2656 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2656 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  *  Virtual page mapping
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include "config.h"
 | |
| #ifdef _WIN32
 | |
| #include <windows.h>
 | |
| #else
 | |
| #include <sys/types.h>
 | |
| #include <sys/mman.h>
 | |
| #endif
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "cpu.h"
 | |
| #include "tcg.h"
 | |
| #include "hw/hw.h"
 | |
| #include "hw/qdev.h"
 | |
| #include "qemu/osdep.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "hw/xen/xen.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "qemu/config-file.h"
 | |
| #include "exec/memory.h"
 | |
| #include "sysemu/dma.h"
 | |
| #include "exec/address-spaces.h"
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| #include <qemu.h>
 | |
| #else /* !CONFIG_USER_ONLY */
 | |
| #include "sysemu/xen-mapcache.h"
 | |
| #include "trace.h"
 | |
| #endif
 | |
| #include "exec/cpu-all.h"
 | |
| 
 | |
| #include "exec/cputlb.h"
 | |
| #include "translate-all.h"
 | |
| 
 | |
| #include "exec/memory-internal.h"
 | |
| 
 | |
| //#define DEBUG_SUBPAGE
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| static int in_migration;
 | |
| 
 | |
| RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
 | |
| 
 | |
| static MemoryRegion *system_memory;
 | |
| static MemoryRegion *system_io;
 | |
| 
 | |
| AddressSpace address_space_io;
 | |
| AddressSpace address_space_memory;
 | |
| 
 | |
| MemoryRegion io_mem_rom, io_mem_notdirty;
 | |
| static MemoryRegion io_mem_unassigned;
 | |
| 
 | |
| #endif
 | |
| 
 | |
| struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
 | |
| /* current CPU in the current thread. It is only valid inside
 | |
|    cpu_exec() */
 | |
| DEFINE_TLS(CPUState *, current_cpu);
 | |
| /* 0 = Do not count executed instructions.
 | |
|    1 = Precise instruction counting.
 | |
|    2 = Adaptive rate instruction counting.  */
 | |
| int use_icount;
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| typedef struct PhysPageEntry PhysPageEntry;
 | |
| 
 | |
| struct PhysPageEntry {
 | |
|     uint16_t is_leaf : 1;
 | |
|      /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
 | |
|     uint16_t ptr : 15;
 | |
| };
 | |
| 
 | |
| typedef PhysPageEntry Node[L2_SIZE];
 | |
| 
 | |
| struct AddressSpaceDispatch {
 | |
|     /* This is a multi-level map on the physical address space.
 | |
|      * The bottom level has pointers to MemoryRegionSections.
 | |
|      */
 | |
|     PhysPageEntry phys_map;
 | |
|     Node *nodes;
 | |
|     MemoryRegionSection *sections;
 | |
|     AddressSpace *as;
 | |
| };
 | |
| 
 | |
| #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 | |
| typedef struct subpage_t {
 | |
|     MemoryRegion iomem;
 | |
|     AddressSpace *as;
 | |
|     hwaddr base;
 | |
|     uint16_t sub_section[TARGET_PAGE_SIZE];
 | |
| } subpage_t;
 | |
| 
 | |
| #define PHYS_SECTION_UNASSIGNED 0
 | |
| #define PHYS_SECTION_NOTDIRTY 1
 | |
| #define PHYS_SECTION_ROM 2
 | |
| #define PHYS_SECTION_WATCH 3
 | |
| 
 | |
| typedef struct PhysPageMap {
 | |
|     unsigned sections_nb;
 | |
|     unsigned sections_nb_alloc;
 | |
|     unsigned nodes_nb;
 | |
|     unsigned nodes_nb_alloc;
 | |
|     Node *nodes;
 | |
|     MemoryRegionSection *sections;
 | |
| } PhysPageMap;
 | |
| 
 | |
| static PhysPageMap *prev_map;
 | |
| static PhysPageMap next_map;
 | |
| 
 | |
| #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
 | |
| 
 | |
| static void io_mem_init(void);
 | |
| static void memory_map_init(void);
 | |
| static void *qemu_safe_ram_ptr(ram_addr_t addr);
 | |
| 
 | |
| static MemoryRegion io_mem_watch;
 | |
| #endif
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| static void phys_map_node_reserve(unsigned nodes)
 | |
| {
 | |
|     if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
 | |
|         next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
 | |
|                                             16);
 | |
|         next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
 | |
|                                       next_map.nodes_nb + nodes);
 | |
|         next_map.nodes = g_renew(Node, next_map.nodes,
 | |
|                                  next_map.nodes_nb_alloc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t phys_map_node_alloc(void)
 | |
| {
 | |
|     unsigned i;
 | |
|     uint16_t ret;
 | |
| 
 | |
|     ret = next_map.nodes_nb++;
 | |
|     assert(ret != PHYS_MAP_NODE_NIL);
 | |
|     assert(ret != next_map.nodes_nb_alloc);
 | |
|     for (i = 0; i < L2_SIZE; ++i) {
 | |
|         next_map.nodes[ret][i].is_leaf = 0;
 | |
|         next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
 | |
|                                 hwaddr *nb, uint16_t leaf,
 | |
|                                 int level)
 | |
| {
 | |
|     PhysPageEntry *p;
 | |
|     int i;
 | |
|     hwaddr step = (hwaddr)1 << (level * L2_BITS);
 | |
| 
 | |
|     if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
 | |
|         lp->ptr = phys_map_node_alloc();
 | |
|         p = next_map.nodes[lp->ptr];
 | |
|         if (level == 0) {
 | |
|             for (i = 0; i < L2_SIZE; i++) {
 | |
|                 p[i].is_leaf = 1;
 | |
|                 p[i].ptr = PHYS_SECTION_UNASSIGNED;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         p = next_map.nodes[lp->ptr];
 | |
|     }
 | |
|     lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
 | |
| 
 | |
|     while (*nb && lp < &p[L2_SIZE]) {
 | |
|         if ((*index & (step - 1)) == 0 && *nb >= step) {
 | |
|             lp->is_leaf = true;
 | |
|             lp->ptr = leaf;
 | |
|             *index += step;
 | |
|             *nb -= step;
 | |
|         } else {
 | |
|             phys_page_set_level(lp, index, nb, leaf, level - 1);
 | |
|         }
 | |
|         ++lp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void phys_page_set(AddressSpaceDispatch *d,
 | |
|                           hwaddr index, hwaddr nb,
 | |
|                           uint16_t leaf)
 | |
| {
 | |
|     /* Wildly overreserve - it doesn't matter much. */
 | |
|     phys_map_node_reserve(3 * P_L2_LEVELS);
 | |
| 
 | |
|     phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 | |
| }
 | |
| 
 | |
| static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
 | |
|                                            Node *nodes, MemoryRegionSection *sections)
 | |
| {
 | |
|     PhysPageEntry *p;
 | |
|     int i;
 | |
| 
 | |
|     for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
 | |
|         if (lp.ptr == PHYS_MAP_NODE_NIL) {
 | |
|             return §ions[PHYS_SECTION_UNASSIGNED];
 | |
|         }
 | |
|         p = nodes[lp.ptr];
 | |
|         lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
 | |
|     }
 | |
|     return §ions[lp.ptr];
 | |
| }
 | |
| 
 | |
| bool memory_region_is_unassigned(MemoryRegion *mr)
 | |
| {
 | |
|     return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
 | |
|         && mr != &io_mem_watch;
 | |
| }
 | |
| 
 | |
| static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
 | |
|                                                         hwaddr addr,
 | |
|                                                         bool resolve_subpage)
 | |
| {
 | |
|     MemoryRegionSection *section;
 | |
|     subpage_t *subpage;
 | |
| 
 | |
|     section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
 | |
|                              d->nodes, d->sections);
 | |
|     if (resolve_subpage && section->mr->subpage) {
 | |
|         subpage = container_of(section->mr, subpage_t, iomem);
 | |
|         section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
 | |
|     }
 | |
|     return section;
 | |
| }
 | |
| 
 | |
| static MemoryRegionSection *
 | |
| address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
 | |
|                                  hwaddr *plen, bool resolve_subpage)
 | |
| {
 | |
|     MemoryRegionSection *section;
 | |
|     Int128 diff;
 | |
| 
 | |
|     section = address_space_lookup_region(d, addr, resolve_subpage);
 | |
|     /* Compute offset within MemoryRegionSection */
 | |
|     addr -= section->offset_within_address_space;
 | |
| 
 | |
|     /* Compute offset within MemoryRegion */
 | |
|     *xlat = addr + section->offset_within_region;
 | |
| 
 | |
|     diff = int128_sub(section->mr->size, int128_make64(addr));
 | |
|     *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
 | |
|     return section;
 | |
| }
 | |
| 
 | |
| MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
 | |
|                                       hwaddr *xlat, hwaddr *plen,
 | |
|                                       bool is_write)
 | |
| {
 | |
|     IOMMUTLBEntry iotlb;
 | |
|     MemoryRegionSection *section;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr len = *plen;
 | |
| 
 | |
|     for (;;) {
 | |
|         section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
 | |
|         mr = section->mr;
 | |
| 
 | |
|         if (!mr->iommu_ops) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         iotlb = mr->iommu_ops->translate(mr, addr);
 | |
|         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 | |
|                 | (addr & iotlb.addr_mask));
 | |
|         len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
 | |
|         if (!(iotlb.perm & (1 << is_write))) {
 | |
|             mr = &io_mem_unassigned;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         as = iotlb.target_as;
 | |
|     }
 | |
| 
 | |
|     *plen = len;
 | |
|     *xlat = addr;
 | |
|     return mr;
 | |
| }
 | |
| 
 | |
| MemoryRegionSection *
 | |
| address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
 | |
|                                   hwaddr *plen)
 | |
| {
 | |
|     MemoryRegionSection *section;
 | |
|     section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
 | |
| 
 | |
|     assert(!section->mr->iommu_ops);
 | |
|     return section;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void cpu_exec_init_all(void)
 | |
| {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     qemu_mutex_init(&ram_list.mutex);
 | |
|     memory_map_init();
 | |
|     io_mem_init();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| static int cpu_common_post_load(void *opaque, int version_id)
 | |
| {
 | |
|     CPUState *cpu = opaque;
 | |
| 
 | |
|     /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
 | |
|        version_id is increased. */
 | |
|     cpu->interrupt_request &= ~0x01;
 | |
|     tlb_flush(cpu->env_ptr, 1);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| const VMStateDescription vmstate_cpu_common = {
 | |
|     .name = "cpu_common",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .minimum_version_id_old = 1,
 | |
|     .post_load = cpu_common_post_load,
 | |
|     .fields      = (VMStateField []) {
 | |
|         VMSTATE_UINT32(halted, CPUState),
 | |
|         VMSTATE_UINT32(interrupt_request, CPUState),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| #endif
 | |
| 
 | |
| CPUState *qemu_get_cpu(int index)
 | |
| {
 | |
|     CPUState *cpu;
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         if (cpu->cpu_index == index) {
 | |
|             return cpu;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| void cpu_exec_init(CPUArchState *env)
 | |
| {
 | |
|     CPUState *cpu = ENV_GET_CPU(env);
 | |
|     CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
|     CPUState *some_cpu;
 | |
|     int cpu_index;
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     cpu_list_lock();
 | |
| #endif
 | |
|     cpu_index = 0;
 | |
|     CPU_FOREACH(some_cpu) {
 | |
|         cpu_index++;
 | |
|     }
 | |
|     cpu->cpu_index = cpu_index;
 | |
|     cpu->numa_node = 0;
 | |
|     QTAILQ_INIT(&env->breakpoints);
 | |
|     QTAILQ_INIT(&env->watchpoints);
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     cpu->thread_id = qemu_get_thread_id();
 | |
| #endif
 | |
|     QTAILQ_INSERT_TAIL(&cpus, cpu, node);
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     cpu_list_unlock();
 | |
| #endif
 | |
|     if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
 | |
|         vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
 | |
|     }
 | |
| #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
 | |
|     register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
 | |
|                     cpu_save, cpu_load, env);
 | |
|     assert(cc->vmsd == NULL);
 | |
|     assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
 | |
| #endif
 | |
|     if (cc->vmsd != NULL) {
 | |
|         vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_HAS_ICE)
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
 | |
| {
 | |
|     tb_invalidate_phys_page_range(pc, pc + 1, 0);
 | |
| }
 | |
| #else
 | |
| static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
 | |
| {
 | |
|     tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) |
 | |
|             (pc & ~TARGET_PAGE_MASK));
 | |
| }
 | |
| #endif
 | |
| #endif /* TARGET_HAS_ICE */
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
 | |
| 
 | |
| {
 | |
| }
 | |
| 
 | |
| int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
 | |
|                           int flags, CPUWatchpoint **watchpoint)
 | |
| {
 | |
|     return -ENOSYS;
 | |
| }
 | |
| #else
 | |
| /* Add a watchpoint.  */
 | |
| int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
 | |
|                           int flags, CPUWatchpoint **watchpoint)
 | |
| {
 | |
|     target_ulong len_mask = ~(len - 1);
 | |
|     CPUWatchpoint *wp;
 | |
| 
 | |
|     /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
 | |
|     if ((len & (len - 1)) || (addr & ~len_mask) ||
 | |
|             len == 0 || len > TARGET_PAGE_SIZE) {
 | |
|         fprintf(stderr, "qemu: tried to set invalid watchpoint at "
 | |
|                 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
 | |
|         return -EINVAL;
 | |
|     }
 | |
|     wp = g_malloc(sizeof(*wp));
 | |
| 
 | |
|     wp->vaddr = addr;
 | |
|     wp->len_mask = len_mask;
 | |
|     wp->flags = flags;
 | |
| 
 | |
|     /* keep all GDB-injected watchpoints in front */
 | |
|     if (flags & BP_GDB)
 | |
|         QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
 | |
|     else
 | |
|         QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
 | |
| 
 | |
|     tlb_flush_page(env, addr);
 | |
| 
 | |
|     if (watchpoint)
 | |
|         *watchpoint = wp;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Remove a specific watchpoint.  */
 | |
| int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
 | |
|                           int flags)
 | |
| {
 | |
|     target_ulong len_mask = ~(len - 1);
 | |
|     CPUWatchpoint *wp;
 | |
| 
 | |
|     QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | |
|         if (addr == wp->vaddr && len_mask == wp->len_mask
 | |
|                 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
 | |
|             cpu_watchpoint_remove_by_ref(env, wp);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return -ENOENT;
 | |
| }
 | |
| 
 | |
| /* Remove a specific watchpoint by reference.  */
 | |
| void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
 | |
| {
 | |
|     QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
 | |
| 
 | |
|     tlb_flush_page(env, watchpoint->vaddr);
 | |
| 
 | |
|     g_free(watchpoint);
 | |
| }
 | |
| 
 | |
| /* Remove all matching watchpoints.  */
 | |
| void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
 | |
| {
 | |
|     CPUWatchpoint *wp, *next;
 | |
| 
 | |
|     QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
 | |
|         if (wp->flags & mask)
 | |
|             cpu_watchpoint_remove_by_ref(env, wp);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Add a breakpoint.  */
 | |
| int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
 | |
|                           CPUBreakpoint **breakpoint)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     CPUBreakpoint *bp;
 | |
| 
 | |
|     bp = g_malloc(sizeof(*bp));
 | |
| 
 | |
|     bp->pc = pc;
 | |
|     bp->flags = flags;
 | |
| 
 | |
|     /* keep all GDB-injected breakpoints in front */
 | |
|     if (flags & BP_GDB) {
 | |
|         QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
 | |
|     } else {
 | |
|         QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
 | |
|     }
 | |
| 
 | |
|     breakpoint_invalidate(ENV_GET_CPU(env), pc);
 | |
| 
 | |
|     if (breakpoint) {
 | |
|         *breakpoint = bp;
 | |
|     }
 | |
|     return 0;
 | |
| #else
 | |
|     return -ENOSYS;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Remove a specific breakpoint.  */
 | |
| int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     CPUBreakpoint *bp;
 | |
| 
 | |
|     QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
 | |
|         if (bp->pc == pc && bp->flags == flags) {
 | |
|             cpu_breakpoint_remove_by_ref(env, bp);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return -ENOENT;
 | |
| #else
 | |
|     return -ENOSYS;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Remove a specific breakpoint by reference.  */
 | |
| void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
 | |
| 
 | |
|     breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
 | |
| 
 | |
|     g_free(breakpoint);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Remove all matching breakpoints. */
 | |
| void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     CPUBreakpoint *bp, *next;
 | |
| 
 | |
|     QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
 | |
|         if (bp->flags & mask)
 | |
|             cpu_breakpoint_remove_by_ref(env, bp);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* enable or disable single step mode. EXCP_DEBUG is returned by the
 | |
|    CPU loop after each instruction */
 | |
| void cpu_single_step(CPUState *cpu, int enabled)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     if (cpu->singlestep_enabled != enabled) {
 | |
|         cpu->singlestep_enabled = enabled;
 | |
|         if (kvm_enabled()) {
 | |
|             kvm_update_guest_debug(cpu, 0);
 | |
|         } else {
 | |
|             /* must flush all the translated code to avoid inconsistencies */
 | |
|             /* XXX: only flush what is necessary */
 | |
|             CPUArchState *env = cpu->env_ptr;
 | |
|             tb_flush(env);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void cpu_abort(CPUArchState *env, const char *fmt, ...)
 | |
| {
 | |
|     CPUState *cpu = ENV_GET_CPU(env);
 | |
|     va_list ap;
 | |
|     va_list ap2;
 | |
| 
 | |
|     va_start(ap, fmt);
 | |
|     va_copy(ap2, ap);
 | |
|     fprintf(stderr, "qemu: fatal: ");
 | |
|     vfprintf(stderr, fmt, ap);
 | |
|     fprintf(stderr, "\n");
 | |
|     cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
 | |
|     if (qemu_log_enabled()) {
 | |
|         qemu_log("qemu: fatal: ");
 | |
|         qemu_log_vprintf(fmt, ap2);
 | |
|         qemu_log("\n");
 | |
|         log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
 | |
|         qemu_log_flush();
 | |
|         qemu_log_close();
 | |
|     }
 | |
|     va_end(ap2);
 | |
|     va_end(ap);
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     {
 | |
|         struct sigaction act;
 | |
|         sigfillset(&act.sa_mask);
 | |
|         act.sa_handler = SIG_DFL;
 | |
|         sigaction(SIGABRT, &act, NULL);
 | |
|     }
 | |
| #endif
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
 | |
|                                       uintptr_t length)
 | |
| {
 | |
|     uintptr_t start1;
 | |
| 
 | |
|     /* we modify the TLB cache so that the dirty bit will be set again
 | |
|        when accessing the range */
 | |
|     start1 = (uintptr_t)qemu_safe_ram_ptr(start);
 | |
|     /* Check that we don't span multiple blocks - this breaks the
 | |
|        address comparisons below.  */
 | |
|     if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
 | |
|             != (end - 1) - start) {
 | |
|         abort();
 | |
|     }
 | |
|     cpu_tlb_reset_dirty_all(start1, length);
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Note: start and end must be within the same ram block.  */
 | |
| void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
 | |
|                                      int dirty_flags)
 | |
| {
 | |
|     uintptr_t length;
 | |
| 
 | |
|     start &= TARGET_PAGE_MASK;
 | |
|     end = TARGET_PAGE_ALIGN(end);
 | |
| 
 | |
|     length = end - start;
 | |
|     if (length == 0)
 | |
|         return;
 | |
|     cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
 | |
| 
 | |
|     if (tcg_enabled()) {
 | |
|         tlb_reset_dirty_range_all(start, end, length);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int cpu_physical_memory_set_dirty_tracking(int enable)
 | |
| {
 | |
|     int ret = 0;
 | |
|     in_migration = enable;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| hwaddr memory_region_section_get_iotlb(CPUArchState *env,
 | |
|                                        MemoryRegionSection *section,
 | |
|                                        target_ulong vaddr,
 | |
|                                        hwaddr paddr, hwaddr xlat,
 | |
|                                        int prot,
 | |
|                                        target_ulong *address)
 | |
| {
 | |
|     hwaddr iotlb;
 | |
|     CPUWatchpoint *wp;
 | |
| 
 | |
|     if (memory_region_is_ram(section->mr)) {
 | |
|         /* Normal RAM.  */
 | |
|         iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
 | |
|             + xlat;
 | |
|         if (!section->readonly) {
 | |
|             iotlb |= PHYS_SECTION_NOTDIRTY;
 | |
|         } else {
 | |
|             iotlb |= PHYS_SECTION_ROM;
 | |
|         }
 | |
|     } else {
 | |
|         iotlb = section - address_space_memory.dispatch->sections;
 | |
|         iotlb += xlat;
 | |
|     }
 | |
| 
 | |
|     /* Make accesses to pages with watchpoints go via the
 | |
|        watchpoint trap routines.  */
 | |
|     QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | |
|         if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
 | |
|             /* Avoid trapping reads of pages with a write breakpoint. */
 | |
|             if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
 | |
|                 iotlb = PHYS_SECTION_WATCH + paddr;
 | |
|                 *address |= TLB_MMIO;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return iotlb;
 | |
| }
 | |
| #endif /* defined(CONFIG_USER_ONLY) */
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
 | |
|                              uint16_t section);
 | |
| static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
 | |
| 
 | |
| static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc;
 | |
| 
 | |
| /*
 | |
|  * Set a custom physical guest memory alloator.
 | |
|  * Accelerators with unusual needs may need this.  Hopefully, we can
 | |
|  * get rid of it eventually.
 | |
|  */
 | |
| void phys_mem_set_alloc(void *(*alloc)(size_t))
 | |
| {
 | |
|     phys_mem_alloc = alloc;
 | |
| }
 | |
| 
 | |
| static uint16_t phys_section_add(MemoryRegionSection *section)
 | |
| {
 | |
|     /* The physical section number is ORed with a page-aligned
 | |
|      * pointer to produce the iotlb entries.  Thus it should
 | |
|      * never overflow into the page-aligned value.
 | |
|      */
 | |
|     assert(next_map.sections_nb < TARGET_PAGE_SIZE);
 | |
| 
 | |
|     if (next_map.sections_nb == next_map.sections_nb_alloc) {
 | |
|         next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
 | |
|                                          16);
 | |
|         next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
 | |
|                                     next_map.sections_nb_alloc);
 | |
|     }
 | |
|     next_map.sections[next_map.sections_nb] = *section;
 | |
|     memory_region_ref(section->mr);
 | |
|     return next_map.sections_nb++;
 | |
| }
 | |
| 
 | |
| static void phys_section_destroy(MemoryRegion *mr)
 | |
| {
 | |
|     memory_region_unref(mr);
 | |
| 
 | |
|     if (mr->subpage) {
 | |
|         subpage_t *subpage = container_of(mr, subpage_t, iomem);
 | |
|         memory_region_destroy(&subpage->iomem);
 | |
|         g_free(subpage);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void phys_sections_free(PhysPageMap *map)
 | |
| {
 | |
|     while (map->sections_nb > 0) {
 | |
|         MemoryRegionSection *section = &map->sections[--map->sections_nb];
 | |
|         phys_section_destroy(section->mr);
 | |
|     }
 | |
|     g_free(map->sections);
 | |
|     g_free(map->nodes);
 | |
|     g_free(map);
 | |
| }
 | |
| 
 | |
| static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
 | |
| {
 | |
|     subpage_t *subpage;
 | |
|     hwaddr base = section->offset_within_address_space
 | |
|         & TARGET_PAGE_MASK;
 | |
|     MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
 | |
|                                                    next_map.nodes, next_map.sections);
 | |
|     MemoryRegionSection subsection = {
 | |
|         .offset_within_address_space = base,
 | |
|         .size = int128_make64(TARGET_PAGE_SIZE),
 | |
|     };
 | |
|     hwaddr start, end;
 | |
| 
 | |
|     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
 | |
| 
 | |
|     if (!(existing->mr->subpage)) {
 | |
|         subpage = subpage_init(d->as, base);
 | |
|         subsection.mr = &subpage->iomem;
 | |
|         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
 | |
|                       phys_section_add(&subsection));
 | |
|     } else {
 | |
|         subpage = container_of(existing->mr, subpage_t, iomem);
 | |
|     }
 | |
|     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
 | |
|     end = start + int128_get64(section->size) - 1;
 | |
|     subpage_register(subpage, start, end, phys_section_add(section));
 | |
| }
 | |
| 
 | |
| 
 | |
| static void register_multipage(AddressSpaceDispatch *d,
 | |
|                                MemoryRegionSection *section)
 | |
| {
 | |
|     hwaddr start_addr = section->offset_within_address_space;
 | |
|     uint16_t section_index = phys_section_add(section);
 | |
|     uint64_t num_pages = int128_get64(int128_rshift(section->size,
 | |
|                                                     TARGET_PAGE_BITS));
 | |
| 
 | |
|     assert(num_pages);
 | |
|     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
 | |
| }
 | |
| 
 | |
| static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
 | |
| {
 | |
|     AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
 | |
|     AddressSpaceDispatch *d = as->next_dispatch;
 | |
|     MemoryRegionSection now = *section, remain = *section;
 | |
|     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
 | |
| 
 | |
|     if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
 | |
|         uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
 | |
|                        - now.offset_within_address_space;
 | |
| 
 | |
|         now.size = int128_min(int128_make64(left), now.size);
 | |
|         register_subpage(d, &now);
 | |
|     } else {
 | |
|         now.size = int128_zero();
 | |
|     }
 | |
|     while (int128_ne(remain.size, now.size)) {
 | |
|         remain.size = int128_sub(remain.size, now.size);
 | |
|         remain.offset_within_address_space += int128_get64(now.size);
 | |
|         remain.offset_within_region += int128_get64(now.size);
 | |
|         now = remain;
 | |
|         if (int128_lt(remain.size, page_size)) {
 | |
|             register_subpage(d, &now);
 | |
|         } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
 | |
|             now.size = page_size;
 | |
|             register_subpage(d, &now);
 | |
|         } else {
 | |
|             now.size = int128_and(now.size, int128_neg(page_size));
 | |
|             register_multipage(d, &now);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void qemu_flush_coalesced_mmio_buffer(void)
 | |
| {
 | |
|     if (kvm_enabled())
 | |
|         kvm_flush_coalesced_mmio_buffer();
 | |
| }
 | |
| 
 | |
| void qemu_mutex_lock_ramlist(void)
 | |
| {
 | |
|     qemu_mutex_lock(&ram_list.mutex);
 | |
| }
 | |
| 
 | |
| void qemu_mutex_unlock_ramlist(void)
 | |
| {
 | |
|     qemu_mutex_unlock(&ram_list.mutex);
 | |
| }
 | |
| 
 | |
| #ifdef __linux__
 | |
| 
 | |
| #include <sys/vfs.h>
 | |
| 
 | |
| #define HUGETLBFS_MAGIC       0x958458f6
 | |
| 
 | |
| static long gethugepagesize(const char *path)
 | |
| {
 | |
|     struct statfs fs;
 | |
|     int ret;
 | |
| 
 | |
|     do {
 | |
|         ret = statfs(path, &fs);
 | |
|     } while (ret != 0 && errno == EINTR);
 | |
| 
 | |
|     if (ret != 0) {
 | |
|         perror(path);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (fs.f_type != HUGETLBFS_MAGIC)
 | |
|         fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
 | |
| 
 | |
|     return fs.f_bsize;
 | |
| }
 | |
| 
 | |
| static void *file_ram_alloc(RAMBlock *block,
 | |
|                             ram_addr_t memory,
 | |
|                             const char *path)
 | |
| {
 | |
|     char *filename;
 | |
|     char *sanitized_name;
 | |
|     char *c;
 | |
|     void *area;
 | |
|     int fd;
 | |
| #ifdef MAP_POPULATE
 | |
|     int flags;
 | |
| #endif
 | |
|     unsigned long hpagesize;
 | |
| 
 | |
|     hpagesize = gethugepagesize(path);
 | |
|     if (!hpagesize) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (memory < hpagesize) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (kvm_enabled() && !kvm_has_sync_mmu()) {
 | |
|         fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* Make name safe to use with mkstemp by replacing '/' with '_'. */
 | |
|     sanitized_name = g_strdup(block->mr->name);
 | |
|     for (c = sanitized_name; *c != '\0'; c++) {
 | |
|         if (*c == '/')
 | |
|             *c = '_';
 | |
|     }
 | |
| 
 | |
|     filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
 | |
|                                sanitized_name);
 | |
|     g_free(sanitized_name);
 | |
| 
 | |
|     fd = mkstemp(filename);
 | |
|     if (fd < 0) {
 | |
|         perror("unable to create backing store for hugepages");
 | |
|         g_free(filename);
 | |
|         return NULL;
 | |
|     }
 | |
|     unlink(filename);
 | |
|     g_free(filename);
 | |
| 
 | |
|     memory = (memory+hpagesize-1) & ~(hpagesize-1);
 | |
| 
 | |
|     /*
 | |
|      * ftruncate is not supported by hugetlbfs in older
 | |
|      * hosts, so don't bother bailing out on errors.
 | |
|      * If anything goes wrong with it under other filesystems,
 | |
|      * mmap will fail.
 | |
|      */
 | |
|     if (ftruncate(fd, memory))
 | |
|         perror("ftruncate");
 | |
| 
 | |
| #ifdef MAP_POPULATE
 | |
|     /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
 | |
|      * MAP_PRIVATE is requested.  For mem_prealloc we mmap as MAP_SHARED
 | |
|      * to sidestep this quirk.
 | |
|      */
 | |
|     flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
 | |
|     area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
 | |
| #else
 | |
|     area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
 | |
| #endif
 | |
|     if (area == MAP_FAILED) {
 | |
|         perror("file_ram_alloc: can't mmap RAM pages");
 | |
|         close(fd);
 | |
|         return (NULL);
 | |
|     }
 | |
|     block->fd = fd;
 | |
|     return area;
 | |
| }
 | |
| #else
 | |
| static void *file_ram_alloc(RAMBlock *block,
 | |
|                             ram_addr_t memory,
 | |
|                             const char *path)
 | |
| {
 | |
|     fprintf(stderr, "-mem-path not supported on this host\n");
 | |
|     exit(1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static ram_addr_t find_ram_offset(ram_addr_t size)
 | |
| {
 | |
|     RAMBlock *block, *next_block;
 | |
|     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
 | |
| 
 | |
|     assert(size != 0); /* it would hand out same offset multiple times */
 | |
| 
 | |
|     if (QTAILQ_EMPTY(&ram_list.blocks))
 | |
|         return 0;
 | |
| 
 | |
|     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | |
|         ram_addr_t end, next = RAM_ADDR_MAX;
 | |
| 
 | |
|         end = block->offset + block->length;
 | |
| 
 | |
|         QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
 | |
|             if (next_block->offset >= end) {
 | |
|                 next = MIN(next, next_block->offset);
 | |
|             }
 | |
|         }
 | |
|         if (next - end >= size && next - end < mingap) {
 | |
|             offset = end;
 | |
|             mingap = next - end;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (offset == RAM_ADDR_MAX) {
 | |
|         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
 | |
|                 (uint64_t)size);
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
|     return offset;
 | |
| }
 | |
| 
 | |
| ram_addr_t last_ram_offset(void)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t last = 0;
 | |
| 
 | |
|     QTAILQ_FOREACH(block, &ram_list.blocks, next)
 | |
|         last = MAX(last, block->offset + block->length);
 | |
| 
 | |
|     return last;
 | |
| }
 | |
| 
 | |
| static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
 | |
|     if (!qemu_opt_get_bool(qemu_get_machine_opts(),
 | |
|                            "dump-guest-core", true)) {
 | |
|         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
 | |
|         if (ret) {
 | |
|             perror("qemu_madvise");
 | |
|             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
 | |
|                             "but dump_guest_core=off specified\n");
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
 | |
| {
 | |
|     RAMBlock *new_block, *block;
 | |
| 
 | |
|     new_block = NULL;
 | |
|     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (block->offset == addr) {
 | |
|             new_block = block;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     assert(new_block);
 | |
|     assert(!new_block->idstr[0]);
 | |
| 
 | |
|     if (dev) {
 | |
|         char *id = qdev_get_dev_path(dev);
 | |
|         if (id) {
 | |
|             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
 | |
|             g_free(id);
 | |
|         }
 | |
|     }
 | |
|     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
 | |
| 
 | |
|     /* This assumes the iothread lock is taken here too.  */
 | |
|     qemu_mutex_lock_ramlist();
 | |
|     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
 | |
|             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
 | |
|                     new_block->idstr);
 | |
|             abort();
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock_ramlist();
 | |
| }
 | |
| 
 | |
| static int memory_try_enable_merging(void *addr, size_t len)
 | |
| {
 | |
|     if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
 | |
|         /* disabled by the user */
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
 | |
| }
 | |
| 
 | |
| ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
 | |
|                                    MemoryRegion *mr)
 | |
| {
 | |
|     RAMBlock *block, *new_block;
 | |
| 
 | |
|     size = TARGET_PAGE_ALIGN(size);
 | |
|     new_block = g_malloc0(sizeof(*new_block));
 | |
|     new_block->fd = -1;
 | |
| 
 | |
|     /* This assumes the iothread lock is taken here too.  */
 | |
|     qemu_mutex_lock_ramlist();
 | |
|     new_block->mr = mr;
 | |
|     new_block->offset = find_ram_offset(size);
 | |
|     if (host) {
 | |
|         new_block->host = host;
 | |
|         new_block->flags |= RAM_PREALLOC_MASK;
 | |
|     } else if (xen_enabled()) {
 | |
|         if (mem_path) {
 | |
|             fprintf(stderr, "-mem-path not supported with Xen\n");
 | |
|             exit(1);
 | |
|         }
 | |
|         xen_ram_alloc(new_block->offset, size, mr);
 | |
|     } else {
 | |
|         if (mem_path) {
 | |
|             if (phys_mem_alloc != qemu_anon_ram_alloc) {
 | |
|                 /*
 | |
|                  * file_ram_alloc() needs to allocate just like
 | |
|                  * phys_mem_alloc, but we haven't bothered to provide
 | |
|                  * a hook there.
 | |
|                  */
 | |
|                 fprintf(stderr,
 | |
|                         "-mem-path not supported with this accelerator\n");
 | |
|                 exit(1);
 | |
|             }
 | |
|             new_block->host = file_ram_alloc(new_block, size, mem_path);
 | |
|         }
 | |
|         if (!new_block->host) {
 | |
|             new_block->host = phys_mem_alloc(size);
 | |
|             if (!new_block->host) {
 | |
|                 fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
 | |
|                         new_block->mr->name, strerror(errno));
 | |
|                 exit(1);
 | |
|             }
 | |
|             memory_try_enable_merging(new_block->host, size);
 | |
|         }
 | |
|     }
 | |
|     new_block->length = size;
 | |
| 
 | |
|     /* Keep the list sorted from biggest to smallest block.  */
 | |
|     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (block->length < new_block->length) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (block) {
 | |
|         QTAILQ_INSERT_BEFORE(block, new_block, next);
 | |
|     } else {
 | |
|         QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
 | |
|     }
 | |
|     ram_list.mru_block = NULL;
 | |
| 
 | |
|     ram_list.version++;
 | |
|     qemu_mutex_unlock_ramlist();
 | |
| 
 | |
|     ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
 | |
|                                        last_ram_offset() >> TARGET_PAGE_BITS);
 | |
|     memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
 | |
|            0, size >> TARGET_PAGE_BITS);
 | |
|     cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
 | |
| 
 | |
|     qemu_ram_setup_dump(new_block->host, size);
 | |
|     qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
 | |
|     qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
 | |
| 
 | |
|     if (kvm_enabled())
 | |
|         kvm_setup_guest_memory(new_block->host, size);
 | |
| 
 | |
|     return new_block->offset;
 | |
| }
 | |
| 
 | |
| ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
 | |
| {
 | |
|     return qemu_ram_alloc_from_ptr(size, NULL, mr);
 | |
| }
 | |
| 
 | |
| void qemu_ram_free_from_ptr(ram_addr_t addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     /* This assumes the iothread lock is taken here too.  */
 | |
|     qemu_mutex_lock_ramlist();
 | |
|     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (addr == block->offset) {
 | |
|             QTAILQ_REMOVE(&ram_list.blocks, block, next);
 | |
|             ram_list.mru_block = NULL;
 | |
|             ram_list.version++;
 | |
|             g_free(block);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock_ramlist();
 | |
| }
 | |
| 
 | |
| void qemu_ram_free(ram_addr_t addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     /* This assumes the iothread lock is taken here too.  */
 | |
|     qemu_mutex_lock_ramlist();
 | |
|     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (addr == block->offset) {
 | |
|             QTAILQ_REMOVE(&ram_list.blocks, block, next);
 | |
|             ram_list.mru_block = NULL;
 | |
|             ram_list.version++;
 | |
|             if (block->flags & RAM_PREALLOC_MASK) {
 | |
|                 ;
 | |
|             } else if (xen_enabled()) {
 | |
|                 xen_invalidate_map_cache_entry(block->host);
 | |
| #ifndef _WIN32
 | |
|             } else if (block->fd >= 0) {
 | |
|                 munmap(block->host, block->length);
 | |
|                 close(block->fd);
 | |
| #endif
 | |
|             } else {
 | |
|                 qemu_anon_ram_free(block->host, block->length);
 | |
|             }
 | |
|             g_free(block);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock_ramlist();
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifndef _WIN32
 | |
| void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t offset;
 | |
|     int flags;
 | |
|     void *area, *vaddr;
 | |
| 
 | |
|     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | |
|         offset = addr - block->offset;
 | |
|         if (offset < block->length) {
 | |
|             vaddr = block->host + offset;
 | |
|             if (block->flags & RAM_PREALLOC_MASK) {
 | |
|                 ;
 | |
|             } else if (xen_enabled()) {
 | |
|                 abort();
 | |
|             } else {
 | |
|                 flags = MAP_FIXED;
 | |
|                 munmap(vaddr, length);
 | |
|                 if (block->fd >= 0) {
 | |
| #ifdef MAP_POPULATE
 | |
|                     flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
 | |
|                         MAP_PRIVATE;
 | |
| #else
 | |
|                     flags |= MAP_PRIVATE;
 | |
| #endif
 | |
|                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
 | |
|                                 flags, block->fd, offset);
 | |
|                 } else {
 | |
|                     /*
 | |
|                      * Remap needs to match alloc.  Accelerators that
 | |
|                      * set phys_mem_alloc never remap.  If they did,
 | |
|                      * we'd need a remap hook here.
 | |
|                      */
 | |
|                     assert(phys_mem_alloc == qemu_anon_ram_alloc);
 | |
| 
 | |
|                     flags |= MAP_PRIVATE | MAP_ANONYMOUS;
 | |
|                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
 | |
|                                 flags, -1, 0);
 | |
|                 }
 | |
|                 if (area != vaddr) {
 | |
|                     fprintf(stderr, "Could not remap addr: "
 | |
|                             RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
 | |
|                             length, addr);
 | |
|                     exit(1);
 | |
|                 }
 | |
|                 memory_try_enable_merging(vaddr, length);
 | |
|                 qemu_ram_setup_dump(vaddr, length);
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif /* !_WIN32 */
 | |
| 
 | |
| static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     /* The list is protected by the iothread lock here.  */
 | |
|     block = ram_list.mru_block;
 | |
|     if (block && addr - block->offset < block->length) {
 | |
|         goto found;
 | |
|     }
 | |
|     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (addr - block->offset < block->length) {
 | |
|             goto found;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | |
|     abort();
 | |
| 
 | |
| found:
 | |
|     ram_list.mru_block = block;
 | |
|     return block;
 | |
| }
 | |
| 
 | |
| /* Return a host pointer to ram allocated with qemu_ram_alloc.
 | |
|    With the exception of the softmmu code in this file, this should
 | |
|    only be used for local memory (e.g. video ram) that the device owns,
 | |
|    and knows it isn't going to access beyond the end of the block.
 | |
| 
 | |
|    It should not be used for general purpose DMA.
 | |
|    Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
 | |
|  */
 | |
| void *qemu_get_ram_ptr(ram_addr_t addr)
 | |
| {
 | |
|     RAMBlock *block = qemu_get_ram_block(addr);
 | |
| 
 | |
|     if (xen_enabled()) {
 | |
|         /* We need to check if the requested address is in the RAM
 | |
|          * because we don't want to map the entire memory in QEMU.
 | |
|          * In that case just map until the end of the page.
 | |
|          */
 | |
|         if (block->offset == 0) {
 | |
|             return xen_map_cache(addr, 0, 0);
 | |
|         } else if (block->host == NULL) {
 | |
|             block->host =
 | |
|                 xen_map_cache(block->offset, block->length, 1);
 | |
|         }
 | |
|     }
 | |
|     return block->host + (addr - block->offset);
 | |
| }
 | |
| 
 | |
| /* Return a host pointer to ram allocated with qemu_ram_alloc.  Same as
 | |
|  * qemu_get_ram_ptr but do not touch ram_list.mru_block.
 | |
|  *
 | |
|  * ??? Is this still necessary?
 | |
|  */
 | |
| static void *qemu_safe_ram_ptr(ram_addr_t addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     /* The list is protected by the iothread lock here.  */
 | |
|     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (addr - block->offset < block->length) {
 | |
|             if (xen_enabled()) {
 | |
|                 /* We need to check if the requested address is in the RAM
 | |
|                  * because we don't want to map the entire memory in QEMU.
 | |
|                  * In that case just map until the end of the page.
 | |
|                  */
 | |
|                 if (block->offset == 0) {
 | |
|                     return xen_map_cache(addr, 0, 0);
 | |
|                 } else if (block->host == NULL) {
 | |
|                     block->host =
 | |
|                         xen_map_cache(block->offset, block->length, 1);
 | |
|                 }
 | |
|             }
 | |
|             return block->host + (addr - block->offset);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | |
|     abort();
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
 | |
|  * but takes a size argument */
 | |
| static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
 | |
| {
 | |
|     if (*size == 0) {
 | |
|         return NULL;
 | |
|     }
 | |
|     if (xen_enabled()) {
 | |
|         return xen_map_cache(addr, *size, 1);
 | |
|     } else {
 | |
|         RAMBlock *block;
 | |
| 
 | |
|         QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | |
|             if (addr - block->offset < block->length) {
 | |
|                 if (addr - block->offset + *size > block->length)
 | |
|                     *size = block->length - addr + block->offset;
 | |
|                 return block->host + (addr - block->offset);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Some of the softmmu routines need to translate from a host pointer
 | |
|    (typically a TLB entry) back to a ram offset.  */
 | |
| MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     uint8_t *host = ptr;
 | |
| 
 | |
|     if (xen_enabled()) {
 | |
|         *ram_addr = xen_ram_addr_from_mapcache(ptr);
 | |
|         return qemu_get_ram_block(*ram_addr)->mr;
 | |
|     }
 | |
| 
 | |
|     block = ram_list.mru_block;
 | |
|     if (block && block->host && host - block->host < block->length) {
 | |
|         goto found;
 | |
|     }
 | |
| 
 | |
|     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | |
|         /* This case append when the block is not mapped. */
 | |
|         if (block->host == NULL) {
 | |
|             continue;
 | |
|         }
 | |
|         if (host - block->host < block->length) {
 | |
|             goto found;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| 
 | |
| found:
 | |
|     *ram_addr = block->offset + (host - block->host);
 | |
|     return block->mr;
 | |
| }
 | |
| 
 | |
| static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
 | |
|                                uint64_t val, unsigned size)
 | |
| {
 | |
|     int dirty_flags;
 | |
|     dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
 | |
|     if (!(dirty_flags & CODE_DIRTY_FLAG)) {
 | |
|         tb_invalidate_phys_page_fast(ram_addr, size);
 | |
|         dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
 | |
|     }
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         stb_p(qemu_get_ram_ptr(ram_addr), val);
 | |
|         break;
 | |
|     case 2:
 | |
|         stw_p(qemu_get_ram_ptr(ram_addr), val);
 | |
|         break;
 | |
|     case 4:
 | |
|         stl_p(qemu_get_ram_ptr(ram_addr), val);
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
 | |
|     cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
 | |
|     /* we remove the notdirty callback only if the code has been
 | |
|        flushed */
 | |
|     if (dirty_flags == 0xff) {
 | |
|         CPUArchState *env = current_cpu->env_ptr;
 | |
|         tlb_set_dirty(env, env->mem_io_vaddr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
 | |
|                                  unsigned size, bool is_write)
 | |
| {
 | |
|     return is_write;
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps notdirty_mem_ops = {
 | |
|     .write = notdirty_mem_write,
 | |
|     .valid.accepts = notdirty_mem_accepts,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| /* Generate a debug exception if a watchpoint has been hit.  */
 | |
| static void check_watchpoint(int offset, int len_mask, int flags)
 | |
| {
 | |
|     CPUArchState *env = current_cpu->env_ptr;
 | |
|     target_ulong pc, cs_base;
 | |
|     target_ulong vaddr;
 | |
|     CPUWatchpoint *wp;
 | |
|     int cpu_flags;
 | |
| 
 | |
|     if (env->watchpoint_hit) {
 | |
|         /* We re-entered the check after replacing the TB. Now raise
 | |
|          * the debug interrupt so that is will trigger after the
 | |
|          * current instruction. */
 | |
|         cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
 | |
|         return;
 | |
|     }
 | |
|     vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
 | |
|     QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | |
|         if ((vaddr == (wp->vaddr & len_mask) ||
 | |
|              (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
 | |
|             wp->flags |= BP_WATCHPOINT_HIT;
 | |
|             if (!env->watchpoint_hit) {
 | |
|                 env->watchpoint_hit = wp;
 | |
|                 tb_check_watchpoint(env);
 | |
|                 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
 | |
|                     env->exception_index = EXCP_DEBUG;
 | |
|                     cpu_loop_exit(env);
 | |
|                 } else {
 | |
|                     cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
 | |
|                     tb_gen_code(env, pc, cs_base, cpu_flags, 1);
 | |
|                     cpu_resume_from_signal(env, NULL);
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             wp->flags &= ~BP_WATCHPOINT_HIT;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
 | |
|    so these check for a hit then pass through to the normal out-of-line
 | |
|    phys routines.  */
 | |
| static uint64_t watch_mem_read(void *opaque, hwaddr addr,
 | |
|                                unsigned size)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
 | |
|     switch (size) {
 | |
|     case 1: return ldub_phys(addr);
 | |
|     case 2: return lduw_phys(addr);
 | |
|     case 4: return ldl_phys(addr);
 | |
|     default: abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void watch_mem_write(void *opaque, hwaddr addr,
 | |
|                             uint64_t val, unsigned size)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         stb_phys(addr, val);
 | |
|         break;
 | |
|     case 2:
 | |
|         stw_phys(addr, val);
 | |
|         break;
 | |
|     case 4:
 | |
|         stl_phys(addr, val);
 | |
|         break;
 | |
|     default: abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps watch_mem_ops = {
 | |
|     .read = watch_mem_read,
 | |
|     .write = watch_mem_write,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static uint64_t subpage_read(void *opaque, hwaddr addr,
 | |
|                              unsigned len)
 | |
| {
 | |
|     subpage_t *subpage = opaque;
 | |
|     uint8_t buf[4];
 | |
| 
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
 | |
|            subpage, len, addr);
 | |
| #endif
 | |
|     address_space_read(subpage->as, addr + subpage->base, buf, len);
 | |
|     switch (len) {
 | |
|     case 1:
 | |
|         return ldub_p(buf);
 | |
|     case 2:
 | |
|         return lduw_p(buf);
 | |
|     case 4:
 | |
|         return ldl_p(buf);
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void subpage_write(void *opaque, hwaddr addr,
 | |
|                           uint64_t value, unsigned len)
 | |
| {
 | |
|     subpage_t *subpage = opaque;
 | |
|     uint8_t buf[4];
 | |
| 
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: subpage %p len %u addr " TARGET_FMT_plx
 | |
|            " value %"PRIx64"\n",
 | |
|            __func__, subpage, len, addr, value);
 | |
| #endif
 | |
|     switch (len) {
 | |
|     case 1:
 | |
|         stb_p(buf, value);
 | |
|         break;
 | |
|     case 2:
 | |
|         stw_p(buf, value);
 | |
|         break;
 | |
|     case 4:
 | |
|         stl_p(buf, value);
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     address_space_write(subpage->as, addr + subpage->base, buf, len);
 | |
| }
 | |
| 
 | |
| static bool subpage_accepts(void *opaque, hwaddr addr,
 | |
|                             unsigned len, bool is_write)
 | |
| {
 | |
|     subpage_t *subpage = opaque;
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
 | |
|            __func__, subpage, is_write ? 'w' : 'r', len, addr);
 | |
| #endif
 | |
| 
 | |
|     return address_space_access_valid(subpage->as, addr + subpage->base,
 | |
|                                       len, is_write);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps subpage_ops = {
 | |
|     .read = subpage_read,
 | |
|     .write = subpage_write,
 | |
|     .valid.accepts = subpage_accepts,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
 | |
|                              uint16_t section)
 | |
| {
 | |
|     int idx, eidx;
 | |
| 
 | |
|     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
 | |
|         return -1;
 | |
|     idx = SUBPAGE_IDX(start);
 | |
|     eidx = SUBPAGE_IDX(end);
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
 | |
|            __func__, mmio, start, end, idx, eidx, section);
 | |
| #endif
 | |
|     for (; idx <= eidx; idx++) {
 | |
|         mmio->sub_section[idx] = section;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
 | |
| {
 | |
|     subpage_t *mmio;
 | |
| 
 | |
|     mmio = g_malloc0(sizeof(subpage_t));
 | |
| 
 | |
|     mmio->as = as;
 | |
|     mmio->base = base;
 | |
|     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
 | |
|                           "subpage", TARGET_PAGE_SIZE);
 | |
|     mmio->iomem.subpage = true;
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
 | |
|            mmio, base, TARGET_PAGE_SIZE);
 | |
| #endif
 | |
|     subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
 | |
| 
 | |
|     return mmio;
 | |
| }
 | |
| 
 | |
| static uint16_t dummy_section(MemoryRegion *mr)
 | |
| {
 | |
|     MemoryRegionSection section = {
 | |
|         .mr = mr,
 | |
|         .offset_within_address_space = 0,
 | |
|         .offset_within_region = 0,
 | |
|         .size = int128_2_64(),
 | |
|     };
 | |
| 
 | |
|     return phys_section_add(§ion);
 | |
| }
 | |
| 
 | |
| MemoryRegion *iotlb_to_region(hwaddr index)
 | |
| {
 | |
|     return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
 | |
| }
 | |
| 
 | |
| static void io_mem_init(void)
 | |
| {
 | |
|     memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
 | |
|     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
 | |
|                           "unassigned", UINT64_MAX);
 | |
|     memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL,
 | |
|                           "notdirty", UINT64_MAX);
 | |
|     memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
 | |
|                           "watch", UINT64_MAX);
 | |
| }
 | |
| 
 | |
| static void mem_begin(MemoryListener *listener)
 | |
| {
 | |
|     AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
 | |
|     AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
 | |
| 
 | |
|     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
 | |
|     d->as = as;
 | |
|     as->next_dispatch = d;
 | |
| }
 | |
| 
 | |
| static void mem_commit(MemoryListener *listener)
 | |
| {
 | |
|     AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
 | |
|     AddressSpaceDispatch *cur = as->dispatch;
 | |
|     AddressSpaceDispatch *next = as->next_dispatch;
 | |
| 
 | |
|     next->nodes = next_map.nodes;
 | |
|     next->sections = next_map.sections;
 | |
| 
 | |
|     as->dispatch = next;
 | |
|     g_free(cur);
 | |
| }
 | |
| 
 | |
| static void core_begin(MemoryListener *listener)
 | |
| {
 | |
|     uint16_t n;
 | |
| 
 | |
|     prev_map = g_new(PhysPageMap, 1);
 | |
|     *prev_map = next_map;
 | |
| 
 | |
|     memset(&next_map, 0, sizeof(next_map));
 | |
|     n = dummy_section(&io_mem_unassigned);
 | |
|     assert(n == PHYS_SECTION_UNASSIGNED);
 | |
|     n = dummy_section(&io_mem_notdirty);
 | |
|     assert(n == PHYS_SECTION_NOTDIRTY);
 | |
|     n = dummy_section(&io_mem_rom);
 | |
|     assert(n == PHYS_SECTION_ROM);
 | |
|     n = dummy_section(&io_mem_watch);
 | |
|     assert(n == PHYS_SECTION_WATCH);
 | |
| }
 | |
| 
 | |
| /* This listener's commit run after the other AddressSpaceDispatch listeners'.
 | |
|  * All AddressSpaceDispatch instances have switched to the next map.
 | |
|  */
 | |
| static void core_commit(MemoryListener *listener)
 | |
| {
 | |
|     phys_sections_free(prev_map);
 | |
| }
 | |
| 
 | |
| static void tcg_commit(MemoryListener *listener)
 | |
| {
 | |
|     CPUState *cpu;
 | |
| 
 | |
|     /* since each CPU stores ram addresses in its TLB cache, we must
 | |
|        reset the modified entries */
 | |
|     /* XXX: slow ! */
 | |
|     CPU_FOREACH(cpu) {
 | |
|         CPUArchState *env = cpu->env_ptr;
 | |
| 
 | |
|         tlb_flush(env, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void core_log_global_start(MemoryListener *listener)
 | |
| {
 | |
|     cpu_physical_memory_set_dirty_tracking(1);
 | |
| }
 | |
| 
 | |
| static void core_log_global_stop(MemoryListener *listener)
 | |
| {
 | |
|     cpu_physical_memory_set_dirty_tracking(0);
 | |
| }
 | |
| 
 | |
| static MemoryListener core_memory_listener = {
 | |
|     .begin = core_begin,
 | |
|     .commit = core_commit,
 | |
|     .log_global_start = core_log_global_start,
 | |
|     .log_global_stop = core_log_global_stop,
 | |
|     .priority = 1,
 | |
| };
 | |
| 
 | |
| static MemoryListener tcg_memory_listener = {
 | |
|     .commit = tcg_commit,
 | |
| };
 | |
| 
 | |
| void address_space_init_dispatch(AddressSpace *as)
 | |
| {
 | |
|     as->dispatch = NULL;
 | |
|     as->dispatch_listener = (MemoryListener) {
 | |
|         .begin = mem_begin,
 | |
|         .commit = mem_commit,
 | |
|         .region_add = mem_add,
 | |
|         .region_nop = mem_add,
 | |
|         .priority = 0,
 | |
|     };
 | |
|     memory_listener_register(&as->dispatch_listener, as);
 | |
| }
 | |
| 
 | |
| void address_space_destroy_dispatch(AddressSpace *as)
 | |
| {
 | |
|     AddressSpaceDispatch *d = as->dispatch;
 | |
| 
 | |
|     memory_listener_unregister(&as->dispatch_listener);
 | |
|     g_free(d);
 | |
|     as->dispatch = NULL;
 | |
| }
 | |
| 
 | |
| static void memory_map_init(void)
 | |
| {
 | |
|     system_memory = g_malloc(sizeof(*system_memory));
 | |
|     memory_region_init(system_memory, NULL, "system", INT64_MAX);
 | |
|     address_space_init(&address_space_memory, system_memory, "memory");
 | |
| 
 | |
|     system_io = g_malloc(sizeof(*system_io));
 | |
|     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
 | |
|                           65536);
 | |
|     address_space_init(&address_space_io, system_io, "I/O");
 | |
| 
 | |
|     memory_listener_register(&core_memory_listener, &address_space_memory);
 | |
|     if (tcg_enabled()) {
 | |
|         memory_listener_register(&tcg_memory_listener, &address_space_memory);
 | |
|     }
 | |
| }
 | |
| 
 | |
| MemoryRegion *get_system_memory(void)
 | |
| {
 | |
|     return system_memory;
 | |
| }
 | |
| 
 | |
| MemoryRegion *get_system_io(void)
 | |
| {
 | |
|     return system_io;
 | |
| }
 | |
| 
 | |
| #endif /* !defined(CONFIG_USER_ONLY) */
 | |
| 
 | |
| /* physical memory access (slow version, mainly for debug) */
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
 | |
|                         uint8_t *buf, int len, int is_write)
 | |
| {
 | |
|     int l, flags;
 | |
|     target_ulong page;
 | |
|     void * p;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         flags = page_get_flags(page);
 | |
|         if (!(flags & PAGE_VALID))
 | |
|             return -1;
 | |
|         if (is_write) {
 | |
|             if (!(flags & PAGE_WRITE))
 | |
|                 return -1;
 | |
|             /* XXX: this code should not depend on lock_user */
 | |
|             if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
 | |
|                 return -1;
 | |
|             memcpy(p, buf, l);
 | |
|             unlock_user(p, addr, l);
 | |
|         } else {
 | |
|             if (!(flags & PAGE_READ))
 | |
|                 return -1;
 | |
|             /* XXX: this code should not depend on lock_user */
 | |
|             if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
 | |
|                 return -1;
 | |
|             memcpy(buf, p, l);
 | |
|             unlock_user(p, addr, 0);
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static void invalidate_and_set_dirty(hwaddr addr,
 | |
|                                      hwaddr length)
 | |
| {
 | |
|     if (!cpu_physical_memory_is_dirty(addr)) {
 | |
|         /* invalidate code */
 | |
|         tb_invalidate_phys_page_range(addr, addr + length, 0);
 | |
|         /* set dirty bit */
 | |
|         cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
 | |
|     }
 | |
|     xen_modified_memory(addr, length);
 | |
| }
 | |
| 
 | |
| static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
 | |
| {
 | |
|     if (memory_region_is_ram(mr)) {
 | |
|         return !(is_write && mr->readonly);
 | |
|     }
 | |
|     if (memory_region_is_romd(mr)) {
 | |
|         return !is_write;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
 | |
| {
 | |
|     unsigned access_size_max = mr->ops->valid.max_access_size;
 | |
| 
 | |
|     /* Regions are assumed to support 1-4 byte accesses unless
 | |
|        otherwise specified.  */
 | |
|     if (access_size_max == 0) {
 | |
|         access_size_max = 4;
 | |
|     }
 | |
| 
 | |
|     /* Bound the maximum access by the alignment of the address.  */
 | |
|     if (!mr->ops->impl.unaligned) {
 | |
|         unsigned align_size_max = addr & -addr;
 | |
|         if (align_size_max != 0 && align_size_max < access_size_max) {
 | |
|             access_size_max = align_size_max;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Don't attempt accesses larger than the maximum.  */
 | |
|     if (l > access_size_max) {
 | |
|         l = access_size_max;
 | |
|     }
 | |
|     if (l & (l - 1)) {
 | |
|         l = 1 << (qemu_fls(l) - 1);
 | |
|     }
 | |
| 
 | |
|     return l;
 | |
| }
 | |
| 
 | |
| bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
 | |
|                       int len, bool is_write)
 | |
| {
 | |
|     hwaddr l;
 | |
|     uint8_t *ptr;
 | |
|     uint64_t val;
 | |
|     hwaddr addr1;
 | |
|     MemoryRegion *mr;
 | |
|     bool error = false;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         l = len;
 | |
|         mr = address_space_translate(as, addr, &addr1, &l, is_write);
 | |
| 
 | |
|         if (is_write) {
 | |
|             if (!memory_access_is_direct(mr, is_write)) {
 | |
|                 l = memory_access_size(mr, l, addr1);
 | |
|                 /* XXX: could force current_cpu to NULL to avoid
 | |
|                    potential bugs */
 | |
|                 switch (l) {
 | |
|                 case 8:
 | |
|                     /* 64 bit write access */
 | |
|                     val = ldq_p(buf);
 | |
|                     error |= io_mem_write(mr, addr1, val, 8);
 | |
|                     break;
 | |
|                 case 4:
 | |
|                     /* 32 bit write access */
 | |
|                     val = ldl_p(buf);
 | |
|                     error |= io_mem_write(mr, addr1, val, 4);
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     /* 16 bit write access */
 | |
|                     val = lduw_p(buf);
 | |
|                     error |= io_mem_write(mr, addr1, val, 2);
 | |
|                     break;
 | |
|                 case 1:
 | |
|                     /* 8 bit write access */
 | |
|                     val = ldub_p(buf);
 | |
|                     error |= io_mem_write(mr, addr1, val, 1);
 | |
|                     break;
 | |
|                 default:
 | |
|                     abort();
 | |
|                 }
 | |
|             } else {
 | |
|                 addr1 += memory_region_get_ram_addr(mr);
 | |
|                 /* RAM case */
 | |
|                 ptr = qemu_get_ram_ptr(addr1);
 | |
|                 memcpy(ptr, buf, l);
 | |
|                 invalidate_and_set_dirty(addr1, l);
 | |
|             }
 | |
|         } else {
 | |
|             if (!memory_access_is_direct(mr, is_write)) {
 | |
|                 /* I/O case */
 | |
|                 l = memory_access_size(mr, l, addr1);
 | |
|                 switch (l) {
 | |
|                 case 8:
 | |
|                     /* 64 bit read access */
 | |
|                     error |= io_mem_read(mr, addr1, &val, 8);
 | |
|                     stq_p(buf, val);
 | |
|                     break;
 | |
|                 case 4:
 | |
|                     /* 32 bit read access */
 | |
|                     error |= io_mem_read(mr, addr1, &val, 4);
 | |
|                     stl_p(buf, val);
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     /* 16 bit read access */
 | |
|                     error |= io_mem_read(mr, addr1, &val, 2);
 | |
|                     stw_p(buf, val);
 | |
|                     break;
 | |
|                 case 1:
 | |
|                     /* 8 bit read access */
 | |
|                     error |= io_mem_read(mr, addr1, &val, 1);
 | |
|                     stb_p(buf, val);
 | |
|                     break;
 | |
|                 default:
 | |
|                     abort();
 | |
|                 }
 | |
|             } else {
 | |
|                 /* RAM case */
 | |
|                 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
 | |
|                 memcpy(buf, ptr, l);
 | |
|             }
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
| 
 | |
|     return error;
 | |
| }
 | |
| 
 | |
| bool address_space_write(AddressSpace *as, hwaddr addr,
 | |
|                          const uint8_t *buf, int len)
 | |
| {
 | |
|     return address_space_rw(as, addr, (uint8_t *)buf, len, true);
 | |
| }
 | |
| 
 | |
| bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
 | |
| {
 | |
|     return address_space_rw(as, addr, buf, len, false);
 | |
| }
 | |
| 
 | |
| 
 | |
| void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
 | |
|                             int len, int is_write)
 | |
| {
 | |
|     address_space_rw(&address_space_memory, addr, buf, len, is_write);
 | |
| }
 | |
| 
 | |
| /* used for ROM loading : can write in RAM and ROM */
 | |
| void cpu_physical_memory_write_rom(hwaddr addr,
 | |
|                                    const uint8_t *buf, int len)
 | |
| {
 | |
|     hwaddr l;
 | |
|     uint8_t *ptr;
 | |
|     hwaddr addr1;
 | |
|     MemoryRegion *mr;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         l = len;
 | |
|         mr = address_space_translate(&address_space_memory,
 | |
|                                      addr, &addr1, &l, true);
 | |
| 
 | |
|         if (!(memory_region_is_ram(mr) ||
 | |
|               memory_region_is_romd(mr))) {
 | |
|             /* do nothing */
 | |
|         } else {
 | |
|             addr1 += memory_region_get_ram_addr(mr);
 | |
|             /* ROM/RAM case */
 | |
|             ptr = qemu_get_ram_ptr(addr1);
 | |
|             memcpy(ptr, buf, l);
 | |
|             invalidate_and_set_dirty(addr1, l);
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     MemoryRegion *mr;
 | |
|     void *buffer;
 | |
|     hwaddr addr;
 | |
|     hwaddr len;
 | |
| } BounceBuffer;
 | |
| 
 | |
| static BounceBuffer bounce;
 | |
| 
 | |
| typedef struct MapClient {
 | |
|     void *opaque;
 | |
|     void (*callback)(void *opaque);
 | |
|     QLIST_ENTRY(MapClient) link;
 | |
| } MapClient;
 | |
| 
 | |
| static QLIST_HEAD(map_client_list, MapClient) map_client_list
 | |
|     = QLIST_HEAD_INITIALIZER(map_client_list);
 | |
| 
 | |
| void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
 | |
| {
 | |
|     MapClient *client = g_malloc(sizeof(*client));
 | |
| 
 | |
|     client->opaque = opaque;
 | |
|     client->callback = callback;
 | |
|     QLIST_INSERT_HEAD(&map_client_list, client, link);
 | |
|     return client;
 | |
| }
 | |
| 
 | |
| static void cpu_unregister_map_client(void *_client)
 | |
| {
 | |
|     MapClient *client = (MapClient *)_client;
 | |
| 
 | |
|     QLIST_REMOVE(client, link);
 | |
|     g_free(client);
 | |
| }
 | |
| 
 | |
| static void cpu_notify_map_clients(void)
 | |
| {
 | |
|     MapClient *client;
 | |
| 
 | |
|     while (!QLIST_EMPTY(&map_client_list)) {
 | |
|         client = QLIST_FIRST(&map_client_list);
 | |
|         client->callback(client->opaque);
 | |
|         cpu_unregister_map_client(client);
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
 | |
| {
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr l, xlat;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         l = len;
 | |
|         mr = address_space_translate(as, addr, &xlat, &l, is_write);
 | |
|         if (!memory_access_is_direct(mr, is_write)) {
 | |
|             l = memory_access_size(mr, l, addr);
 | |
|             if (!memory_region_access_valid(mr, xlat, l, is_write)) {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         len -= l;
 | |
|         addr += l;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /* Map a physical memory region into a host virtual address.
 | |
|  * May map a subset of the requested range, given by and returned in *plen.
 | |
|  * May return NULL if resources needed to perform the mapping are exhausted.
 | |
|  * Use only for reads OR writes - not for read-modify-write operations.
 | |
|  * Use cpu_register_map_client() to know when retrying the map operation is
 | |
|  * likely to succeed.
 | |
|  */
 | |
| void *address_space_map(AddressSpace *as,
 | |
|                         hwaddr addr,
 | |
|                         hwaddr *plen,
 | |
|                         bool is_write)
 | |
| {
 | |
|     hwaddr len = *plen;
 | |
|     hwaddr done = 0;
 | |
|     hwaddr l, xlat, base;
 | |
|     MemoryRegion *mr, *this_mr;
 | |
|     ram_addr_t raddr;
 | |
| 
 | |
|     if (len == 0) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     l = len;
 | |
|     mr = address_space_translate(as, addr, &xlat, &l, is_write);
 | |
|     if (!memory_access_is_direct(mr, is_write)) {
 | |
|         if (bounce.buffer) {
 | |
|             return NULL;
 | |
|         }
 | |
|         bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
 | |
|         bounce.addr = addr;
 | |
|         bounce.len = l;
 | |
| 
 | |
|         memory_region_ref(mr);
 | |
|         bounce.mr = mr;
 | |
|         if (!is_write) {
 | |
|             address_space_read(as, addr, bounce.buffer, l);
 | |
|         }
 | |
| 
 | |
|         *plen = l;
 | |
|         return bounce.buffer;
 | |
|     }
 | |
| 
 | |
|     base = xlat;
 | |
|     raddr = memory_region_get_ram_addr(mr);
 | |
| 
 | |
|     for (;;) {
 | |
|         len -= l;
 | |
|         addr += l;
 | |
|         done += l;
 | |
|         if (len == 0) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         l = len;
 | |
|         this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
 | |
|         if (this_mr != mr || xlat != base + done) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     memory_region_ref(mr);
 | |
|     *plen = done;
 | |
|     return qemu_ram_ptr_length(raddr + base, plen);
 | |
| }
 | |
| 
 | |
| /* Unmaps a memory region previously mapped by address_space_map().
 | |
|  * Will also mark the memory as dirty if is_write == 1.  access_len gives
 | |
|  * the amount of memory that was actually read or written by the caller.
 | |
|  */
 | |
| void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
 | |
|                          int is_write, hwaddr access_len)
 | |
| {
 | |
|     if (buffer != bounce.buffer) {
 | |
|         MemoryRegion *mr;
 | |
|         ram_addr_t addr1;
 | |
| 
 | |
|         mr = qemu_ram_addr_from_host(buffer, &addr1);
 | |
|         assert(mr != NULL);
 | |
|         if (is_write) {
 | |
|             while (access_len) {
 | |
|                 unsigned l;
 | |
|                 l = TARGET_PAGE_SIZE;
 | |
|                 if (l > access_len)
 | |
|                     l = access_len;
 | |
|                 invalidate_and_set_dirty(addr1, l);
 | |
|                 addr1 += l;
 | |
|                 access_len -= l;
 | |
|             }
 | |
|         }
 | |
|         if (xen_enabled()) {
 | |
|             xen_invalidate_map_cache_entry(buffer);
 | |
|         }
 | |
|         memory_region_unref(mr);
 | |
|         return;
 | |
|     }
 | |
|     if (is_write) {
 | |
|         address_space_write(as, bounce.addr, bounce.buffer, access_len);
 | |
|     }
 | |
|     qemu_vfree(bounce.buffer);
 | |
|     bounce.buffer = NULL;
 | |
|     memory_region_unref(bounce.mr);
 | |
|     cpu_notify_map_clients();
 | |
| }
 | |
| 
 | |
| void *cpu_physical_memory_map(hwaddr addr,
 | |
|                               hwaddr *plen,
 | |
|                               int is_write)
 | |
| {
 | |
|     return address_space_map(&address_space_memory, addr, plen, is_write);
 | |
| }
 | |
| 
 | |
| void cpu_physical_memory_unmap(void *buffer, hwaddr len,
 | |
|                                int is_write, hwaddr access_len)
 | |
| {
 | |
|     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| static inline uint32_t ldl_phys_internal(hwaddr addr,
 | |
|                                          enum device_endian endian)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     uint64_t val;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr l = 4;
 | |
|     hwaddr addr1;
 | |
| 
 | |
|     mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
 | |
|                                  false);
 | |
|     if (l < 4 || !memory_access_is_direct(mr, false)) {
 | |
|         /* I/O case */
 | |
|         io_mem_read(mr, addr1, &val, 4);
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|         if (endian == DEVICE_LITTLE_ENDIAN) {
 | |
|             val = bswap32(val);
 | |
|         }
 | |
| #else
 | |
|         if (endian == DEVICE_BIG_ENDIAN) {
 | |
|             val = bswap32(val);
 | |
|         }
 | |
| #endif
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
 | |
|                                 & TARGET_PAGE_MASK)
 | |
|                                + addr1);
 | |
|         switch (endian) {
 | |
|         case DEVICE_LITTLE_ENDIAN:
 | |
|             val = ldl_le_p(ptr);
 | |
|             break;
 | |
|         case DEVICE_BIG_ENDIAN:
 | |
|             val = ldl_be_p(ptr);
 | |
|             break;
 | |
|         default:
 | |
|             val = ldl_p(ptr);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| uint32_t ldl_phys(hwaddr addr)
 | |
| {
 | |
|     return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint32_t ldl_le_phys(hwaddr addr)
 | |
| {
 | |
|     return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint32_t ldl_be_phys(hwaddr addr)
 | |
| {
 | |
|     return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| static inline uint64_t ldq_phys_internal(hwaddr addr,
 | |
|                                          enum device_endian endian)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     uint64_t val;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr l = 8;
 | |
|     hwaddr addr1;
 | |
| 
 | |
|     mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
 | |
|                                  false);
 | |
|     if (l < 8 || !memory_access_is_direct(mr, false)) {
 | |
|         /* I/O case */
 | |
|         io_mem_read(mr, addr1, &val, 8);
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|         if (endian == DEVICE_LITTLE_ENDIAN) {
 | |
|             val = bswap64(val);
 | |
|         }
 | |
| #else
 | |
|         if (endian == DEVICE_BIG_ENDIAN) {
 | |
|             val = bswap64(val);
 | |
|         }
 | |
| #endif
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
 | |
|                                 & TARGET_PAGE_MASK)
 | |
|                                + addr1);
 | |
|         switch (endian) {
 | |
|         case DEVICE_LITTLE_ENDIAN:
 | |
|             val = ldq_le_p(ptr);
 | |
|             break;
 | |
|         case DEVICE_BIG_ENDIAN:
 | |
|             val = ldq_be_p(ptr);
 | |
|             break;
 | |
|         default:
 | |
|             val = ldq_p(ptr);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| uint64_t ldq_phys(hwaddr addr)
 | |
| {
 | |
|     return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint64_t ldq_le_phys(hwaddr addr)
 | |
| {
 | |
|     return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint64_t ldq_be_phys(hwaddr addr)
 | |
| {
 | |
|     return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| uint32_t ldub_phys(hwaddr addr)
 | |
| {
 | |
|     uint8_t val;
 | |
|     cpu_physical_memory_read(addr, &val, 1);
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| static inline uint32_t lduw_phys_internal(hwaddr addr,
 | |
|                                           enum device_endian endian)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     uint64_t val;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr l = 2;
 | |
|     hwaddr addr1;
 | |
| 
 | |
|     mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
 | |
|                                  false);
 | |
|     if (l < 2 || !memory_access_is_direct(mr, false)) {
 | |
|         /* I/O case */
 | |
|         io_mem_read(mr, addr1, &val, 2);
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|         if (endian == DEVICE_LITTLE_ENDIAN) {
 | |
|             val = bswap16(val);
 | |
|         }
 | |
| #else
 | |
|         if (endian == DEVICE_BIG_ENDIAN) {
 | |
|             val = bswap16(val);
 | |
|         }
 | |
| #endif
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
 | |
|                                 & TARGET_PAGE_MASK)
 | |
|                                + addr1);
 | |
|         switch (endian) {
 | |
|         case DEVICE_LITTLE_ENDIAN:
 | |
|             val = lduw_le_p(ptr);
 | |
|             break;
 | |
|         case DEVICE_BIG_ENDIAN:
 | |
|             val = lduw_be_p(ptr);
 | |
|             break;
 | |
|         default:
 | |
|             val = lduw_p(ptr);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| uint32_t lduw_phys(hwaddr addr)
 | |
| {
 | |
|     return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint32_t lduw_le_phys(hwaddr addr)
 | |
| {
 | |
|     return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint32_t lduw_be_phys(hwaddr addr)
 | |
| {
 | |
|     return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned. The ram page is not masked as dirty
 | |
|    and the code inside is not invalidated. It is useful if the dirty
 | |
|    bits are used to track modified PTEs */
 | |
| void stl_phys_notdirty(hwaddr addr, uint32_t val)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr l = 4;
 | |
|     hwaddr addr1;
 | |
| 
 | |
|     mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
 | |
|                                  true);
 | |
|     if (l < 4 || !memory_access_is_direct(mr, true)) {
 | |
|         io_mem_write(mr, addr1, val, 4);
 | |
|     } else {
 | |
|         addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
 | |
|         ptr = qemu_get_ram_ptr(addr1);
 | |
|         stl_p(ptr, val);
 | |
| 
 | |
|         if (unlikely(in_migration)) {
 | |
|             if (!cpu_physical_memory_is_dirty(addr1)) {
 | |
|                 /* invalidate code */
 | |
|                 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
 | |
|                 /* set dirty bit */
 | |
|                 cpu_physical_memory_set_dirty_flags(
 | |
|                     addr1, (0xff & ~CODE_DIRTY_FLAG));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| static inline void stl_phys_internal(hwaddr addr, uint32_t val,
 | |
|                                      enum device_endian endian)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr l = 4;
 | |
|     hwaddr addr1;
 | |
| 
 | |
|     mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
 | |
|                                  true);
 | |
|     if (l < 4 || !memory_access_is_direct(mr, true)) {
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|         if (endian == DEVICE_LITTLE_ENDIAN) {
 | |
|             val = bswap32(val);
 | |
|         }
 | |
| #else
 | |
|         if (endian == DEVICE_BIG_ENDIAN) {
 | |
|             val = bswap32(val);
 | |
|         }
 | |
| #endif
 | |
|         io_mem_write(mr, addr1, val, 4);
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
 | |
|         ptr = qemu_get_ram_ptr(addr1);
 | |
|         switch (endian) {
 | |
|         case DEVICE_LITTLE_ENDIAN:
 | |
|             stl_le_p(ptr, val);
 | |
|             break;
 | |
|         case DEVICE_BIG_ENDIAN:
 | |
|             stl_be_p(ptr, val);
 | |
|             break;
 | |
|         default:
 | |
|             stl_p(ptr, val);
 | |
|             break;
 | |
|         }
 | |
|         invalidate_and_set_dirty(addr1, 4);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void stl_phys(hwaddr addr, uint32_t val)
 | |
| {
 | |
|     stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| void stl_le_phys(hwaddr addr, uint32_t val)
 | |
| {
 | |
|     stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
 | |
| }
 | |
| 
 | |
| void stl_be_phys(hwaddr addr, uint32_t val)
 | |
| {
 | |
|     stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| void stb_phys(hwaddr addr, uint32_t val)
 | |
| {
 | |
|     uint8_t v = val;
 | |
|     cpu_physical_memory_write(addr, &v, 1);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| static inline void stw_phys_internal(hwaddr addr, uint32_t val,
 | |
|                                      enum device_endian endian)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr l = 2;
 | |
|     hwaddr addr1;
 | |
| 
 | |
|     mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
 | |
|                                  true);
 | |
|     if (l < 2 || !memory_access_is_direct(mr, true)) {
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|         if (endian == DEVICE_LITTLE_ENDIAN) {
 | |
|             val = bswap16(val);
 | |
|         }
 | |
| #else
 | |
|         if (endian == DEVICE_BIG_ENDIAN) {
 | |
|             val = bswap16(val);
 | |
|         }
 | |
| #endif
 | |
|         io_mem_write(mr, addr1, val, 2);
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
 | |
|         ptr = qemu_get_ram_ptr(addr1);
 | |
|         switch (endian) {
 | |
|         case DEVICE_LITTLE_ENDIAN:
 | |
|             stw_le_p(ptr, val);
 | |
|             break;
 | |
|         case DEVICE_BIG_ENDIAN:
 | |
|             stw_be_p(ptr, val);
 | |
|             break;
 | |
|         default:
 | |
|             stw_p(ptr, val);
 | |
|             break;
 | |
|         }
 | |
|         invalidate_and_set_dirty(addr1, 2);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void stw_phys(hwaddr addr, uint32_t val)
 | |
| {
 | |
|     stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| void stw_le_phys(hwaddr addr, uint32_t val)
 | |
| {
 | |
|     stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
 | |
| }
 | |
| 
 | |
| void stw_be_phys(hwaddr addr, uint32_t val)
 | |
| {
 | |
|     stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| void stq_phys(hwaddr addr, uint64_t val)
 | |
| {
 | |
|     val = tswap64(val);
 | |
|     cpu_physical_memory_write(addr, &val, 8);
 | |
| }
 | |
| 
 | |
| void stq_le_phys(hwaddr addr, uint64_t val)
 | |
| {
 | |
|     val = cpu_to_le64(val);
 | |
|     cpu_physical_memory_write(addr, &val, 8);
 | |
| }
 | |
| 
 | |
| void stq_be_phys(hwaddr addr, uint64_t val)
 | |
| {
 | |
|     val = cpu_to_be64(val);
 | |
|     cpu_physical_memory_write(addr, &val, 8);
 | |
| }
 | |
| 
 | |
| /* virtual memory access for debug (includes writing to ROM) */
 | |
| int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
 | |
|                         uint8_t *buf, int len, int is_write)
 | |
| {
 | |
|     int l;
 | |
|     hwaddr phys_addr;
 | |
|     target_ulong page;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         phys_addr = cpu_get_phys_page_debug(cpu, page);
 | |
|         /* if no physical page mapped, return an error */
 | |
|         if (phys_addr == -1)
 | |
|             return -1;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         phys_addr += (addr & ~TARGET_PAGE_MASK);
 | |
|         if (is_write)
 | |
|             cpu_physical_memory_write_rom(phys_addr, buf, l);
 | |
|         else
 | |
|             cpu_physical_memory_rw(phys_addr, buf, l, is_write);
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| /*
 | |
|  * A helper function for the _utterly broken_ virtio device model to find out if
 | |
|  * it's running on a big endian machine. Don't do this at home kids!
 | |
|  */
 | |
| bool virtio_is_big_endian(void);
 | |
| bool virtio_is_big_endian(void)
 | |
| {
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|     return true;
 | |
| #else
 | |
|     return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| bool cpu_physical_memory_is_io(hwaddr phys_addr)
 | |
| {
 | |
|     MemoryRegion*mr;
 | |
|     hwaddr l = 1;
 | |
| 
 | |
|     mr = address_space_translate(&address_space_memory,
 | |
|                                  phys_addr, &phys_addr, &l, false);
 | |
| 
 | |
|     return !(memory_region_is_ram(mr) ||
 | |
|              memory_region_is_romd(mr));
 | |
| }
 | |
| 
 | |
| void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | |
|         func(block->host, block->offset, block->length, opaque);
 | |
|     }
 | |
| }
 | |
| #endif
 |