1046 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1046 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
/*
 | 
						|
 *  Common CPU TLB handling
 | 
						|
 *
 | 
						|
 *  Copyright (c) 2003 Fabrice Bellard
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "qemu/main-loop.h"
 | 
						|
#include "cpu.h"
 | 
						|
#include "exec/exec-all.h"
 | 
						|
#include "exec/memory.h"
 | 
						|
#include "exec/address-spaces.h"
 | 
						|
#include "exec/cpu_ldst.h"
 | 
						|
#include "exec/cputlb.h"
 | 
						|
#include "exec/memory-internal.h"
 | 
						|
#include "exec/ram_addr.h"
 | 
						|
#include "tcg/tcg.h"
 | 
						|
#include "qemu/error-report.h"
 | 
						|
#include "exec/log.h"
 | 
						|
#include "exec/helper-proto.h"
 | 
						|
#include "qemu/atomic.h"
 | 
						|
 | 
						|
/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
 | 
						|
/* #define DEBUG_TLB */
 | 
						|
/* #define DEBUG_TLB_LOG */
 | 
						|
 | 
						|
#ifdef DEBUG_TLB
 | 
						|
# define DEBUG_TLB_GATE 1
 | 
						|
# ifdef DEBUG_TLB_LOG
 | 
						|
#  define DEBUG_TLB_LOG_GATE 1
 | 
						|
# else
 | 
						|
#  define DEBUG_TLB_LOG_GATE 0
 | 
						|
# endif
 | 
						|
#else
 | 
						|
# define DEBUG_TLB_GATE 0
 | 
						|
# define DEBUG_TLB_LOG_GATE 0
 | 
						|
#endif
 | 
						|
 | 
						|
#define tlb_debug(fmt, ...) do { \
 | 
						|
    if (DEBUG_TLB_LOG_GATE) { \
 | 
						|
        qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
 | 
						|
                      ## __VA_ARGS__); \
 | 
						|
    } else if (DEBUG_TLB_GATE) { \
 | 
						|
        fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
 | 
						|
    } \
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define assert_cpu_is_self(this_cpu) do {                         \
 | 
						|
        if (DEBUG_TLB_GATE) {                                     \
 | 
						|
            g_assert(!cpu->created || qemu_cpu_is_self(cpu));     \
 | 
						|
        }                                                         \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
/* run_on_cpu_data.target_ptr should always be big enough for a
 | 
						|
 * target_ulong even on 32 bit builds */
 | 
						|
QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
 | 
						|
 | 
						|
/* We currently can't handle more than 16 bits in the MMUIDX bitmask.
 | 
						|
 */
 | 
						|
QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
 | 
						|
#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
 | 
						|
 | 
						|
/* flush_all_helper: run fn across all cpus
 | 
						|
 *
 | 
						|
 * If the wait flag is set then the src cpu's helper will be queued as
 | 
						|
 * "safe" work and the loop exited creating a synchronisation point
 | 
						|
 * where all queued work will be finished before execution starts
 | 
						|
 * again.
 | 
						|
 */
 | 
						|
static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
 | 
						|
                             run_on_cpu_data d)
 | 
						|
{
 | 
						|
    CPUState *cpu;
 | 
						|
 | 
						|
    CPU_FOREACH(cpu) {
 | 
						|
        if (cpu != src) {
 | 
						|
            async_run_on_cpu(cpu, fn, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* statistics */
 | 
						|
int tlb_flush_count;
 | 
						|
 | 
						|
/* This is OK because CPU architectures generally permit an
 | 
						|
 * implementation to drop entries from the TLB at any time, so
 | 
						|
 * flushing more entries than required is only an efficiency issue,
 | 
						|
 * not a correctness issue.
 | 
						|
 */
 | 
						|
static void tlb_flush_nocheck(CPUState *cpu)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
 | 
						|
    /* The QOM tests will trigger tlb_flushes without setting up TCG
 | 
						|
     * so we bug out here in that case.
 | 
						|
     */
 | 
						|
    if (!tcg_enabled()) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
    tlb_debug("(count: %d)\n", tlb_flush_count++);
 | 
						|
 | 
						|
    tb_lock();
 | 
						|
 | 
						|
    memset(env->tlb_table, -1, sizeof(env->tlb_table));
 | 
						|
    memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
 | 
						|
    memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
 | 
						|
 | 
						|
    env->vtlb_index = 0;
 | 
						|
    env->tlb_flush_addr = -1;
 | 
						|
    env->tlb_flush_mask = 0;
 | 
						|
 | 
						|
    tb_unlock();
 | 
						|
 | 
						|
    atomic_mb_set(&cpu->pending_tlb_flush, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_flush_global_async_work(CPUState *cpu, run_on_cpu_data data)
 | 
						|
{
 | 
						|
    tlb_flush_nocheck(cpu);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush(CPUState *cpu)
 | 
						|
{
 | 
						|
    if (cpu->created && !qemu_cpu_is_self(cpu)) {
 | 
						|
        if (atomic_mb_read(&cpu->pending_tlb_flush) != ALL_MMUIDX_BITS) {
 | 
						|
            atomic_mb_set(&cpu->pending_tlb_flush, ALL_MMUIDX_BITS);
 | 
						|
            async_run_on_cpu(cpu, tlb_flush_global_async_work,
 | 
						|
                             RUN_ON_CPU_NULL);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        tlb_flush_nocheck(cpu);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_all_cpus(CPUState *src_cpu)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_global_async_work;
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL);
 | 
						|
    fn(src_cpu, RUN_ON_CPU_NULL);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_all_cpus_synced(CPUState *src_cpu)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_global_async_work;
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL);
 | 
						|
    async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_NULL);
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
    unsigned long mmu_idx_bitmask = data.host_int;
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    tb_lock();
 | 
						|
 | 
						|
    tlb_debug("start: mmu_idx:0x%04lx\n", mmu_idx_bitmask);
 | 
						|
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
 | 
						|
        if (test_bit(mmu_idx, &mmu_idx_bitmask)) {
 | 
						|
            tlb_debug("%d\n", mmu_idx);
 | 
						|
 | 
						|
            memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0]));
 | 
						|
            memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
 | 
						|
 | 
						|
    tlb_debug("done\n");
 | 
						|
 | 
						|
    tb_unlock();
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
 | 
						|
{
 | 
						|
    tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
 | 
						|
 | 
						|
    if (!qemu_cpu_is_self(cpu)) {
 | 
						|
        uint16_t pending_flushes = idxmap;
 | 
						|
        pending_flushes &= ~atomic_mb_read(&cpu->pending_tlb_flush);
 | 
						|
 | 
						|
        if (pending_flushes) {
 | 
						|
            tlb_debug("reduced mmu_idx: 0x%" PRIx16 "\n", pending_flushes);
 | 
						|
 | 
						|
            atomic_or(&cpu->pending_tlb_flush, pending_flushes);
 | 
						|
            async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
 | 
						|
                             RUN_ON_CPU_HOST_INT(pending_flushes));
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        tlb_flush_by_mmuidx_async_work(cpu,
 | 
						|
                                       RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 | 
						|
 | 
						|
    tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 | 
						|
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
    fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 | 
						|
                                                       uint16_t idxmap)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 | 
						|
 | 
						|
    tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 | 
						|
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
    async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
 | 
						|
{
 | 
						|
    if (addr == (tlb_entry->addr_read &
 | 
						|
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
 | 
						|
        addr == (tlb_entry->addr_write &
 | 
						|
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
 | 
						|
        addr == (tlb_entry->addr_code &
 | 
						|
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 | 
						|
        memset(tlb_entry, -1, sizeof(*tlb_entry));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_flush_page_async_work(CPUState *cpu, run_on_cpu_data data)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
    target_ulong addr = (target_ulong) data.target_ptr;
 | 
						|
    int i;
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    tlb_debug("page :" TARGET_FMT_lx "\n", addr);
 | 
						|
 | 
						|
    /* Check if we need to flush due to large pages.  */
 | 
						|
    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
 | 
						|
        tlb_debug("forcing full flush ("
 | 
						|
                  TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 | 
						|
                  env->tlb_flush_addr, env->tlb_flush_mask);
 | 
						|
 | 
						|
        tlb_flush(cpu);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    addr &= TARGET_PAGE_MASK;
 | 
						|
    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
 | 
						|
    }
 | 
						|
 | 
						|
    /* check whether there are entries that need to be flushed in the vtlb */
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        int k;
 | 
						|
        for (k = 0; k < CPU_VTLB_SIZE; k++) {
 | 
						|
            tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    tb_flush_jmp_cache(cpu, addr);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page(CPUState *cpu, target_ulong addr)
 | 
						|
{
 | 
						|
    tlb_debug("page :" TARGET_FMT_lx "\n", addr);
 | 
						|
 | 
						|
    if (!qemu_cpu_is_self(cpu)) {
 | 
						|
        async_run_on_cpu(cpu, tlb_flush_page_async_work,
 | 
						|
                         RUN_ON_CPU_TARGET_PTR(addr));
 | 
						|
    } else {
 | 
						|
        tlb_flush_page_async_work(cpu, RUN_ON_CPU_TARGET_PTR(addr));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* As we are going to hijack the bottom bits of the page address for a
 | 
						|
 * mmuidx bit mask we need to fail to build if we can't do that
 | 
						|
 */
 | 
						|
QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
 | 
						|
 | 
						|
static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
 | 
						|
                                                run_on_cpu_data data)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
    target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
 | 
						|
    target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
 | 
						|
    unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
 | 
						|
    int page = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | 
						|
    int mmu_idx;
 | 
						|
    int i;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    tlb_debug("page:%d addr:"TARGET_FMT_lx" mmu_idx:0x%lx\n",
 | 
						|
              page, addr, mmu_idx_bitmap);
 | 
						|
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
 | 
						|
            tlb_flush_entry(&env->tlb_table[mmu_idx][page], addr);
 | 
						|
 | 
						|
            /* check whether there are vltb entries that need to be flushed */
 | 
						|
            for (i = 0; i < CPU_VTLB_SIZE; i++) {
 | 
						|
                tlb_flush_entry(&env->tlb_v_table[mmu_idx][i], addr);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    tb_flush_jmp_cache(cpu, addr);
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_check_page_and_flush_by_mmuidx_async_work(CPUState *cpu,
 | 
						|
                                                          run_on_cpu_data data)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
    target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
 | 
						|
    target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
 | 
						|
    unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
 | 
						|
 | 
						|
    tlb_debug("addr:"TARGET_FMT_lx" mmu_idx: %04lx\n", addr, mmu_idx_bitmap);
 | 
						|
 | 
						|
    /* Check if we need to flush due to large pages.  */
 | 
						|
    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
 | 
						|
        tlb_debug("forced full flush ("
 | 
						|
                  TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 | 
						|
                  env->tlb_flush_addr, env->tlb_flush_mask);
 | 
						|
 | 
						|
        tlb_flush_by_mmuidx_async_work(cpu,
 | 
						|
                                       RUN_ON_CPU_HOST_INT(mmu_idx_bitmap));
 | 
						|
    } else {
 | 
						|
        tlb_flush_page_by_mmuidx_async_work(cpu, data);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
 | 
						|
{
 | 
						|
    target_ulong addr_and_mmu_idx;
 | 
						|
 | 
						|
    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
 | 
						|
 | 
						|
    /* This should already be page aligned */
 | 
						|
    addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
 | 
						|
    addr_and_mmu_idx |= idxmap;
 | 
						|
 | 
						|
    if (!qemu_cpu_is_self(cpu)) {
 | 
						|
        async_run_on_cpu(cpu, tlb_check_page_and_flush_by_mmuidx_async_work,
 | 
						|
                         RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
    } else {
 | 
						|
        tlb_check_page_and_flush_by_mmuidx_async_work(
 | 
						|
            cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
 | 
						|
                                       uint16_t idxmap)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work;
 | 
						|
    target_ulong addr_and_mmu_idx;
 | 
						|
 | 
						|
    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
 | 
						|
 | 
						|
    /* This should already be page aligned */
 | 
						|
    addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
 | 
						|
    addr_and_mmu_idx |= idxmap;
 | 
						|
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
    fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 | 
						|
                                                            target_ulong addr,
 | 
						|
                                                            uint16_t idxmap)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work;
 | 
						|
    target_ulong addr_and_mmu_idx;
 | 
						|
 | 
						|
    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
 | 
						|
 | 
						|
    /* This should already be page aligned */
 | 
						|
    addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
 | 
						|
    addr_and_mmu_idx |= idxmap;
 | 
						|
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
    async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_page_async_work;
 | 
						|
 | 
						|
    flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
 | 
						|
    fn(src, RUN_ON_CPU_TARGET_PTR(addr));
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_all_cpus_synced(CPUState *src,
 | 
						|
                                                  target_ulong addr)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_page_async_work;
 | 
						|
 | 
						|
    flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
 | 
						|
    async_safe_run_on_cpu(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
 | 
						|
}
 | 
						|
 | 
						|
/* update the TLBs so that writes to code in the virtual page 'addr'
 | 
						|
   can be detected */
 | 
						|
void tlb_protect_code(ram_addr_t ram_addr)
 | 
						|
{
 | 
						|
    cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
 | 
						|
                                             DIRTY_MEMORY_CODE);
 | 
						|
}
 | 
						|
 | 
						|
/* update the TLB so that writes in physical page 'phys_addr' are no longer
 | 
						|
   tested for self modifying code */
 | 
						|
void tlb_unprotect_code(ram_addr_t ram_addr)
 | 
						|
{
 | 
						|
    cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Dirty write flag handling
 | 
						|
 *
 | 
						|
 * When the TCG code writes to a location it looks up the address in
 | 
						|
 * the TLB and uses that data to compute the final address. If any of
 | 
						|
 * the lower bits of the address are set then the slow path is forced.
 | 
						|
 * There are a number of reasons to do this but for normal RAM the
 | 
						|
 * most usual is detecting writes to code regions which may invalidate
 | 
						|
 * generated code.
 | 
						|
 *
 | 
						|
 * Because we want other vCPUs to respond to changes straight away we
 | 
						|
 * update the te->addr_write field atomically. If the TLB entry has
 | 
						|
 * been changed by the vCPU in the mean time we skip the update.
 | 
						|
 *
 | 
						|
 * As this function uses atomic accesses we also need to ensure
 | 
						|
 * updates to tlb_entries follow the same access rules. We don't need
 | 
						|
 * to worry about this for oversized guests as MTTCG is disabled for
 | 
						|
 * them.
 | 
						|
 */
 | 
						|
 | 
						|
static void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
 | 
						|
                           uintptr_t length)
 | 
						|
{
 | 
						|
#if TCG_OVERSIZED_GUEST
 | 
						|
    uintptr_t addr = tlb_entry->addr_write;
 | 
						|
 | 
						|
    if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
 | 
						|
        addr &= TARGET_PAGE_MASK;
 | 
						|
        addr += tlb_entry->addend;
 | 
						|
        if ((addr - start) < length) {
 | 
						|
            tlb_entry->addr_write |= TLB_NOTDIRTY;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#else
 | 
						|
    /* paired with atomic_mb_set in tlb_set_page_with_attrs */
 | 
						|
    uintptr_t orig_addr = atomic_mb_read(&tlb_entry->addr_write);
 | 
						|
    uintptr_t addr = orig_addr;
 | 
						|
 | 
						|
    if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
 | 
						|
        addr &= TARGET_PAGE_MASK;
 | 
						|
        addr += atomic_read(&tlb_entry->addend);
 | 
						|
        if ((addr - start) < length) {
 | 
						|
            uintptr_t notdirty_addr = orig_addr | TLB_NOTDIRTY;
 | 
						|
            atomic_cmpxchg(&tlb_entry->addr_write, orig_addr, notdirty_addr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* For atomic correctness when running MTTCG we need to use the right
 | 
						|
 * primitives when copying entries */
 | 
						|
static inline void copy_tlb_helper(CPUTLBEntry *d, CPUTLBEntry *s,
 | 
						|
                                   bool atomic_set)
 | 
						|
{
 | 
						|
#if TCG_OVERSIZED_GUEST
 | 
						|
    *d = *s;
 | 
						|
#else
 | 
						|
    if (atomic_set) {
 | 
						|
        d->addr_read = s->addr_read;
 | 
						|
        d->addr_code = s->addr_code;
 | 
						|
        atomic_set(&d->addend, atomic_read(&s->addend));
 | 
						|
        /* Pairs with flag setting in tlb_reset_dirty_range */
 | 
						|
        atomic_mb_set(&d->addr_write, atomic_read(&s->addr_write));
 | 
						|
    } else {
 | 
						|
        d->addr_read = s->addr_read;
 | 
						|
        d->addr_write = atomic_read(&s->addr_write);
 | 
						|
        d->addr_code = s->addr_code;
 | 
						|
        d->addend = atomic_read(&s->addend);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* This is a cross vCPU call (i.e. another vCPU resetting the flags of
 | 
						|
 * the target vCPU). As such care needs to be taken that we don't
 | 
						|
 * dangerously race with another vCPU update. The only thing actually
 | 
						|
 * updated is the target TLB entry ->addr_write flags.
 | 
						|
 */
 | 
						|
void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
 | 
						|
{
 | 
						|
    CPUArchState *env;
 | 
						|
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
    env = cpu->env_ptr;
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        unsigned int i;
 | 
						|
 | 
						|
        for (i = 0; i < CPU_TLB_SIZE; i++) {
 | 
						|
            tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
 | 
						|
                                  start1, length);
 | 
						|
        }
 | 
						|
 | 
						|
        for (i = 0; i < CPU_VTLB_SIZE; i++) {
 | 
						|
            tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
 | 
						|
                                  start1, length);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
 | 
						|
{
 | 
						|
    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
 | 
						|
        tlb_entry->addr_write = vaddr;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* update the TLB corresponding to virtual page vaddr
 | 
						|
   so that it is no longer dirty */
 | 
						|
void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
    int i;
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    vaddr &= TARGET_PAGE_MASK;
 | 
						|
    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        int k;
 | 
						|
        for (k = 0; k < CPU_VTLB_SIZE; k++) {
 | 
						|
            tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Our TLB does not support large pages, so remember the area covered by
 | 
						|
   large pages and trigger a full TLB flush if these are invalidated.  */
 | 
						|
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
 | 
						|
                               target_ulong size)
 | 
						|
{
 | 
						|
    target_ulong mask = ~(size - 1);
 | 
						|
 | 
						|
    if (env->tlb_flush_addr == (target_ulong)-1) {
 | 
						|
        env->tlb_flush_addr = vaddr & mask;
 | 
						|
        env->tlb_flush_mask = mask;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    /* Extend the existing region to include the new page.
 | 
						|
       This is a compromise between unnecessary flushes and the cost
 | 
						|
       of maintaining a full variable size TLB.  */
 | 
						|
    mask &= env->tlb_flush_mask;
 | 
						|
    while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
 | 
						|
        mask <<= 1;
 | 
						|
    }
 | 
						|
    env->tlb_flush_addr &= mask;
 | 
						|
    env->tlb_flush_mask = mask;
 | 
						|
}
 | 
						|
 | 
						|
/* Add a new TLB entry. At most one entry for a given virtual address
 | 
						|
 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
 | 
						|
 * supplied size is only used by tlb_flush_page.
 | 
						|
 *
 | 
						|
 * Called from TCG-generated code, which is under an RCU read-side
 | 
						|
 * critical section.
 | 
						|
 */
 | 
						|
void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
 | 
						|
                             hwaddr paddr, MemTxAttrs attrs, int prot,
 | 
						|
                             int mmu_idx, target_ulong size)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    unsigned int index;
 | 
						|
    target_ulong address;
 | 
						|
    target_ulong code_address;
 | 
						|
    uintptr_t addend;
 | 
						|
    CPUTLBEntry *te, *tv, tn;
 | 
						|
    hwaddr iotlb, xlat, sz;
 | 
						|
    unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
 | 
						|
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
    assert(size >= TARGET_PAGE_SIZE);
 | 
						|
    if (size != TARGET_PAGE_SIZE) {
 | 
						|
        tlb_add_large_page(env, vaddr, size);
 | 
						|
    }
 | 
						|
 | 
						|
    sz = size;
 | 
						|
    section = address_space_translate_for_iotlb(cpu, asidx, paddr, &xlat, &sz);
 | 
						|
    assert(sz >= TARGET_PAGE_SIZE);
 | 
						|
 | 
						|
    tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
 | 
						|
              " prot=%x idx=%d\n",
 | 
						|
              vaddr, paddr, prot, mmu_idx);
 | 
						|
 | 
						|
    address = vaddr;
 | 
						|
    if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
 | 
						|
        /* IO memory case */
 | 
						|
        address |= TLB_MMIO;
 | 
						|
        addend = 0;
 | 
						|
    } else {
 | 
						|
        /* TLB_MMIO for rom/romd handled below */
 | 
						|
        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
 | 
						|
    }
 | 
						|
 | 
						|
    code_address = address;
 | 
						|
    iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
 | 
						|
                                            prot, &address);
 | 
						|
 | 
						|
    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | 
						|
    te = &env->tlb_table[mmu_idx][index];
 | 
						|
    /* do not discard the translation in te, evict it into a victim tlb */
 | 
						|
    tv = &env->tlb_v_table[mmu_idx][vidx];
 | 
						|
 | 
						|
    /* addr_write can race with tlb_reset_dirty_range */
 | 
						|
    copy_tlb_helper(tv, te, true);
 | 
						|
 | 
						|
    env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
 | 
						|
 | 
						|
    /* refill the tlb */
 | 
						|
    env->iotlb[mmu_idx][index].addr = iotlb - vaddr;
 | 
						|
    env->iotlb[mmu_idx][index].attrs = attrs;
 | 
						|
 | 
						|
    /* Now calculate the new entry */
 | 
						|
    tn.addend = addend - vaddr;
 | 
						|
    if (prot & PAGE_READ) {
 | 
						|
        tn.addr_read = address;
 | 
						|
    } else {
 | 
						|
        tn.addr_read = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (prot & PAGE_EXEC) {
 | 
						|
        tn.addr_code = code_address;
 | 
						|
    } else {
 | 
						|
        tn.addr_code = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    tn.addr_write = -1;
 | 
						|
    if (prot & PAGE_WRITE) {
 | 
						|
        if ((memory_region_is_ram(section->mr) && section->readonly)
 | 
						|
            || memory_region_is_romd(section->mr)) {
 | 
						|
            /* Write access calls the I/O callback.  */
 | 
						|
            tn.addr_write = address | TLB_MMIO;
 | 
						|
        } else if (memory_region_is_ram(section->mr)
 | 
						|
                   && cpu_physical_memory_is_clean(
 | 
						|
                        memory_region_get_ram_addr(section->mr) + xlat)) {
 | 
						|
            tn.addr_write = address | TLB_NOTDIRTY;
 | 
						|
        } else {
 | 
						|
            tn.addr_write = address;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Pairs with flag setting in tlb_reset_dirty_range */
 | 
						|
    copy_tlb_helper(te, &tn, true);
 | 
						|
    /* atomic_mb_set(&te->addr_write, write_address); */
 | 
						|
}
 | 
						|
 | 
						|
/* Add a new TLB entry, but without specifying the memory
 | 
						|
 * transaction attributes to be used.
 | 
						|
 */
 | 
						|
void tlb_set_page(CPUState *cpu, target_ulong vaddr,
 | 
						|
                  hwaddr paddr, int prot,
 | 
						|
                  int mmu_idx, target_ulong size)
 | 
						|
{
 | 
						|
    tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
 | 
						|
                            prot, mmu_idx, size);
 | 
						|
}
 | 
						|
 | 
						|
static void report_bad_exec(CPUState *cpu, target_ulong addr)
 | 
						|
{
 | 
						|
    /* Accidentally executing outside RAM or ROM is quite common for
 | 
						|
     * several user-error situations, so report it in a way that
 | 
						|
     * makes it clear that this isn't a QEMU bug and provide suggestions
 | 
						|
     * about what a user could do to fix things.
 | 
						|
     */
 | 
						|
    error_report("Trying to execute code outside RAM or ROM at 0x"
 | 
						|
                 TARGET_FMT_lx, addr);
 | 
						|
    error_printf("This usually means one of the following happened:\n\n"
 | 
						|
                 "(1) You told QEMU to execute a kernel for the wrong machine "
 | 
						|
                 "type, and it crashed on startup (eg trying to run a "
 | 
						|
                 "raspberry pi kernel on a versatilepb QEMU machine)\n"
 | 
						|
                 "(2) You didn't give QEMU a kernel or BIOS filename at all, "
 | 
						|
                 "and QEMU executed a ROM full of no-op instructions until "
 | 
						|
                 "it fell off the end\n"
 | 
						|
                 "(3) Your guest kernel has a bug and crashed by jumping "
 | 
						|
                 "off into nowhere\n\n"
 | 
						|
                 "This is almost always one of the first two, so check your "
 | 
						|
                 "command line and that you are using the right type of kernel "
 | 
						|
                 "for this machine.\n"
 | 
						|
                 "If you think option (3) is likely then you can try debugging "
 | 
						|
                 "your guest with the -d debug options; in particular "
 | 
						|
                 "-d guest_errors will cause the log to include a dump of the "
 | 
						|
                 "guest register state at this point.\n\n"
 | 
						|
                 "Execution cannot continue; stopping here.\n\n");
 | 
						|
 | 
						|
    /* Report also to the logs, with more detail including register dump */
 | 
						|
    qemu_log_mask(LOG_GUEST_ERROR, "qemu: fatal: Trying to execute code "
 | 
						|
                  "outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
 | 
						|
    log_cpu_state_mask(LOG_GUEST_ERROR, cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
 | 
						|
}
 | 
						|
 | 
						|
static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
 | 
						|
{
 | 
						|
    ram_addr_t ram_addr;
 | 
						|
 | 
						|
    ram_addr = qemu_ram_addr_from_host(ptr);
 | 
						|
    if (ram_addr == RAM_ADDR_INVALID) {
 | 
						|
        error_report("Bad ram pointer %p", ptr);
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    return ram_addr;
 | 
						|
}
 | 
						|
 | 
						|
/* NOTE: this function can trigger an exception */
 | 
						|
/* NOTE2: the returned address is not exactly the physical address: it
 | 
						|
 * is actually a ram_addr_t (in system mode; the user mode emulation
 | 
						|
 * version of this function returns a guest virtual address).
 | 
						|
 */
 | 
						|
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
 | 
						|
{
 | 
						|
    int mmu_idx, page_index, pd;
 | 
						|
    void *p;
 | 
						|
    MemoryRegion *mr;
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env1);
 | 
						|
    CPUIOTLBEntry *iotlbentry;
 | 
						|
 | 
						|
    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | 
						|
    mmu_idx = cpu_mmu_index(env1, true);
 | 
						|
    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
 | 
						|
                 (addr & TARGET_PAGE_MASK))) {
 | 
						|
        cpu_ldub_code(env1, addr);
 | 
						|
    }
 | 
						|
    iotlbentry = &env1->iotlb[mmu_idx][page_index];
 | 
						|
    pd = iotlbentry->addr & ~TARGET_PAGE_MASK;
 | 
						|
    mr = iotlb_to_region(cpu, pd, iotlbentry->attrs);
 | 
						|
    if (memory_region_is_unassigned(mr)) {
 | 
						|
        cpu_unassigned_access(cpu, addr, false, true, 0, 4);
 | 
						|
        /* The CPU's unassigned access hook might have longjumped out
 | 
						|
         * with an exception. If it didn't (or there was no hook) then
 | 
						|
         * we can't proceed further.
 | 
						|
         */
 | 
						|
        report_bad_exec(cpu, addr);
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
    p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
 | 
						|
    return qemu_ram_addr_from_host_nofail(p);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
 | 
						|
                         target_ulong addr, uintptr_t retaddr, int size)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
    hwaddr physaddr = iotlbentry->addr;
 | 
						|
    MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
 | 
						|
    uint64_t val;
 | 
						|
    bool locked = false;
 | 
						|
 | 
						|
    physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
 | 
						|
    cpu->mem_io_pc = retaddr;
 | 
						|
    if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
 | 
						|
        cpu_io_recompile(cpu, retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    cpu->mem_io_vaddr = addr;
 | 
						|
 | 
						|
    if (mr->global_locking) {
 | 
						|
        qemu_mutex_lock_iothread();
 | 
						|
        locked = true;
 | 
						|
    }
 | 
						|
    memory_region_dispatch_read(mr, physaddr, &val, size, iotlbentry->attrs);
 | 
						|
    if (locked) {
 | 
						|
        qemu_mutex_unlock_iothread();
 | 
						|
    }
 | 
						|
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
 | 
						|
                      uint64_t val, target_ulong addr,
 | 
						|
                      uintptr_t retaddr, int size)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
    hwaddr physaddr = iotlbentry->addr;
 | 
						|
    MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
 | 
						|
    bool locked = false;
 | 
						|
 | 
						|
    physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
 | 
						|
    if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
 | 
						|
        cpu_io_recompile(cpu, retaddr);
 | 
						|
    }
 | 
						|
    cpu->mem_io_vaddr = addr;
 | 
						|
    cpu->mem_io_pc = retaddr;
 | 
						|
 | 
						|
    if (mr->global_locking) {
 | 
						|
        qemu_mutex_lock_iothread();
 | 
						|
        locked = true;
 | 
						|
    }
 | 
						|
    memory_region_dispatch_write(mr, physaddr, val, size, iotlbentry->attrs);
 | 
						|
    if (locked) {
 | 
						|
        qemu_mutex_unlock_iothread();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Return true if ADDR is present in the victim tlb, and has been copied
 | 
						|
   back to the main tlb.  */
 | 
						|
static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
 | 
						|
                           size_t elt_ofs, target_ulong page)
 | 
						|
{
 | 
						|
    size_t vidx;
 | 
						|
    for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
 | 
						|
        CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx];
 | 
						|
        target_ulong cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
 | 
						|
 | 
						|
        if (cmp == page) {
 | 
						|
            /* Found entry in victim tlb, swap tlb and iotlb.  */
 | 
						|
            CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index];
 | 
						|
 | 
						|
            copy_tlb_helper(&tmptlb, tlb, false);
 | 
						|
            copy_tlb_helper(tlb, vtlb, true);
 | 
						|
            copy_tlb_helper(vtlb, &tmptlb, true);
 | 
						|
 | 
						|
            CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index];
 | 
						|
            CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx];
 | 
						|
            tmpio = *io; *io = *vio; *vio = tmpio;
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
/* Macro to call the above, with local variables from the use context.  */
 | 
						|
#define VICTIM_TLB_HIT(TY, ADDR) \
 | 
						|
  victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
 | 
						|
                 (ADDR) & TARGET_PAGE_MASK)
 | 
						|
 | 
						|
/* Probe for whether the specified guest write access is permitted.
 | 
						|
 * If it is not permitted then an exception will be taken in the same
 | 
						|
 * way as if this were a real write access (and we will not return).
 | 
						|
 * Otherwise the function will return, and there will be a valid
 | 
						|
 * entry in the TLB for this access.
 | 
						|
 */
 | 
						|
void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
 | 
						|
                 uintptr_t retaddr)
 | 
						|
{
 | 
						|
    int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | 
						|
    target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
 | 
						|
 | 
						|
    if ((addr & TARGET_PAGE_MASK)
 | 
						|
        != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 | 
						|
        /* TLB entry is for a different page */
 | 
						|
        if (!VICTIM_TLB_HIT(addr_write, addr)) {
 | 
						|
            tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Probe for a read-modify-write atomic operation.  Do not allow unaligned
 | 
						|
 * operations, or io operations to proceed.  Return the host address.  */
 | 
						|
static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
 | 
						|
                               TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    size_t mmu_idx = get_mmuidx(oi);
 | 
						|
    size_t index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | 
						|
    CPUTLBEntry *tlbe = &env->tlb_table[mmu_idx][index];
 | 
						|
    target_ulong tlb_addr = tlbe->addr_write;
 | 
						|
    TCGMemOp mop = get_memop(oi);
 | 
						|
    int a_bits = get_alignment_bits(mop);
 | 
						|
    int s_bits = mop & MO_SIZE;
 | 
						|
 | 
						|
    /* Adjust the given return address.  */
 | 
						|
    retaddr -= GETPC_ADJ;
 | 
						|
 | 
						|
    /* Enforce guest required alignment.  */
 | 
						|
    if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
 | 
						|
        /* ??? Maybe indicate atomic op to cpu_unaligned_access */
 | 
						|
        cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
 | 
						|
                             mmu_idx, retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Enforce qemu required alignment.  */
 | 
						|
    if (unlikely(addr & ((1 << s_bits) - 1))) {
 | 
						|
        /* We get here if guest alignment was not requested,
 | 
						|
           or was not enforced by cpu_unaligned_access above.
 | 
						|
           We might widen the access and emulate, but for now
 | 
						|
           mark an exception and exit the cpu loop.  */
 | 
						|
        goto stop_the_world;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Check TLB entry and enforce page permissions.  */
 | 
						|
    if ((addr & TARGET_PAGE_MASK)
 | 
						|
        != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 | 
						|
        if (!VICTIM_TLB_HIT(addr_write, addr)) {
 | 
						|
            tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
 | 
						|
        }
 | 
						|
        tlb_addr = tlbe->addr_write;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Notice an IO access, or a notdirty page.  */
 | 
						|
    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
 | 
						|
        /* There's really nothing that can be done to
 | 
						|
           support this apart from stop-the-world.  */
 | 
						|
        goto stop_the_world;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Let the guest notice RMW on a write-only page.  */
 | 
						|
    if (unlikely(tlbe->addr_read != tlb_addr)) {
 | 
						|
        tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_LOAD, mmu_idx, retaddr);
 | 
						|
        /* Since we don't support reads and writes to different addresses,
 | 
						|
           and we do have the proper page loaded for write, this shouldn't
 | 
						|
           ever return.  But just in case, handle via stop-the-world.  */
 | 
						|
        goto stop_the_world;
 | 
						|
    }
 | 
						|
 | 
						|
    return (void *)((uintptr_t)addr + tlbe->addend);
 | 
						|
 | 
						|
 stop_the_world:
 | 
						|
    cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef TARGET_WORDS_BIGENDIAN
 | 
						|
# define TGT_BE(X)  (X)
 | 
						|
# define TGT_LE(X)  BSWAP(X)
 | 
						|
#else
 | 
						|
# define TGT_BE(X)  BSWAP(X)
 | 
						|
# define TGT_LE(X)  (X)
 | 
						|
#endif
 | 
						|
 | 
						|
#define MMUSUFFIX _mmu
 | 
						|
 | 
						|
#define DATA_SIZE 1
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 2
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 4
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 8
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
/* First set of helpers allows passing in of OI and RETADDR.  This makes
 | 
						|
   them callable from other helpers.  */
 | 
						|
 | 
						|
#define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
 | 
						|
#define ATOMIC_NAME(X) \
 | 
						|
    HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
 | 
						|
#define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, oi, retaddr)
 | 
						|
 | 
						|
#define DATA_SIZE 1
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 2
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 4
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#ifdef CONFIG_ATOMIC64
 | 
						|
#define DATA_SIZE 8
 | 
						|
#include "atomic_template.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_ATOMIC128
 | 
						|
#define DATA_SIZE 16
 | 
						|
#include "atomic_template.h"
 | 
						|
#endif
 | 
						|
 | 
						|
/* Second set of helpers are directly callable from TCG as helpers.  */
 | 
						|
 | 
						|
#undef EXTRA_ARGS
 | 
						|
#undef ATOMIC_NAME
 | 
						|
#undef ATOMIC_MMU_LOOKUP
 | 
						|
#define EXTRA_ARGS         , TCGMemOpIdx oi
 | 
						|
#define ATOMIC_NAME(X)     HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
 | 
						|
#define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, oi, GETPC())
 | 
						|
 | 
						|
#define DATA_SIZE 1
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 2
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 4
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#ifdef CONFIG_ATOMIC64
 | 
						|
#define DATA_SIZE 8
 | 
						|
#include "atomic_template.h"
 | 
						|
#endif
 | 
						|
 | 
						|
/* Code access functions.  */
 | 
						|
 | 
						|
#undef MMUSUFFIX
 | 
						|
#define MMUSUFFIX _cmmu
 | 
						|
#undef GETPC
 | 
						|
#define GETPC() ((uintptr_t)0)
 | 
						|
#define SOFTMMU_CODE_ACCESS
 | 
						|
 | 
						|
#define DATA_SIZE 1
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 2
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 4
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 8
 | 
						|
#include "softmmu_template.h"
 |