 4)
 | |
|                 ret = 0;
 | |
|             else {
 | |
|                 ret = mmu_probe(env, T0, mmulev);
 | |
|                 //bswap32s(&ret);
 | |
|             }
 | |
|             DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
 | |
|         }
 | |
|         break;
 | |
|     case 4: /* read MMU regs */
 | |
|         {
 | |
|             int reg = (T0 >> 8) & 0xf;
 | |
| 
 | |
|             ret = env->mmuregs[reg];
 | |
|             if (reg == 3) /* Fault status cleared on read */
 | |
|                 env->mmuregs[reg] = 0;
 | |
|             DPRINTF_MMU("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
 | |
|         }
 | |
|         break;
 | |
|     case 9: /* Supervisor code access */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = ldub_code(T0);
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = lduw_code(T0 & ~1);
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             ret = ldl_code(T0 & ~3);
 | |
|             break;
 | |
|         case 8:
 | |
|             tmp = ldq_code(T0 & ~7);
 | |
|             ret = tmp >> 32;
 | |
|             T0 = tmp;
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case 0xa: /* User data access */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = ldub_user(T0);
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = lduw_user(T0 & ~1);
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             ret = ldl_user(T0 & ~3);
 | |
|             break;
 | |
|         case 8:
 | |
|             tmp = ldq_user(T0 & ~7);
 | |
|             ret = tmp >> 32;
 | |
|             T0 = tmp;
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case 0xb: /* Supervisor data access */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = ldub_kernel(T0);
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = lduw_kernel(T0 & ~1);
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             ret = ldl_kernel(T0 & ~3);
 | |
|             break;
 | |
|         case 8:
 | |
|             tmp = ldq_kernel(T0 & ~7);
 | |
|             ret = tmp >> 32;
 | |
|             T0 = tmp;
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case 0xc: /* I-cache tag */
 | |
|     case 0xd: /* I-cache data */
 | |
|     case 0xe: /* D-cache tag */
 | |
|     case 0xf: /* D-cache data */
 | |
|         break;
 | |
|     case 0x20: /* MMU passthrough */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = ldub_phys(T0);
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = lduw_phys(T0 & ~1);
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             ret = ldl_phys(T0 & ~3);
 | |
|             break;
 | |
|         case 8:
 | |
|             tmp = ldq_phys(T0 & ~7);
 | |
|             ret = tmp >> 32;
 | |
|             T0 = tmp;
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
 | |
|     case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = ldub_phys((target_phys_addr_t)T0
 | |
|                             | ((target_phys_addr_t)(asi & 0xf) << 32));
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
 | |
|                             | ((target_phys_addr_t)(asi & 0xf) << 32));
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
 | |
|                            | ((target_phys_addr_t)(asi & 0xf) << 32));
 | |
|             break;
 | |
|         case 8:
 | |
|             tmp = ldq_phys((target_phys_addr_t)(T0 & ~7)
 | |
|                            | ((target_phys_addr_t)(asi & 0xf) << 32));
 | |
|             ret = tmp >> 32;
 | |
|             T0 = tmp;
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
 | |
|     default:
 | |
|         do_unassigned_access(T0, 0, 0, 1);
 | |
|         ret = 0;
 | |
|         break;
 | |
|     }
 | |
|     if (sign) {
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             T1 = (int8_t) ret;
 | |
|             break;
 | |
|         case 2:
 | |
|             T1 = (int16_t) ret;
 | |
|             break;
 | |
|         default:
 | |
|             T1 = ret;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|         T1 = ret;
 | |
| }
 | |
| 
 | |
| void helper_st_asi(int asi, int size)
 | |
| {
 | |
|     switch(asi) {
 | |
|     case 2: /* SuperSparc MXCC registers */
 | |
|         switch (T0) {
 | |
|         case 0x01c00000: /* MXCC stream data register 0 */
 | |
|             if (size == 8)
 | |
|                 env->mxccdata[0] = ((uint64_t)T1 << 32) | T2;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
 | |
|             break;
 | |
|         case 0x01c00008: /* MXCC stream data register 1 */
 | |
|             if (size == 8)
 | |
|                 env->mxccdata[1] = ((uint64_t)T1 << 32) | T2;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
 | |
|             break;
 | |
|         case 0x01c00010: /* MXCC stream data register 2 */
 | |
|             if (size == 8)
 | |
|                 env->mxccdata[2] = ((uint64_t)T1 << 32) | T2;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
 | |
|             break;
 | |
|         case 0x01c00018: /* MXCC stream data register 3 */
 | |
|             if (size == 8)
 | |
|                 env->mxccdata[3] = ((uint64_t)T1 << 32) | T2;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
 | |
|             break;
 | |
|         case 0x01c00100: /* MXCC stream source */
 | |
|             if (size == 8)
 | |
|                 env->mxccregs[0] = ((uint64_t)T1 << 32) | T2;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
 | |
|             env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  0);
 | |
|             env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  8);
 | |
|             env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16);
 | |
|             env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24);
 | |
|             break;
 | |
|         case 0x01c00200: /* MXCC stream destination */
 | |
|             if (size == 8)
 | |
|                 env->mxccregs[1] = ((uint64_t)T1 << 32) | T2;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
 | |
|             stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0, env->mxccdata[0]);
 | |
|             stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8, env->mxccdata[1]);
 | |
|             stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]);
 | |
|             stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]);
 | |
|             break;
 | |
|         case 0x01c00a00: /* MXCC control register */
 | |
|             if (size == 8)
 | |
|                 env->mxccregs[3] = ((uint64_t)T1 << 32) | T2;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
 | |
|             break;
 | |
|         case 0x01c00a04: /* MXCC control register */
 | |
|             if (size == 4)
 | |
|                 env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL) | T1;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
 | |
|             break;
 | |
|         case 0x01c00e00: /* MXCC error register  */
 | |
|             // writing a 1 bit clears the error
 | |
|             if (size == 8)
 | |
|                 env->mxccregs[6] &= ~(((uint64_t)T1 << 32) | T2);
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
 | |
|             break;
 | |
|         case 0x01c00f00: /* MBus port address register */
 | |
|             if (size == 8)
 | |
|                 env->mxccregs[7] = ((uint64_t)T1 << 32) | T2;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
 | |
|             break;
 | |
|         default:
 | |
|             DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
 | |
|             break;
 | |
|         }
 | |
|         DPRINTF_MXCC("asi = %d, size = %d, T0 = %08x, T1 = %08x\n", asi, size, T0, T1);
 | |
| #ifdef DEBUG_MXCC
 | |
|         dump_mxcc(env);
 | |
| #endif
 | |
|         break;
 | |
|     case 3: /* MMU flush */
 | |
|         {
 | |
|             int mmulev;
 | |
| 
 | |
|             mmulev = (T0 >> 8) & 15;
 | |
|             DPRINTF_MMU("mmu flush level %d\n", mmulev);
 | |
|             switch (mmulev) {
 | |
|             case 0: // flush page
 | |
|                 tlb_flush_page(env, T0 & 0xfffff000);
 | |
|                 break;
 | |
|             case 1: // flush segment (256k)
 | |
|             case 2: // flush region (16M)
 | |
|             case 3: // flush context (4G)
 | |
|             case 4: // flush entire
 | |
|                 tlb_flush(env, 1);
 | |
|                 break;
 | |
|             default:
 | |
|                 break;
 | |
|             }
 | |
| #ifdef DEBUG_MMU
 | |
|             dump_mmu(env);
 | |
| #endif
 | |
|             return;
 | |
|         }
 | |
|     case 4: /* write MMU regs */
 | |
|         {
 | |
|             int reg = (T0 >> 8) & 0xf;
 | |
|             uint32_t oldreg;
 | |
| 
 | |
|             oldreg = env->mmuregs[reg];
 | |
|             switch(reg) {
 | |
|             case 0:
 | |
|                 env->mmuregs[reg] &= ~(MMU_E | MMU_NF | env->mmu_bm);
 | |
|                 env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF | env->mmu_bm);
 | |
|                 // Mappings generated during no-fault mode or MMU
 | |
|                 // disabled mode are invalid in normal mode
 | |
|                 if (oldreg != env->mmuregs[reg])
 | |
|                     tlb_flush(env, 1);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 env->mmuregs[reg] = T1;
 | |
|                 if (oldreg != env->mmuregs[reg]) {
 | |
|                     /* we flush when the MMU context changes because
 | |
|                        QEMU has no MMU context support */
 | |
|                     tlb_flush(env, 1);
 | |
|                 }
 | |
|                 break;
 | |
|             case 3:
 | |
|             case 4:
 | |
|                 break;
 | |
|             default:
 | |
|                 env->mmuregs[reg] = T1;
 | |
|                 break;
 | |
|             }
 | |
|             if (oldreg != env->mmuregs[reg]) {
 | |
|                 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
 | |
|             }
 | |
| #ifdef DEBUG_MMU
 | |
|             dump_mmu(env);
 | |
| #endif
 | |
|             return;
 | |
|         }
 | |
|     case 0xa: /* User data access */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             stb_user(T0, T1);
 | |
|             break;
 | |
|         case 2:
 | |
|             stw_user(T0 & ~1, T1);
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             stl_user(T0 & ~3, T1);
 | |
|             break;
 | |
|         case 8:
 | |
|             stq_user(T0 & ~7, ((uint64_t)T1 << 32) | T2);
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case 0xb: /* Supervisor data access */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             stb_kernel(T0, T1);
 | |
|             break;
 | |
|         case 2:
 | |
|             stw_kernel(T0 & ~1, T1);
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             stl_kernel(T0 & ~3, T1);
 | |
|             break;
 | |
|         case 8:
 | |
|             stq_kernel(T0 & ~7, ((uint64_t)T1 << 32) | T2);
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case 0xc: /* I-cache tag */
 | |
|     case 0xd: /* I-cache data */
 | |
|     case 0xe: /* D-cache tag */
 | |
|     case 0xf: /* D-cache data */
 | |
|     case 0x10: /* I/D-cache flush page */
 | |
|     case 0x11: /* I/D-cache flush segment */
 | |
|     case 0x12: /* I/D-cache flush region */
 | |
|     case 0x13: /* I/D-cache flush context */
 | |
|     case 0x14: /* I/D-cache flush user */
 | |
|         break;
 | |
|     case 0x17: /* Block copy, sta access */
 | |
|         {
 | |
|             // value (T1) = src
 | |
|             // address (T0) = dst
 | |
|             // copy 32 bytes
 | |
|             unsigned int i;
 | |
|             uint32_t src = T1 & ~3, dst = T0 & ~3, temp;
 | |
| 
 | |
|             for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
 | |
|                 temp = ldl_kernel(src);
 | |
|                 stl_kernel(dst, temp);
 | |
|             }
 | |
|         }
 | |
|         return;
 | |
|     case 0x1f: /* Block fill, stda access */
 | |
|         {
 | |
|             // value (T1, T2)
 | |
|             // address (T0) = dst
 | |
|             // fill 32 bytes
 | |
|             unsigned int i;
 | |
|             uint32_t dst = T0 & 7;
 | |
|             uint64_t val;
 | |
| 
 | |
|             val = (((uint64_t)T1) << 32) | T2;
 | |
| 
 | |
|             for (i = 0; i < 32; i += 8, dst += 8)
 | |
|                 stq_kernel(dst, val);
 | |
|         }
 | |
|         return;
 | |
|     case 0x20: /* MMU passthrough */
 | |
|         {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 stb_phys(T0, T1);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 stw_phys(T0 & ~1, T1);
 | |
|                 break;
 | |
|             case 4:
 | |
|             default:
 | |
|                 stl_phys(T0 & ~3, T1);
 | |
|                 break;
 | |
|             case 8:
 | |
|                 stq_phys(T0 & ~7, ((uint64_t)T1 << 32) | T2);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         return;
 | |
|     case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
 | |
|     case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
 | |
|         {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 stb_phys((target_phys_addr_t)T0
 | |
|                          | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 stw_phys((target_phys_addr_t)(T0 & ~1)
 | |
|                             | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
 | |
|                 break;
 | |
|             case 4:
 | |
|             default:
 | |
|                 stl_phys((target_phys_addr_t)(T0 & ~3)
 | |
|                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
 | |
|                 break;
 | |
|             case 8:
 | |
|                 stq_phys((target_phys_addr_t)(T0 & ~7)
 | |
|                            | ((target_phys_addr_t)(asi & 0xf) << 32),
 | |
|                          ((uint64_t)T1 << 32) | T2);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         return;
 | |
|     case 0x31: /* Ross RT620 I-cache flush */
 | |
|     case 0x36: /* I-cache flash clear */
 | |
|     case 0x37: /* D-cache flash clear */
 | |
|         break;
 | |
|     case 9: /* Supervisor code access, XXX */
 | |
|     case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
 | |
|     default:
 | |
|         do_unassigned_access(T0, 1, 0, 1);
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_USER_ONLY */
 | |
| #else /* TARGET_SPARC64 */
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| void helper_ld_asi(int asi, int size, int sign)
 | |
| {
 | |
|     uint64_t ret = 0;
 | |
| 
 | |
|     if (asi < 0x80)
 | |
|         raise_exception(TT_PRIV_ACT);
 | |
| 
 | |
|     switch (asi) {
 | |
|     case 0x80: // Primary
 | |
|     case 0x82: // Primary no-fault
 | |
|     case 0x88: // Primary LE
 | |
|     case 0x8a: // Primary no-fault LE
 | |
|         {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 ret = ldub_raw(T0);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 ret = lduw_raw(T0 & ~1);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 ret = ldl_raw(T0 & ~3);
 | |
|                 break;
 | |
|             default:
 | |
|             case 8:
 | |
|                 ret = ldq_raw(T0 & ~7);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case 0x81: // Secondary
 | |
|     case 0x83: // Secondary no-fault
 | |
|     case 0x89: // Secondary LE
 | |
|     case 0x8b: // Secondary no-fault LE
 | |
|         // XXX
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /* Convert from little endian */
 | |
|     switch (asi) {
 | |
|     case 0x88: // Primary LE
 | |
|     case 0x89: // Secondary LE
 | |
|     case 0x8a: // Primary no-fault LE
 | |
|     case 0x8b: // Secondary no-fault LE
 | |
|         switch(size) {
 | |
|         case 2:
 | |
|             ret = bswap16(ret);
 | |
|             break;
 | |
|         case 4:
 | |
|             ret = bswap32(ret);
 | |
|             break;
 | |
|         case 8:
 | |
|             ret = bswap64(ret);
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /* Convert to signed number */
 | |
|     if (sign) {
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = (int8_t) ret;
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = (int16_t) ret;
 | |
|             break;
 | |
|         case 4:
 | |
|             ret = (int32_t) ret;
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     T1 = ret;
 | |
| }
 | |
| 
 | |
| void helper_st_asi(int asi, int size)
 | |
| {
 | |
|     if (asi < 0x80)
 | |
|         raise_exception(TT_PRIV_ACT);
 | |
| 
 | |
|     /* Convert to little endian */
 | |
|     switch (asi) {
 | |
|     case 0x88: // Primary LE
 | |
|     case 0x89: // Secondary LE
 | |
|         switch(size) {
 | |
|         case 2:
 | |
|             T0 = bswap16(T0);
 | |
|             break;
 | |
|         case 4:
 | |
|             T0 = bswap32(T0);
 | |
|             break;
 | |
|         case 8:
 | |
|             T0 = bswap64(T0);
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     switch(asi) {
 | |
|     case 0x80: // Primary
 | |
|     case 0x88: // Primary LE
 | |
|         {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 stb_raw(T0, T1);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 stw_raw(T0 & ~1, T1);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 stl_raw(T0 & ~3, T1);
 | |
|                 break;
 | |
|             case 8:
 | |
|             default:
 | |
|                 stq_raw(T0 & ~7, T1);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case 0x81: // Secondary
 | |
|     case 0x89: // Secondary LE
 | |
|         // XXX
 | |
|         return;
 | |
| 
 | |
|     case 0x82: // Primary no-fault, RO
 | |
|     case 0x83: // Secondary no-fault, RO
 | |
|     case 0x8a: // Primary no-fault LE, RO
 | |
|     case 0x8b: // Secondary no-fault LE, RO
 | |
|     default:
 | |
|         do_unassigned_access(T0, 1, 0, 1);
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_USER_ONLY */
 | |
| 
 | |
| void helper_ld_asi(int asi, int size, int sign)
 | |
| {
 | |
|     uint64_t ret = 0;
 | |
| 
 | |
|     if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
 | |
|         || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
 | |
|         raise_exception(TT_PRIV_ACT);
 | |
| 
 | |
|     switch (asi) {
 | |
|     case 0x10: // As if user primary
 | |
|     case 0x18: // As if user primary LE
 | |
|     case 0x80: // Primary
 | |
|     case 0x82: // Primary no-fault
 | |
|     case 0x88: // Primary LE
 | |
|     case 0x8a: // Primary no-fault LE
 | |
|         if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
 | |
|             if (env->hpstate & HS_PRIV) {
 | |
|                 switch(size) {
 | |
|                 case 1:
 | |
|                     ret = ldub_hypv(T0);
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     ret = lduw_hypv(T0 & ~1);
 | |
|                     break;
 | |
|                 case 4:
 | |
|                     ret = ldl_hypv(T0 & ~3);
 | |
|                     break;
 | |
|                 default:
 | |
|                 case 8:
 | |
|                     ret = ldq_hypv(T0 & ~7);
 | |
|                     break;
 | |
|                 }
 | |
|             } else {
 | |
|                 switch(size) {
 | |
|                 case 1:
 | |
|                     ret = ldub_kernel(T0);
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     ret = lduw_kernel(T0 & ~1);
 | |
|                     break;
 | |
|                 case 4:
 | |
|                     ret = ldl_kernel(T0 & ~3);
 | |
|                     break;
 | |
|                 default:
 | |
|                 case 8:
 | |
|                     ret = ldq_kernel(T0 & ~7);
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 ret = ldub_user(T0);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 ret = lduw_user(T0 & ~1);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 ret = ldl_user(T0 & ~3);
 | |
|                 break;
 | |
|             default:
 | |
|             case 8:
 | |
|                 ret = ldq_user(T0 & ~7);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case 0x14: // Bypass
 | |
|     case 0x15: // Bypass, non-cacheable
 | |
|     case 0x1c: // Bypass LE
 | |
|     case 0x1d: // Bypass, non-cacheable LE
 | |
|         {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 ret = ldub_phys(T0);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 ret = lduw_phys(T0 & ~1);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 ret = ldl_phys(T0 & ~3);
 | |
|                 break;
 | |
|             default:
 | |
|             case 8:
 | |
|                 ret = ldq_phys(T0 & ~7);
 | |
|                 break;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     case 0x04: // Nucleus
 | |
|     case 0x0c: // Nucleus Little Endian (LE)
 | |
|     case 0x11: // As if user secondary
 | |
|     case 0x19: // As if user secondary LE
 | |
|     case 0x24: // Nucleus quad LDD 128 bit atomic
 | |
|     case 0x2c: // Nucleus quad LDD 128 bit atomic
 | |
|     case 0x4a: // UPA config
 | |
|     case 0x81: // Secondary
 | |
|     case 0x83: // Secondary no-fault
 | |
|     case 0x89: // Secondary LE
 | |
|     case 0x8b: // Secondary no-fault LE
 | |
|         // XXX
 | |
|         break;
 | |
|     case 0x45: // LSU
 | |
|         ret = env->lsu;
 | |
|         break;
 | |
|     case 0x50: // I-MMU regs
 | |
|         {
 | |
|             int reg = (T0 >> 3) & 0xf;
 | |
| 
 | |
|             ret = env->immuregs[reg];
 | |
|             break;
 | |
|         }
 | |
|     case 0x51: // I-MMU 8k TSB pointer
 | |
|     case 0x52: // I-MMU 64k TSB pointer
 | |
|     case 0x55: // I-MMU data access
 | |
|         // XXX
 | |
|         break;
 | |
|     case 0x56: // I-MMU tag read
 | |
|         {
 | |
|             unsigned int i;
 | |
| 
 | |
|             for (i = 0; i < 64; i++) {
 | |
|                 // Valid, ctx match, vaddr match
 | |
|                 if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
 | |
|                     env->itlb_tag[i] == T0) {
 | |
|                     ret = env->itlb_tag[i];
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     case 0x58: // D-MMU regs
 | |
|         {
 | |
|             int reg = (T0 >> 3) & 0xf;
 | |
| 
 | |
|             ret = env->dmmuregs[reg];
 | |
|             break;
 | |
|         }
 | |
|     case 0x5e: // D-MMU tag read
 | |
|         {
 | |
|             unsigned int i;
 | |
| 
 | |
|             for (i = 0; i < 64; i++) {
 | |
|                 // Valid, ctx match, vaddr match
 | |
|                 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
 | |
|                     env->dtlb_tag[i] == T0) {
 | |
|                     ret = env->dtlb_tag[i];
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     case 0x59: // D-MMU 8k TSB pointer
 | |
|     case 0x5a: // D-MMU 64k TSB pointer
 | |
|     case 0x5b: // D-MMU data pointer
 | |
|     case 0x5d: // D-MMU data access
 | |
|     case 0x48: // Interrupt dispatch, RO
 | |
|     case 0x49: // Interrupt data receive
 | |
|     case 0x7f: // Incoming interrupt vector, RO
 | |
|         // XXX
 | |
|         break;
 | |
|     case 0x54: // I-MMU data in, WO
 | |
|     case 0x57: // I-MMU demap, WO
 | |
|     case 0x5c: // D-MMU data in, WO
 | |
|     case 0x5f: // D-MMU demap, WO
 | |
|     case 0x77: // Interrupt vector, WO
 | |
|     default:
 | |
|         do_unassigned_access(T0, 0, 0, 1);
 | |
|         ret = 0;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /* Convert from little endian */
 | |
|     switch (asi) {
 | |
|     case 0x0c: // Nucleus Little Endian (LE)
 | |
|     case 0x18: // As if user primary LE
 | |
|     case 0x19: // As if user secondary LE
 | |
|     case 0x1c: // Bypass LE
 | |
|     case 0x1d: // Bypass, non-cacheable LE
 | |
|     case 0x88: // Primary LE
 | |
|     case 0x89: // Secondary LE
 | |
|     case 0x8a: // Primary no-fault LE
 | |
|     case 0x8b: // Secondary no-fault LE
 | |
|         switch(size) {
 | |
|         case 2:
 | |
|             ret = bswap16(ret);
 | |
|             break;
 | |
|         case 4:
 | |
|             ret = bswap32(ret);
 | |
|             break;
 | |
|         case 8:
 | |
|             ret = bswap64(ret);
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /* Convert to signed number */
 | |
|     if (sign) {
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = (int8_t) ret;
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = (int16_t) ret;
 | |
|             break;
 | |
|         case 4:
 | |
|             ret = (int32_t) ret;
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     T1 = ret;
 | |
| }
 | |
| 
 | |
| void helper_st_asi(int asi, int size)
 | |
| {
 | |
|     if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
 | |
|         || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
 | |
|         raise_exception(TT_PRIV_ACT);
 | |
| 
 | |
|     /* Convert to little endian */
 | |
|     switch (asi) {
 | |
|     case 0x0c: // Nucleus Little Endian (LE)
 | |
|     case 0x18: // As if user primary LE
 | |
|     case 0x19: // As if user secondary LE
 | |
|     case 0x1c: // Bypass LE
 | |
|     case 0x1d: // Bypass, non-cacheable LE
 | |
|     case 0x88: // Primary LE
 | |
|     case 0x89: // Secondary LE
 | |
|         switch(size) {
 | |
|         case 2:
 | |
|             T0 = bswap16(T0);
 | |
|             break;
 | |
|         case 4:
 | |
|             T0 = bswap32(T0);
 | |
|             break;
 | |
|         case 8:
 | |
|             T0 = bswap64(T0);
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     switch(asi) {
 | |
|     case 0x10: // As if user primary
 | |
|     case 0x18: // As if user primary LE
 | |
|     case 0x80: // Primary
 | |
|     case 0x88: // Primary LE
 | |
|         if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
 | |
|             if (env->hpstate & HS_PRIV) {
 | |
|                 switch(size) {
 | |
|                 case 1:
 | |
|                     stb_hypv(T0, T1);
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     stw_hypv(T0 & ~1, T1);
 | |
|                     break;
 | |
|                 case 4:
 | |
|                     stl_hypv(T0 & ~3, T1);
 | |
|                     break;
 | |
|                 case 8:
 | |
|                 default:
 | |
|                     stq_hypv(T0 & ~7, T1);
 | |
|                     break;
 | |
|                 }
 | |
|             } else {
 | |
|                 switch(size) {
 | |
|                 case 1:
 | |
|                     stb_kernel(T0, T1);
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     stw_kernel(T0 & ~1, T1);
 | |
|                     break;
 | |
|                 case 4:
 | |
|                     stl_kernel(T0 & ~3, T1);
 | |
|                     break;
 | |
|                 case 8:
 | |
|                 default:
 | |
|                     stq_kernel(T0 & ~7, T1);
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 stb_user(T0, T1);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 stw_user(T0 & ~1, T1);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 stl_user(T0 & ~3, T1);
 | |
|                 break;
 | |
|             case 8:
 | |
|             default:
 | |
|                 stq_user(T0 & ~7, T1);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case 0x14: // Bypass
 | |
|     case 0x15: // Bypass, non-cacheable
 | |
|     case 0x1c: // Bypass LE
 | |
|     case 0x1d: // Bypass, non-cacheable LE
 | |
|         {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 stb_phys(T0, T1);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 stw_phys(T0 & ~1, T1);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 stl_phys(T0 & ~3, T1);
 | |
|                 break;
 | |
|             case 8:
 | |
|             default:
 | |
|                 stq_phys(T0 & ~7, T1);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         return;
 | |
|     case 0x04: // Nucleus
 | |
|     case 0x0c: // Nucleus Little Endian (LE)
 | |
|     case 0x11: // As if user secondary
 | |
|     case 0x19: // As if user secondary LE
 | |
|     case 0x24: // Nucleus quad LDD 128 bit atomic
 | |
|     case 0x2c: // Nucleus quad LDD 128 bit atomic
 | |
|     case 0x4a: // UPA config
 | |
|     case 0x81: // Secondary
 | |
|     case 0x89: // Secondary LE
 | |
|         // XXX
 | |
|         return;
 | |
|     case 0x45: // LSU
 | |
|         {
 | |
|             uint64_t oldreg;
 | |
| 
 | |
|             oldreg = env->lsu;
 | |
|             env->lsu = T1 & (DMMU_E | IMMU_E);
 | |
|             // Mappings generated during D/I MMU disabled mode are
 | |
|             // invalid in normal mode
 | |
|             if (oldreg != env->lsu) {
 | |
|                 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
 | |
| #ifdef DEBUG_MMU
 | |
|                 dump_mmu(env);
 | |
| #endif
 | |
|                 tlb_flush(env, 1);
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     case 0x50: // I-MMU regs
 | |
|         {
 | |
|             int reg = (T0 >> 3) & 0xf;
 | |
|             uint64_t oldreg;
 | |
| 
 | |
|             oldreg = env->immuregs[reg];
 | |
|             switch(reg) {
 | |
|             case 0: // RO
 | |
|             case 4:
 | |
|                 return;
 | |
|             case 1: // Not in I-MMU
 | |
|             case 2:
 | |
|             case 7:
 | |
|             case 8:
 | |
|                 return;
 | |
|             case 3: // SFSR
 | |
|                 if ((T1 & 1) == 0)
 | |
|                     T1 = 0; // Clear SFSR
 | |
|                 break;
 | |
|             case 5: // TSB access
 | |
|             case 6: // Tag access
 | |
|             default:
 | |
|                 break;
 | |
|             }
 | |
|             env->immuregs[reg] = T1;
 | |
|             if (oldreg != env->immuregs[reg]) {
 | |
|                 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
 | |
|             }
 | |
| #ifdef DEBUG_MMU
 | |
|             dump_mmu(env);
 | |
| #endif
 | |
|             return;
 | |
|         }
 | |
|     case 0x54: // I-MMU data in
 | |
|         {
 | |
|             unsigned int i;
 | |
| 
 | |
|             // Try finding an invalid entry
 | |
|             for (i = 0; i < 64; i++) {
 | |
|                 if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
 | |
|                     env->itlb_tag[i] = env->immuregs[6];
 | |
|                     env->itlb_tte[i] = T1;
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|             // Try finding an unlocked entry
 | |
|             for (i = 0; i < 64; i++) {
 | |
|                 if ((env->itlb_tte[i] & 0x40) == 0) {
 | |
|                     env->itlb_tag[i] = env->immuregs[6];
 | |
|                     env->itlb_tte[i] = T1;
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|             // error state?
 | |
|             return;
 | |
|         }
 | |
|     case 0x55: // I-MMU data access
 | |
|         {
 | |
|             unsigned int i = (T0 >> 3) & 0x3f;
 | |
| 
 | |
|             env->itlb_tag[i] = env->immuregs[6];
 | |
|             env->itlb_tte[i] = T1;
 | |
|             return;
 | |
|         }
 | |
|     case 0x57: // I-MMU demap
 | |
|         // XXX
 | |
|         return;
 | |
|     case 0x58: // D-MMU regs
 | |
|         {
 | |
|             int reg = (T0 >> 3) & 0xf;
 | |
|             uint64_t oldreg;
 | |
| 
 | |
|             oldreg = env->dmmuregs[reg];
 | |
|             switch(reg) {
 | |
|             case 0: // RO
 | |
|             case 4:
 | |
|                 return;
 | |
|             case 3: // SFSR
 | |
|                 if ((T1 & 1) == 0) {
 | |
|                     T1 = 0; // Clear SFSR, Fault address
 | |
|                     env->dmmuregs[4] = 0;
 | |
|                 }
 | |
|                 env->dmmuregs[reg] = T1;
 | |
|                 break;
 | |
|             case 1: // Primary context
 | |
|             case 2: // Secondary context
 | |
|             case 5: // TSB access
 | |
|             case 6: // Tag access
 | |
|             case 7: // Virtual Watchpoint
 | |
|             case 8: // Physical Watchpoint
 | |
|             default:
 | |
|                 break;
 | |
|             }
 | |
|             env->dmmuregs[reg] = T1;
 | |
|             if (oldreg != env->dmmuregs[reg]) {
 | |
|                 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
 | |
|             }
 | |
| #ifdef DEBUG_MMU
 | |
|             dump_mmu(env);
 | |
| #endif
 | |
|             return;
 | |
|         }
 | |
|     case 0x5c: // D-MMU data in
 | |
|         {
 | |
|             unsigned int i;
 | |
| 
 | |
|             // Try finding an invalid entry
 | |
|             for (i = 0; i < 64; i++) {
 | |
|                 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
 | |
|                     env->dtlb_tag[i] = env->dmmuregs[6];
 | |
|                     env->dtlb_tte[i] = T1;
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|             // Try finding an unlocked entry
 | |
|             for (i = 0; i < 64; i++) {
 | |
|                 if ((env->dtlb_tte[i] & 0x40) == 0) {
 | |
|                     env->dtlb_tag[i] = env->dmmuregs[6];
 | |
|                     env->dtlb_tte[i] = T1;
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|             // error state?
 | |
|             return;
 | |
|         }
 | |
|     case 0x5d: // D-MMU data access
 | |
|         {
 | |
|             unsigned int i = (T0 >> 3) & 0x3f;
 | |
| 
 | |
|             env->dtlb_tag[i] = env->dmmuregs[6];
 | |
|             env->dtlb_tte[i] = T1;
 | |
|             return;
 | |
|         }
 | |
|     case 0x5f: // D-MMU demap
 | |
|     case 0x49: // Interrupt data receive
 | |
|         // XXX
 | |
|         return;
 | |
|     case 0x51: // I-MMU 8k TSB pointer, RO
 | |
|     case 0x52: // I-MMU 64k TSB pointer, RO
 | |
|     case 0x56: // I-MMU tag read, RO
 | |
|     case 0x59: // D-MMU 8k TSB pointer, RO
 | |
|     case 0x5a: // D-MMU 64k TSB pointer, RO
 | |
|     case 0x5b: // D-MMU data pointer, RO
 | |
|     case 0x5e: // D-MMU tag read, RO
 | |
|     case 0x48: // Interrupt dispatch, RO
 | |
|     case 0x7f: // Incoming interrupt vector, RO
 | |
|     case 0x82: // Primary no-fault, RO
 | |
|     case 0x83: // Secondary no-fault, RO
 | |
|     case 0x8a: // Primary no-fault LE, RO
 | |
|     case 0x8b: // Secondary no-fault LE, RO
 | |
|     default:
 | |
|         do_unassigned_access(T0, 1, 0, 1);
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| #endif /* CONFIG_USER_ONLY */
 | |
| 
 | |
| void helper_ldf_asi(int asi, int size, int rd)
 | |
| {
 | |
|     target_ulong tmp_T0 = T0, tmp_T1 = T1;
 | |
|     unsigned int i;
 | |
| 
 | |
|     switch (asi) {
 | |
|     case 0xf0: // Block load primary
 | |
|     case 0xf1: // Block load secondary
 | |
|     case 0xf8: // Block load primary LE
 | |
|     case 0xf9: // Block load secondary LE
 | |
|         if (rd & 7) {
 | |
|             raise_exception(TT_ILL_INSN);
 | |
|             return;
 | |
|         }
 | |
|         if (T0 & 0x3f) {
 | |
|             raise_exception(TT_UNALIGNED);
 | |
|             return;
 | |
|         }
 | |
|         for (i = 0; i < 16; i++) {
 | |
|             helper_ld_asi(asi & 0x8f, 4, 0);
 | |
|             *(uint32_t *)&env->fpr[rd++] = T1;
 | |
|             T0 += 4;
 | |
|         }
 | |
|         T0 = tmp_T0;
 | |
|         T1 = tmp_T1;
 | |
| 
 | |
|         return;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     helper_ld_asi(asi, size, 0);
 | |
|     switch(size) {
 | |
|     default:
 | |
|     case 4:
 | |
|         *((uint32_t *)&FT0) = T1;
 | |
|         break;
 | |
|     case 8:
 | |
|         *((int64_t *)&DT0) = T1;
 | |
|         break;
 | |
|     }
 | |
|     T1 = tmp_T1;
 | |
| }
 | |
| 
 | |
| void helper_stf_asi(int asi, int size, int rd)
 | |
| {
 | |
|     target_ulong tmp_T0 = T0, tmp_T1 = T1;
 | |
|     unsigned int i;
 | |
| 
 | |
|     switch (asi) {
 | |
|     case 0xf0: // Block store primary
 | |
|     case 0xf1: // Block store secondary
 | |
|     case 0xf8: // Block store primary LE
 | |
|     case 0xf9: // Block store secondary LE
 | |
|         if (rd & 7) {
 | |
|             raise_exception(TT_ILL_INSN);
 | |
|             return;
 | |
|         }
 | |
|         if (T0 & 0x3f) {
 | |
|             raise_exception(TT_UNALIGNED);
 | |
|             return;
 | |
|         }
 | |
|         for (i = 0; i < 16; i++) {
 | |
|             T1 = *(uint32_t *)&env->fpr[rd++];
 | |
|             helper_st_asi(asi & 0x8f, 4);
 | |
|             T0 += 4;
 | |
|         }
 | |
|         T0 = tmp_T0;
 | |
|         T1 = tmp_T1;
 | |
| 
 | |
|         return;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     switch(size) {
 | |
|     default:
 | |
|     case 4:
 | |
|         T1 = *((uint32_t *)&FT0);
 | |
|         break;
 | |
|     case 8:
 | |
|         T1 = *((int64_t *)&DT0);
 | |
|         break;
 | |
|     }
 | |
|     helper_st_asi(asi, size);
 | |
|     T1 = tmp_T1;
 | |
| }
 | |
| 
 | |
| #endif /* TARGET_SPARC64 */
 | |
| 
 | |
| #ifndef TARGET_SPARC64
 | |
| void helper_rett()
 | |
| {
 | |
|     unsigned int cwp;
 | |
| 
 | |
|     if (env->psret == 1)
 | |
|         raise_exception(TT_ILL_INSN);
 | |
| 
 | |
|     env->psret = 1;
 | |
|     cwp = (env->cwp + 1) & (NWINDOWS - 1);
 | |
|     if (env->wim & (1 << cwp)) {
 | |
|         raise_exception(TT_WIN_UNF);
 | |
|     }
 | |
|     set_cwp(cwp);
 | |
|     env->psrs = env->psrps;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void helper_ldfsr(void)
 | |
| {
 | |
|     int rnd_mode;
 | |
|     switch (env->fsr & FSR_RD_MASK) {
 | |
|     case FSR_RD_NEAREST:
 | |
|         rnd_mode = float_round_nearest_even;
 | |
|         break;
 | |
|     default:
 | |
|     case FSR_RD_ZERO:
 | |
|         rnd_mode = float_round_to_zero;
 | |
|         break;
 | |
|     case FSR_RD_POS:
 | |
|         rnd_mode = float_round_up;
 | |
|         break;
 | |
|     case FSR_RD_NEG:
 | |
|         rnd_mode = float_round_down;
 | |
|         break;
 | |
|     }
 | |
|     set_float_rounding_mode(rnd_mode, &env->fp_status);
 | |
| }
 | |
| 
 | |
| void helper_debug()
 | |
| {
 | |
|     env->exception_index = EXCP_DEBUG;
 | |
|     cpu_loop_exit();
 | |
| }
 | |
| 
 | |
| #ifndef TARGET_SPARC64
 | |
| void do_wrpsr()
 | |
| {
 | |
|     if ((T0 & PSR_CWP) >= NWINDOWS)
 | |
|         raise_exception(TT_ILL_INSN);
 | |
|     else
 | |
|         PUT_PSR(env, T0);
 | |
| }
 | |
| 
 | |
| void do_rdpsr()
 | |
| {
 | |
|     T0 = GET_PSR(env);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| void do_popc()
 | |
| {
 | |
|     T0 = ctpop64(T1);
 | |
| }
 | |
| 
 | |
| static inline uint64_t *get_gregset(uint64_t pstate)
 | |
| {
 | |
|     switch (pstate) {
 | |
|     default:
 | |
|     case 0:
 | |
|         return env->bgregs;
 | |
|     case PS_AG:
 | |
|         return env->agregs;
 | |
|     case PS_MG:
 | |
|         return env->mgregs;
 | |
|     case PS_IG:
 | |
|         return env->igregs;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void change_pstate(uint64_t new_pstate)
 | |
| {
 | |
|     uint64_t pstate_regs, new_pstate_regs;
 | |
|     uint64_t *src, *dst;
 | |
| 
 | |
|     pstate_regs = env->pstate & 0xc01;
 | |
|     new_pstate_regs = new_pstate & 0xc01;
 | |
|     if (new_pstate_regs != pstate_regs) {
 | |
|         // Switch global register bank
 | |
|         src = get_gregset(new_pstate_regs);
 | |
|         dst = get_gregset(pstate_regs);
 | |
|         memcpy32(dst, env->gregs);
 | |
|         memcpy32(env->gregs, src);
 | |
|     }
 | |
|     env->pstate = new_pstate;
 | |
| }
 | |
| 
 | |
| void do_wrpstate(void)
 | |
| {
 | |
|     change_pstate(T0 & 0xf3f);
 | |
| }
 | |
| 
 | |
| void do_done(void)
 | |
| {
 | |
|     env->tl--;
 | |
|     env->pc = env->tnpc[env->tl];
 | |
|     env->npc = env->tnpc[env->tl] + 4;
 | |
|     PUT_CCR(env, env->tstate[env->tl] >> 32);
 | |
|     env->asi = (env->tstate[env->tl] >> 24) & 0xff;
 | |
|     change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
 | |
|     PUT_CWP64(env, env->tstate[env->tl] & 0xff);
 | |
| }
 | |
| 
 | |
| void do_retry(void)
 | |
| {
 | |
|     env->tl--;
 | |
|     env->pc = env->tpc[env->tl];
 | |
|     env->npc = env->tnpc[env->tl];
 | |
|     PUT_CCR(env, env->tstate[env->tl] >> 32);
 | |
|     env->asi = (env->tstate[env->tl] >> 24) & 0xff;
 | |
|     change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
 | |
|     PUT_CWP64(env, env->tstate[env->tl] & 0xff);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void set_cwp(int new_cwp)
 | |
| {
 | |
|     /* put the modified wrap registers at their proper location */
 | |
|     if (env->cwp == (NWINDOWS - 1))
 | |
|         memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
 | |
|     env->cwp = new_cwp;
 | |
|     /* put the wrap registers at their temporary location */
 | |
|     if (new_cwp == (NWINDOWS - 1))
 | |
|         memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
 | |
|     env->regwptr = env->regbase + (new_cwp * 16);
 | |
|     REGWPTR = env->regwptr;
 | |
| }
 | |
| 
 | |
| void cpu_set_cwp(CPUState *env1, int new_cwp)
 | |
| {
 | |
|     CPUState *saved_env;
 | |
| #ifdef reg_REGWPTR
 | |
|     target_ulong *saved_regwptr;
 | |
| #endif
 | |
| 
 | |
|     saved_env = env;
 | |
| #ifdef reg_REGWPTR
 | |
|     saved_regwptr = REGWPTR;
 | |
| #endif
 | |
|     env = env1;
 | |
|     set_cwp(new_cwp);
 | |
|     env = saved_env;
 | |
| #ifdef reg_REGWPTR
 | |
|     REGWPTR = saved_regwptr;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_SPARC64
 | |
| void do_interrupt(int intno)
 | |
| {
 | |
| #ifdef DEBUG_PCALL
 | |
|     if (loglevel & CPU_LOG_INT) {
 | |
|         static int count;
 | |
|         fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
 | |
|                 count, intno,
 | |
|                 env->pc,
 | |
|                 env->npc, env->regwptr[6]);
 | |
|         cpu_dump_state(env, logfile, fprintf, 0);
 | |
| #if 0
 | |
|         {
 | |
|             int i;
 | |
|             uint8_t *ptr;
 | |
| 
 | |
|             fprintf(logfile, "       code=");
 | |
|             ptr = (uint8_t *)env->pc;
 | |
|             for(i = 0; i < 16; i++) {
 | |
|                 fprintf(logfile, " %02x", ldub(ptr + i));
 | |
|             }
 | |
|             fprintf(logfile, "\n");
 | |
|         }
 | |
| #endif
 | |
|         count++;
 | |
|     }
 | |
| #endif
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     if (env->tl == MAXTL) {
 | |
|         cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
|     env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
 | |
|         ((env->pstate & 0xf3f) << 8) | GET_CWP64(env);
 | |
|     env->tpc[env->tl] = env->pc;
 | |
|     env->tnpc[env->tl] = env->npc;
 | |
|     env->tt[env->tl] = intno;
 | |
|     change_pstate(PS_PEF | PS_PRIV | PS_AG);
 | |
| 
 | |
|     if (intno == TT_CLRWIN)
 | |
|         set_cwp((env->cwp - 1) & (NWINDOWS - 1));
 | |
|     else if ((intno & 0x1c0) == TT_SPILL)
 | |
|         set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
 | |
|     else if ((intno & 0x1c0) == TT_FILL)
 | |
|         set_cwp((env->cwp + 1) & (NWINDOWS - 1));
 | |
|     env->tbr &= ~0x7fffULL;
 | |
|     env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
 | |
|     if (env->tl < MAXTL - 1) {
 | |
|         env->tl++;
 | |
|     } else {
 | |
|         env->pstate |= PS_RED;
 | |
|         if (env->tl != MAXTL)
 | |
|             env->tl++;
 | |
|     }
 | |
|     env->pc = env->tbr;
 | |
|     env->npc = env->pc + 4;
 | |
|     env->exception_index = 0;
 | |
| }
 | |
| #else
 | |
| void do_interrupt(int intno)
 | |
| {
 | |
|     int cwp;
 | |
| 
 | |
| #ifdef DEBUG_PCALL
 | |
|     if (loglevel & CPU_LOG_INT) {
 | |
|         static int count;
 | |
|         fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
 | |
|                 count, intno,
 | |
|                 env->pc,
 | |
|                 env->npc, env->regwptr[6]);
 | |
|         cpu_dump_state(env, logfile, fprintf, 0);
 | |
| #if 0
 | |
|         {
 | |
|             int i;
 | |
|             uint8_t *ptr;
 | |
| 
 | |
|             fprintf(logfile, "       code=");
 | |
|             ptr = (uint8_t *)env->pc;
 | |
|             for(i = 0; i < 16; i++) {
 | |
|                 fprintf(logfile, " %02x", ldub(ptr + i));
 | |
|             }
 | |
|             fprintf(logfile, "\n");
 | |
|         }
 | |
| #endif
 | |
|         count++;
 | |
|     }
 | |
| #endif
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     if (env->psret == 0) {
 | |
|         cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
|     env->psret = 0;
 | |
|     cwp = (env->cwp - 1) & (NWINDOWS - 1);
 | |
|     set_cwp(cwp);
 | |
|     env->regwptr[9] = env->pc;
 | |
|     env->regwptr[10] = env->npc;
 | |
|     env->psrps = env->psrs;
 | |
|     env->psrs = 1;
 | |
|     env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
 | |
|     env->pc = env->tbr;
 | |
|     env->npc = env->pc + 4;
 | |
|     env->exception_index = 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
 | |
|                                 void *retaddr);
 | |
| 
 | |
| #define MMUSUFFIX _mmu
 | |
| #define ALIGNED_ONLY
 | |
| #ifdef __s390__
 | |
| # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
 | |
| #else
 | |
| # define GETPC() (__builtin_return_address(0))
 | |
| #endif
 | |
| 
 | |
| #define SHIFT 0
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 1
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 2
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 3
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
 | |
|                                 void *retaddr)
 | |
| {
 | |
| #ifdef DEBUG_UNALIGNED
 | |
|     printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
 | |
| #endif
 | |
|     raise_exception(TT_UNALIGNED);
 | |
| }
 | |
| 
 | |
| /* try to fill the TLB and return an exception if error. If retaddr is
 | |
|    NULL, it means that the function was called in C code (i.e. not
 | |
|    from generated code or from helper.c) */
 | |
| /* XXX: fix it to restore all registers */
 | |
| void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int ret;
 | |
|     unsigned long pc;
 | |
|     CPUState *saved_env;
 | |
| 
 | |
|     /* XXX: hack to restore env in all cases, even if not called from
 | |
|        generated code */
 | |
|     saved_env = env;
 | |
|     env = cpu_single_env;
 | |
| 
 | |
|     ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
 | |
|     if (ret) {
 | |
|         if (retaddr) {
 | |
|             /* now we have a real cpu fault */
 | |
|             pc = (unsigned long)retaddr;
 | |
|             tb = tb_find_pc(pc);
 | |
|             if (tb) {
 | |
|                 /* the PC is inside the translated code. It means that we have
 | |
|                    a virtual CPU fault */
 | |
|                 cpu_restore_state(tb, env, pc, (void *)T2);
 | |
|             }
 | |
|         }
 | |
|         cpu_loop_exit();
 | |
|     }
 | |
|     env = saved_env;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifndef TARGET_SPARC64
 | |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
 | |
|                           int is_asi)
 | |
| {
 | |
|     CPUState *saved_env;
 | |
| 
 | |
|     /* XXX: hack to restore env in all cases, even if not called from
 | |
|        generated code */
 | |
|     saved_env = env;
 | |
|     env = cpu_single_env;
 | |
|     if (env->mmuregs[3]) /* Fault status register */
 | |
|         env->mmuregs[3] = 1; /* overflow (not read before another fault) */
 | |
|     if (is_asi)
 | |
|         env->mmuregs[3] |= 1 << 16;
 | |
|     if (env->psrs)
 | |
|         env->mmuregs[3] |= 1 << 5;
 | |
|     if (is_exec)
 | |
|         env->mmuregs[3] |= 1 << 6;
 | |
|     if (is_write)
 | |
|         env->mmuregs[3] |= 1 << 7;
 | |
|     env->mmuregs[3] |= (5 << 2) | 2;
 | |
|     env->mmuregs[4] = addr; /* Fault address register */
 | |
|     if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|         printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
 | |
|                "\n", addr, env->pc);
 | |
| #endif
 | |
|         if (is_exec)
 | |
|             raise_exception(TT_CODE_ACCESS);
 | |
|         else
 | |
|             raise_exception(TT_DATA_ACCESS);
 | |
|     }
 | |
|     env = saved_env;
 | |
| }
 | |
| #else
 | |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
 | |
|                           int is_asi)
 | |
| {
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|     CPUState *saved_env;
 | |
| 
 | |
|     /* XXX: hack to restore env in all cases, even if not called from
 | |
|        generated code */
 | |
|     saved_env = env;
 | |
|     env = cpu_single_env;
 | |
|     printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
 | |
|            addr, env->pc);
 | |
|     env = saved_env;
 | |
| #endif
 | |
|     if (is_exec)
 | |
|         raise_exception(TT_CODE_ACCESS);
 | |
|     else
 | |
|         raise_exception(TT_DATA_ACCESS);
 | |
| }
 | |
| #endif
 | |
| 
 |