582 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			582 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
 | 
						|
/*============================================================================
 | 
						|
 | 
						|
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
 | 
						|
Arithmetic Package, Release 2b.
 | 
						|
 | 
						|
Written by John R. Hauser.  This work was made possible in part by the
 | 
						|
International Computer Science Institute, located at Suite 600, 1947 Center
 | 
						|
Street, Berkeley, California 94704.  Funding was partially provided by the
 | 
						|
National Science Foundation under grant MIP-9311980.  The original version
 | 
						|
of this code was written as part of a project to build a fixed-point vector
 | 
						|
processor in collaboration with the University of California at Berkeley,
 | 
						|
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 | 
						|
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
 | 
						|
arithmetic/SoftFloat.html'.
 | 
						|
 | 
						|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
 | 
						|
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
 | 
						|
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
 | 
						|
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
 | 
						|
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
 | 
						|
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
 | 
						|
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
 | 
						|
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
 | 
						|
 | 
						|
Derivative works are acceptable, even for commercial purposes, so long as
 | 
						|
(1) the source code for the derivative work includes prominent notice that
 | 
						|
the work is derivative, and (2) the source code includes prominent notice with
 | 
						|
these four paragraphs for those parts of this code that are retained.
 | 
						|
 | 
						|
=============================================================================*/
 | 
						|
 | 
						|
#if defined(TARGET_MIPS) || defined(TARGET_HPPA)
 | 
						|
#define SNAN_BIT_IS_ONE		1
 | 
						|
#else
 | 
						|
#define SNAN_BIT_IS_ONE		0
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Raises the exceptions specified by `flags'.  Floating-point traps can be
 | 
						|
| defined here if desired.  It is currently not possible for such a trap
 | 
						|
| to substitute a result value.  If traps are not implemented, this routine
 | 
						|
| should be simply `float_exception_flags |= flags;'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
void float_raise( int8 flags STATUS_PARAM )
 | 
						|
{
 | 
						|
    STATUS(float_exception_flags) |= flags;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Internal canonical NaN format.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
typedef struct {
 | 
						|
    flag sign;
 | 
						|
    bits64 high, low;
 | 
						|
} commonNaNT;
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| The pattern for a default generated single-precision NaN.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
#if defined(TARGET_SPARC)
 | 
						|
#define float32_default_nan make_float32(0x7FFFFFFF)
 | 
						|
#elif defined(TARGET_POWERPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
 | 
						|
#define float32_default_nan make_float32(0x7FC00000)
 | 
						|
#elif defined(TARGET_HPPA)
 | 
						|
#define float32_default_nan make_float32(0x7FA00000)
 | 
						|
#elif SNAN_BIT_IS_ONE
 | 
						|
#define float32_default_nan make_float32(0x7FBFFFFF)
 | 
						|
#else
 | 
						|
#define float32_default_nan make_float32(0xFFC00000)
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the single-precision floating-point value `a' is a quiet
 | 
						|
| NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int float32_is_nan( float32 a_ )
 | 
						|
{
 | 
						|
    uint32_t a = float32_val(a_);
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
 | 
						|
#else
 | 
						|
    return ( 0xFF800000 <= (bits32) ( a<<1 ) );
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the single-precision floating-point value `a' is a signaling
 | 
						|
| NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int float32_is_signaling_nan( float32 a_ )
 | 
						|
{
 | 
						|
    uint32_t a = float32_val(a_);
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return ( 0xFF800000 <= (bits32) ( a<<1 ) );
 | 
						|
#else
 | 
						|
    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the single-precision floating-point NaN
 | 
						|
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 | 
						|
| exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
 | 
						|
{
 | 
						|
    commonNaNT z;
 | 
						|
 | 
						|
    if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
 | 
						|
    z.sign = float32_val(a)>>31;
 | 
						|
    z.low = 0;
 | 
						|
    z.high = ( (bits64) float32_val(a) )<<41;
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the canonical NaN `a' to the single-
 | 
						|
| precision floating-point format.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float32 commonNaNToFloat32( commonNaNT a )
 | 
						|
{
 | 
						|
    bits32 mantissa = a.high>>41;
 | 
						|
    if ( mantissa )
 | 
						|
        return make_float32(
 | 
						|
            ( ( (bits32) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
 | 
						|
    else
 | 
						|
        return float32_default_nan;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes two single-precision floating-point values `a' and `b', one of which
 | 
						|
| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
 | 
						|
| signaling NaN, the invalid exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
 | 
						|
{
 | 
						|
    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
 | 
						|
    bits32 av, bv, res;
 | 
						|
 | 
						|
    if ( STATUS(default_nan_mode) )
 | 
						|
        return float32_default_nan;
 | 
						|
 | 
						|
    aIsNaN = float32_is_nan( a );
 | 
						|
    aIsSignalingNaN = float32_is_signaling_nan( a );
 | 
						|
    bIsNaN = float32_is_nan( b );
 | 
						|
    bIsSignalingNaN = float32_is_signaling_nan( b );
 | 
						|
    av = float32_val(a);
 | 
						|
    bv = float32_val(b);
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    av &= ~0x00400000;
 | 
						|
    bv &= ~0x00400000;
 | 
						|
#else
 | 
						|
    av |= 0x00400000;
 | 
						|
    bv |= 0x00400000;
 | 
						|
#endif
 | 
						|
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
 | 
						|
    if ( aIsSignalingNaN ) {
 | 
						|
        if ( bIsSignalingNaN ) goto returnLargerSignificand;
 | 
						|
        res = bIsNaN ? bv : av;
 | 
						|
    }
 | 
						|
    else if ( aIsNaN ) {
 | 
						|
        if ( bIsSignalingNaN || ! bIsNaN )
 | 
						|
            res = av;
 | 
						|
        else {
 | 
						|
 returnLargerSignificand:
 | 
						|
            if ( (bits32) ( av<<1 ) < (bits32) ( bv<<1 ) )
 | 
						|
                res = bv;
 | 
						|
            else if ( (bits32) ( bv<<1 ) < (bits32) ( av<<1 ) )
 | 
						|
                res = av;
 | 
						|
            else
 | 
						|
                res = ( av < bv ) ? av : bv;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        res = bv;
 | 
						|
    }
 | 
						|
    return make_float32(res);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| The pattern for a default generated double-precision NaN.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
#if defined(TARGET_SPARC)
 | 
						|
#define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
 | 
						|
#elif defined(TARGET_POWERPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
 | 
						|
#define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
 | 
						|
#elif defined(TARGET_HPPA)
 | 
						|
#define float64_default_nan make_float64(LIT64( 0x7FF4000000000000 ))
 | 
						|
#elif SNAN_BIT_IS_ONE
 | 
						|
#define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
 | 
						|
#else
 | 
						|
#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the double-precision floating-point value `a' is a quiet
 | 
						|
| NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int float64_is_nan( float64 a_ )
 | 
						|
{
 | 
						|
    bits64 a = float64_val(a_);
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return
 | 
						|
           ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
 | 
						|
        && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
 | 
						|
#else
 | 
						|
    return ( LIT64( 0xFFF0000000000000 ) <= (bits64) ( a<<1 ) );
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the double-precision floating-point value `a' is a signaling
 | 
						|
| NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int float64_is_signaling_nan( float64 a_ )
 | 
						|
{
 | 
						|
    bits64 a = float64_val(a_);
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return ( LIT64( 0xFFF0000000000000 ) <= (bits64) ( a<<1 ) );
 | 
						|
#else
 | 
						|
    return
 | 
						|
           ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
 | 
						|
        && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the double-precision floating-point NaN
 | 
						|
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 | 
						|
| exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
 | 
						|
{
 | 
						|
    commonNaNT z;
 | 
						|
 | 
						|
    if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
 | 
						|
    z.sign = float64_val(a)>>63;
 | 
						|
    z.low = 0;
 | 
						|
    z.high = float64_val(a)<<12;
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the canonical NaN `a' to the double-
 | 
						|
| precision floating-point format.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float64 commonNaNToFloat64( commonNaNT a )
 | 
						|
{
 | 
						|
    bits64 mantissa = a.high>>12;
 | 
						|
 | 
						|
    if ( mantissa )
 | 
						|
        return make_float64(
 | 
						|
              ( ( (bits64) a.sign )<<63 )
 | 
						|
            | LIT64( 0x7FF0000000000000 )
 | 
						|
            | ( a.high>>12 ));
 | 
						|
    else
 | 
						|
        return float64_default_nan;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes two double-precision floating-point values `a' and `b', one of which
 | 
						|
| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
 | 
						|
| signaling NaN, the invalid exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
 | 
						|
{
 | 
						|
    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
 | 
						|
    bits64 av, bv, res;
 | 
						|
 | 
						|
    if ( STATUS(default_nan_mode) )
 | 
						|
        return float64_default_nan;
 | 
						|
 | 
						|
    aIsNaN = float64_is_nan( a );
 | 
						|
    aIsSignalingNaN = float64_is_signaling_nan( a );
 | 
						|
    bIsNaN = float64_is_nan( b );
 | 
						|
    bIsSignalingNaN = float64_is_signaling_nan( b );
 | 
						|
    av = float64_val(a);
 | 
						|
    bv = float64_val(b);
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    av &= ~LIT64( 0x0008000000000000 );
 | 
						|
    bv &= ~LIT64( 0x0008000000000000 );
 | 
						|
#else
 | 
						|
    av |= LIT64( 0x0008000000000000 );
 | 
						|
    bv |= LIT64( 0x0008000000000000 );
 | 
						|
#endif
 | 
						|
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
 | 
						|
    if ( aIsSignalingNaN ) {
 | 
						|
        if ( bIsSignalingNaN ) goto returnLargerSignificand;
 | 
						|
        res = bIsNaN ? bv : av;
 | 
						|
    }
 | 
						|
    else if ( aIsNaN ) {
 | 
						|
        if ( bIsSignalingNaN || ! bIsNaN )
 | 
						|
            res = av;
 | 
						|
        else {
 | 
						|
 returnLargerSignificand:
 | 
						|
            if ( (bits64) ( av<<1 ) < (bits64) ( bv<<1 ) )
 | 
						|
                res = bv;
 | 
						|
            else if ( (bits64) ( bv<<1 ) < (bits64) ( av<<1 ) )
 | 
						|
                res = av;
 | 
						|
            else
 | 
						|
                res = ( av < bv ) ? av : bv;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        res = bv;
 | 
						|
    }
 | 
						|
    return make_float64(res);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef FLOATX80
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| The pattern for a default generated extended double-precision NaN.  The
 | 
						|
| `high' and `low' values hold the most- and least-significant bits,
 | 
						|
| respectively.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
#define floatx80_default_nan_high 0x7FFF
 | 
						|
#define floatx80_default_nan_low  LIT64( 0xBFFFFFFFFFFFFFFF )
 | 
						|
#else
 | 
						|
#define floatx80_default_nan_high 0xFFFF
 | 
						|
#define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the extended double-precision floating-point value `a' is a
 | 
						|
| quiet NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int floatx80_is_nan( floatx80 a )
 | 
						|
{
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    bits64 aLow;
 | 
						|
 | 
						|
    aLow = a.low & ~ LIT64( 0x4000000000000000 );
 | 
						|
    return
 | 
						|
           ( ( a.high & 0x7FFF ) == 0x7FFF )
 | 
						|
        && (bits64) ( aLow<<1 )
 | 
						|
        && ( a.low == aLow );
 | 
						|
#else
 | 
						|
    return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the extended double-precision floating-point value `a' is a
 | 
						|
| signaling NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int floatx80_is_signaling_nan( floatx80 a )
 | 
						|
{
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
 | 
						|
#else
 | 
						|
    bits64 aLow;
 | 
						|
 | 
						|
    aLow = a.low & ~ LIT64( 0x4000000000000000 );
 | 
						|
    return
 | 
						|
           ( ( a.high & 0x7FFF ) == 0x7FFF )
 | 
						|
        && (bits64) ( aLow<<1 )
 | 
						|
        && ( a.low == aLow );
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the extended double-precision floating-
 | 
						|
| point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
 | 
						|
| invalid exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
 | 
						|
{
 | 
						|
    commonNaNT z;
 | 
						|
 | 
						|
    if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
 | 
						|
    z.sign = a.high>>15;
 | 
						|
    z.low = 0;
 | 
						|
    z.high = a.low;
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the canonical NaN `a' to the extended
 | 
						|
| double-precision floating-point format.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static floatx80 commonNaNToFloatx80( commonNaNT a )
 | 
						|
{
 | 
						|
    floatx80 z;
 | 
						|
 | 
						|
    if (a.high)
 | 
						|
        z.low = a.high;
 | 
						|
    else
 | 
						|
        z.low = floatx80_default_nan_low;
 | 
						|
    z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes two extended double-precision floating-point values `a' and `b', one
 | 
						|
| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
 | 
						|
| `b' is a signaling NaN, the invalid exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
 | 
						|
{
 | 
						|
    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
 | 
						|
 | 
						|
    if ( STATUS(default_nan_mode) ) {
 | 
						|
        a.low = floatx80_default_nan_low;
 | 
						|
        a.high = floatx80_default_nan_high;
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
 | 
						|
    aIsNaN = floatx80_is_nan( a );
 | 
						|
    aIsSignalingNaN = floatx80_is_signaling_nan( a );
 | 
						|
    bIsNaN = floatx80_is_nan( b );
 | 
						|
    bIsSignalingNaN = floatx80_is_signaling_nan( b );
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    a.low &= ~LIT64( 0xC000000000000000 );
 | 
						|
    b.low &= ~LIT64( 0xC000000000000000 );
 | 
						|
#else
 | 
						|
    a.low |= LIT64( 0xC000000000000000 );
 | 
						|
    b.low |= LIT64( 0xC000000000000000 );
 | 
						|
#endif
 | 
						|
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
 | 
						|
    if ( aIsSignalingNaN ) {
 | 
						|
        if ( bIsSignalingNaN ) goto returnLargerSignificand;
 | 
						|
        return bIsNaN ? b : a;
 | 
						|
    }
 | 
						|
    else if ( aIsNaN ) {
 | 
						|
        if ( bIsSignalingNaN || ! bIsNaN ) return a;
 | 
						|
 returnLargerSignificand:
 | 
						|
        if ( a.low < b.low ) return b;
 | 
						|
        if ( b.low < a.low ) return a;
 | 
						|
        return ( a.high < b.high ) ? a : b;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return b;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef FLOAT128
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| The pattern for a default generated quadruple-precision NaN.  The `high' and
 | 
						|
| `low' values hold the most- and least-significant bits, respectively.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
 | 
						|
#define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
 | 
						|
#else
 | 
						|
#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
 | 
						|
#define float128_default_nan_low  LIT64( 0x0000000000000000 )
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
 | 
						|
| NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int float128_is_nan( float128 a )
 | 
						|
{
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return
 | 
						|
           ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
 | 
						|
        && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
 | 
						|
#else
 | 
						|
    return
 | 
						|
           ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
 | 
						|
        && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the quadruple-precision floating-point value `a' is a
 | 
						|
| signaling NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int float128_is_signaling_nan( float128 a )
 | 
						|
{
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return
 | 
						|
           ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
 | 
						|
        && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
 | 
						|
#else
 | 
						|
    return
 | 
						|
           ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
 | 
						|
        && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the quadruple-precision floating-point NaN
 | 
						|
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 | 
						|
| exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM)
 | 
						|
{
 | 
						|
    commonNaNT z;
 | 
						|
 | 
						|
    if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
 | 
						|
    z.sign = a.high>>63;
 | 
						|
    shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the canonical NaN `a' to the quadruple-
 | 
						|
| precision floating-point format.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float128 commonNaNToFloat128( commonNaNT a )
 | 
						|
{
 | 
						|
    float128 z;
 | 
						|
 | 
						|
    shift128Right( a.high, a.low, 16, &z.high, &z.low );
 | 
						|
    z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes two quadruple-precision floating-point values `a' and `b', one of
 | 
						|
| which is a NaN, and returns the appropriate NaN result.  If either `a' or
 | 
						|
| `b' is a signaling NaN, the invalid exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
 | 
						|
{
 | 
						|
    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
 | 
						|
 | 
						|
    if ( STATUS(default_nan_mode) ) {
 | 
						|
        a.low = float128_default_nan_low;
 | 
						|
        a.high = float128_default_nan_high;
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
 | 
						|
    aIsNaN = float128_is_nan( a );
 | 
						|
    aIsSignalingNaN = float128_is_signaling_nan( a );
 | 
						|
    bIsNaN = float128_is_nan( b );
 | 
						|
    bIsSignalingNaN = float128_is_signaling_nan( b );
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    a.high &= ~LIT64( 0x0000800000000000 );
 | 
						|
    b.high &= ~LIT64( 0x0000800000000000 );
 | 
						|
#else
 | 
						|
    a.high |= LIT64( 0x0000800000000000 );
 | 
						|
    b.high |= LIT64( 0x0000800000000000 );
 | 
						|
#endif
 | 
						|
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
 | 
						|
    if ( aIsSignalingNaN ) {
 | 
						|
        if ( bIsSignalingNaN ) goto returnLargerSignificand;
 | 
						|
        return bIsNaN ? b : a;
 | 
						|
    }
 | 
						|
    else if ( aIsNaN ) {
 | 
						|
        if ( bIsSignalingNaN || ! bIsNaN ) return a;
 | 
						|
 returnLargerSignificand:
 | 
						|
        if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b;
 | 
						|
        if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a;
 | 
						|
        return ( a.high < b.high ) ? a : b;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return b;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |