916 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			916 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  *  KQEMU support
 | |
|  *
 | |
|  *  Copyright (c) 2005 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  */
 | |
| #include "config.h"
 | |
| #ifdef _WIN32
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #include <windows.h>
 | |
| #include <winioctl.h>
 | |
| #else
 | |
| #include <sys/types.h>
 | |
| #include <sys/mman.h>
 | |
| #include <sys/ioctl.h>
 | |
| #endif
 | |
| #ifdef HOST_SOLARIS
 | |
| #include <sys/ioccom.h>
 | |
| #endif
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <stdarg.h>
 | |
| #include <string.h>
 | |
| #include <errno.h>
 | |
| #include <unistd.h>
 | |
| #include <inttypes.h>
 | |
| 
 | |
| #include "cpu.h"
 | |
| #include "exec-all.h"
 | |
| #include "qemu-common.h"
 | |
| 
 | |
| #ifdef USE_KQEMU
 | |
| 
 | |
| #define DEBUG
 | |
| //#define PROFILE
 | |
| 
 | |
| #include <unistd.h>
 | |
| #include <fcntl.h>
 | |
| #include "kqemu.h"
 | |
| 
 | |
| /* compatibility stuff */
 | |
| #ifndef KQEMU_RET_SYSCALL
 | |
| #define KQEMU_RET_SYSCALL   0x0300 /* syscall insn */
 | |
| #endif
 | |
| #ifndef KQEMU_MAX_RAM_PAGES_TO_UPDATE
 | |
| #define KQEMU_MAX_RAM_PAGES_TO_UPDATE 512
 | |
| #define KQEMU_RAM_PAGES_UPDATE_ALL (KQEMU_MAX_RAM_PAGES_TO_UPDATE + 1)
 | |
| #endif
 | |
| #ifndef KQEMU_MAX_MODIFIED_RAM_PAGES
 | |
| #define KQEMU_MAX_MODIFIED_RAM_PAGES 512
 | |
| #endif
 | |
| 
 | |
| #ifdef _WIN32
 | |
| #define KQEMU_DEVICE "\\\\.\\kqemu"
 | |
| #else
 | |
| #define KQEMU_DEVICE "/dev/kqemu"
 | |
| #endif
 | |
| 
 | |
| #ifdef _WIN32
 | |
| #define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
 | |
| HANDLE kqemu_fd = KQEMU_INVALID_FD;
 | |
| #define kqemu_closefd(x) CloseHandle(x)
 | |
| #else
 | |
| #define KQEMU_INVALID_FD -1
 | |
| int kqemu_fd = KQEMU_INVALID_FD;
 | |
| #define kqemu_closefd(x) close(x)
 | |
| #endif
 | |
| 
 | |
| /* 0 = not allowed
 | |
|    1 = user kqemu
 | |
|    2 = kernel kqemu
 | |
| */
 | |
| int kqemu_allowed = 1;
 | |
| unsigned long *pages_to_flush;
 | |
| unsigned int nb_pages_to_flush;
 | |
| unsigned long *ram_pages_to_update;
 | |
| unsigned int nb_ram_pages_to_update;
 | |
| unsigned long *modified_ram_pages;
 | |
| unsigned int nb_modified_ram_pages;
 | |
| uint8_t *modified_ram_pages_table;
 | |
| extern uint32_t **l1_phys_map;
 | |
| 
 | |
| #define cpuid(index, eax, ebx, ecx, edx) \
 | |
|   asm volatile ("cpuid" \
 | |
|                 : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \
 | |
|                 : "0" (index))
 | |
| 
 | |
| #ifdef __x86_64__
 | |
| static int is_cpuid_supported(void)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| #else
 | |
| static int is_cpuid_supported(void)
 | |
| {
 | |
|     int v0, v1;
 | |
|     asm volatile ("pushf\n"
 | |
|                   "popl %0\n"
 | |
|                   "movl %0, %1\n"
 | |
|                   "xorl $0x00200000, %0\n"
 | |
|                   "pushl %0\n"
 | |
|                   "popf\n"
 | |
|                   "pushf\n"
 | |
|                   "popl %0\n"
 | |
|                   : "=a" (v0), "=d" (v1)
 | |
|                   :
 | |
|                   : "cc");
 | |
|     return (v0 != v1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void kqemu_update_cpuid(CPUState *env)
 | |
| {
 | |
|     int critical_features_mask, features, ext_features, ext_features_mask;
 | |
|     uint32_t eax, ebx, ecx, edx;
 | |
| 
 | |
|     /* the following features are kept identical on the host and
 | |
|        target cpus because they are important for user code. Strictly
 | |
|        speaking, only SSE really matters because the OS must support
 | |
|        it if the user code uses it. */
 | |
|     critical_features_mask =
 | |
|         CPUID_CMOV | CPUID_CX8 |
 | |
|         CPUID_FXSR | CPUID_MMX | CPUID_SSE |
 | |
|         CPUID_SSE2 | CPUID_SEP;
 | |
|     ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR;
 | |
|     if (!is_cpuid_supported()) {
 | |
|         features = 0;
 | |
|         ext_features = 0;
 | |
|     } else {
 | |
|         cpuid(1, eax, ebx, ecx, edx);
 | |
|         features = edx;
 | |
|         ext_features = ecx;
 | |
|     }
 | |
| #ifdef __x86_64__
 | |
|     /* NOTE: on x86_64 CPUs, SYSENTER is not supported in
 | |
|        compatibility mode, so in order to have the best performances
 | |
|        it is better not to use it */
 | |
|     features &= ~CPUID_SEP;
 | |
| #endif
 | |
|     env->cpuid_features = (env->cpuid_features & ~critical_features_mask) |
 | |
|         (features & critical_features_mask);
 | |
|     env->cpuid_ext_features = (env->cpuid_ext_features & ~ext_features_mask) |
 | |
|         (ext_features & ext_features_mask);
 | |
|     /* XXX: we could update more of the target CPUID state so that the
 | |
|        non accelerated code sees exactly the same CPU features as the
 | |
|        accelerated code */
 | |
| }
 | |
| 
 | |
| int kqemu_init(CPUState *env)
 | |
| {
 | |
|     struct kqemu_init init;
 | |
|     int ret, version;
 | |
| #ifdef _WIN32
 | |
|     DWORD temp;
 | |
| #endif
 | |
| 
 | |
|     if (!kqemu_allowed)
 | |
|         return -1;
 | |
| 
 | |
| #ifdef _WIN32
 | |
|     kqemu_fd = CreateFile(KQEMU_DEVICE, GENERIC_WRITE | GENERIC_READ,
 | |
|                           FILE_SHARE_READ | FILE_SHARE_WRITE,
 | |
|                           NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
 | |
|                           NULL);
 | |
| #else
 | |
|     kqemu_fd = open(KQEMU_DEVICE, O_RDWR);
 | |
| #endif
 | |
|     if (kqemu_fd == KQEMU_INVALID_FD) {
 | |
|         fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %s\n",
 | |
|                 KQEMU_DEVICE, strerror(errno));
 | |
|         return -1;
 | |
|     }
 | |
|     version = 0;
 | |
| #ifdef _WIN32
 | |
|     DeviceIoControl(kqemu_fd, KQEMU_GET_VERSION, NULL, 0,
 | |
|                     &version, sizeof(version), &temp, NULL);
 | |
| #else
 | |
|     ioctl(kqemu_fd, KQEMU_GET_VERSION, &version);
 | |
| #endif
 | |
|     if (version != KQEMU_VERSION) {
 | |
|         fprintf(stderr, "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use\n",
 | |
|                 version, KQEMU_VERSION);
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH *
 | |
|                                   sizeof(unsigned long));
 | |
|     if (!pages_to_flush)
 | |
|         goto fail;
 | |
| 
 | |
|     ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE *
 | |
|                                        sizeof(unsigned long));
 | |
|     if (!ram_pages_to_update)
 | |
|         goto fail;
 | |
| 
 | |
|     modified_ram_pages = qemu_vmalloc(KQEMU_MAX_MODIFIED_RAM_PAGES *
 | |
|                                       sizeof(unsigned long));
 | |
|     if (!modified_ram_pages)
 | |
|         goto fail;
 | |
|     modified_ram_pages_table = qemu_mallocz(phys_ram_size >> TARGET_PAGE_BITS);
 | |
|     if (!modified_ram_pages_table)
 | |
|         goto fail;
 | |
| 
 | |
|     init.ram_base = phys_ram_base;
 | |
|     init.ram_size = phys_ram_size;
 | |
|     init.ram_dirty = phys_ram_dirty;
 | |
|     init.phys_to_ram_map = l1_phys_map;
 | |
|     init.pages_to_flush = pages_to_flush;
 | |
| #if KQEMU_VERSION >= 0x010200
 | |
|     init.ram_pages_to_update = ram_pages_to_update;
 | |
| #endif
 | |
| #if KQEMU_VERSION >= 0x010300
 | |
|     init.modified_ram_pages = modified_ram_pages;
 | |
| #endif
 | |
| #ifdef _WIN32
 | |
|     ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &init, sizeof(init),
 | |
|                           NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
 | |
| #else
 | |
|     ret = ioctl(kqemu_fd, KQEMU_INIT, &init);
 | |
| #endif
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "Error %d while initializing QEMU acceleration layer - disabling it for now\n", ret);
 | |
|     fail:
 | |
|         kqemu_closefd(kqemu_fd);
 | |
|         kqemu_fd = KQEMU_INVALID_FD;
 | |
|         return -1;
 | |
|     }
 | |
|     kqemu_update_cpuid(env);
 | |
|     env->kqemu_enabled = kqemu_allowed;
 | |
|     nb_pages_to_flush = 0;
 | |
|     nb_ram_pages_to_update = 0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void kqemu_flush_page(CPUState *env, target_ulong addr)
 | |
| {
 | |
| #if defined(DEBUG)
 | |
|     if (loglevel & CPU_LOG_INT) {
 | |
|         fprintf(logfile, "kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr);
 | |
|     }
 | |
| #endif
 | |
|     if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH)
 | |
|         nb_pages_to_flush = KQEMU_FLUSH_ALL;
 | |
|     else
 | |
|         pages_to_flush[nb_pages_to_flush++] = addr;
 | |
| }
 | |
| 
 | |
| void kqemu_flush(CPUState *env, int global)
 | |
| {
 | |
| #ifdef DEBUG
 | |
|     if (loglevel & CPU_LOG_INT) {
 | |
|         fprintf(logfile, "kqemu_flush:\n");
 | |
|     }
 | |
| #endif
 | |
|     nb_pages_to_flush = KQEMU_FLUSH_ALL;
 | |
| }
 | |
| 
 | |
| void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr)
 | |
| {
 | |
| #ifdef DEBUG
 | |
|     if (loglevel & CPU_LOG_INT) {
 | |
|         fprintf(logfile, "kqemu_set_notdirty: addr=%08lx\n", ram_addr);
 | |
|     }
 | |
| #endif
 | |
|     /* we only track transitions to dirty state */
 | |
|     if (phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] != 0xff)
 | |
|         return;
 | |
|     if (nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE)
 | |
|         nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL;
 | |
|     else
 | |
|         ram_pages_to_update[nb_ram_pages_to_update++] = ram_addr;
 | |
| }
 | |
| 
 | |
| static void kqemu_reset_modified_ram_pages(void)
 | |
| {
 | |
|     int i;
 | |
|     unsigned long page_index;
 | |
| 
 | |
|     for(i = 0; i < nb_modified_ram_pages; i++) {
 | |
|         page_index = modified_ram_pages[i] >> TARGET_PAGE_BITS;
 | |
|         modified_ram_pages_table[page_index] = 0;
 | |
|     }
 | |
|     nb_modified_ram_pages = 0;
 | |
| }
 | |
| 
 | |
| void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr)
 | |
| {
 | |
|     unsigned long page_index;
 | |
|     int ret;
 | |
| #ifdef _WIN32
 | |
|     DWORD temp;
 | |
| #endif
 | |
| 
 | |
|     page_index = ram_addr >> TARGET_PAGE_BITS;
 | |
|     if (!modified_ram_pages_table[page_index]) {
 | |
| #if 0
 | |
|         printf("%d: modify_page=%08lx\n", nb_modified_ram_pages, ram_addr);
 | |
| #endif
 | |
|         modified_ram_pages_table[page_index] = 1;
 | |
|         modified_ram_pages[nb_modified_ram_pages++] = ram_addr;
 | |
|         if (nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES) {
 | |
|             /* flush */
 | |
| #ifdef _WIN32
 | |
|             ret = DeviceIoControl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
 | |
|                                   &nb_modified_ram_pages,
 | |
|                                   sizeof(nb_modified_ram_pages),
 | |
|                                   NULL, 0, &temp, NULL);
 | |
| #else
 | |
|             ret = ioctl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
 | |
|                         &nb_modified_ram_pages);
 | |
| #endif
 | |
|             kqemu_reset_modified_ram_pages();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct fpstate {
 | |
|     uint16_t fpuc;
 | |
|     uint16_t dummy1;
 | |
|     uint16_t fpus;
 | |
|     uint16_t dummy2;
 | |
|     uint16_t fptag;
 | |
|     uint16_t dummy3;
 | |
| 
 | |
|     uint32_t fpip;
 | |
|     uint32_t fpcs;
 | |
|     uint32_t fpoo;
 | |
|     uint32_t fpos;
 | |
|     uint8_t fpregs1[8 * 10];
 | |
| };
 | |
| 
 | |
| struct fpxstate {
 | |
|     uint16_t fpuc;
 | |
|     uint16_t fpus;
 | |
|     uint16_t fptag;
 | |
|     uint16_t fop;
 | |
|     uint32_t fpuip;
 | |
|     uint16_t cs_sel;
 | |
|     uint16_t dummy0;
 | |
|     uint32_t fpudp;
 | |
|     uint16_t ds_sel;
 | |
|     uint16_t dummy1;
 | |
|     uint32_t mxcsr;
 | |
|     uint32_t mxcsr_mask;
 | |
|     uint8_t fpregs1[8 * 16];
 | |
|     uint8_t xmm_regs[16 * 16];
 | |
|     uint8_t dummy2[96];
 | |
| };
 | |
| 
 | |
| static struct fpxstate fpx1 __attribute__((aligned(16)));
 | |
| 
 | |
| static void restore_native_fp_frstor(CPUState *env)
 | |
| {
 | |
|     int fptag, i, j;
 | |
|     struct fpstate fp1, *fp = &fp1;
 | |
| 
 | |
|     fp->fpuc = env->fpuc;
 | |
|     fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
 | |
|     fptag = 0;
 | |
|     for (i=7; i>=0; i--) {
 | |
| 	fptag <<= 2;
 | |
| 	if (env->fptags[i]) {
 | |
|             fptag |= 3;
 | |
|         } else {
 | |
|             /* the FPU automatically computes it */
 | |
|         }
 | |
|     }
 | |
|     fp->fptag = fptag;
 | |
|     j = env->fpstt;
 | |
|     for(i = 0;i < 8; i++) {
 | |
|         memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10);
 | |
|         j = (j + 1) & 7;
 | |
|     }
 | |
|     asm volatile ("frstor %0" : "=m" (*fp));
 | |
| }
 | |
| 
 | |
| static void save_native_fp_fsave(CPUState *env)
 | |
| {
 | |
|     int fptag, i, j;
 | |
|     uint16_t fpuc;
 | |
|     struct fpstate fp1, *fp = &fp1;
 | |
| 
 | |
|     asm volatile ("fsave %0" : : "m" (*fp));
 | |
|     env->fpuc = fp->fpuc;
 | |
|     env->fpstt = (fp->fpus >> 11) & 7;
 | |
|     env->fpus = fp->fpus & ~0x3800;
 | |
|     fptag = fp->fptag;
 | |
|     for(i = 0;i < 8; i++) {
 | |
|         env->fptags[i] = ((fptag & 3) == 3);
 | |
|         fptag >>= 2;
 | |
|     }
 | |
|     j = env->fpstt;
 | |
|     for(i = 0;i < 8; i++) {
 | |
|         memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10);
 | |
|         j = (j + 1) & 7;
 | |
|     }
 | |
|     /* we must restore the default rounding state */
 | |
|     fpuc = 0x037f | (env->fpuc & (3 << 10));
 | |
|     asm volatile("fldcw %0" : : "m" (fpuc));
 | |
| }
 | |
| 
 | |
| static void restore_native_fp_fxrstor(CPUState *env)
 | |
| {
 | |
|     struct fpxstate *fp = &fpx1;
 | |
|     int i, j, fptag;
 | |
| 
 | |
|     fp->fpuc = env->fpuc;
 | |
|     fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
 | |
|     fptag = 0;
 | |
|     for(i = 0; i < 8; i++)
 | |
|         fptag |= (env->fptags[i] << i);
 | |
|     fp->fptag = fptag ^ 0xff;
 | |
| 
 | |
|     j = env->fpstt;
 | |
|     for(i = 0;i < 8; i++) {
 | |
|         memcpy(&fp->fpregs1[i * 16], &env->fpregs[j].d, 10);
 | |
|         j = (j + 1) & 7;
 | |
|     }
 | |
|     if (env->cpuid_features & CPUID_SSE) {
 | |
|         fp->mxcsr = env->mxcsr;
 | |
|         /* XXX: check if DAZ is not available */
 | |
|         fp->mxcsr_mask = 0xffff;
 | |
|         memcpy(fp->xmm_regs, env->xmm_regs, CPU_NB_REGS * 16);
 | |
|     }
 | |
|     asm volatile ("fxrstor %0" : "=m" (*fp));
 | |
| }
 | |
| 
 | |
| static void save_native_fp_fxsave(CPUState *env)
 | |
| {
 | |
|     struct fpxstate *fp = &fpx1;
 | |
|     int fptag, i, j;
 | |
|     uint16_t fpuc;
 | |
| 
 | |
|     asm volatile ("fxsave %0" : : "m" (*fp));
 | |
|     env->fpuc = fp->fpuc;
 | |
|     env->fpstt = (fp->fpus >> 11) & 7;
 | |
|     env->fpus = fp->fpus & ~0x3800;
 | |
|     fptag = fp->fptag ^ 0xff;
 | |
|     for(i = 0;i < 8; i++) {
 | |
|         env->fptags[i] = (fptag >> i) & 1;
 | |
|     }
 | |
|     j = env->fpstt;
 | |
|     for(i = 0;i < 8; i++) {
 | |
|         memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 16], 10);
 | |
|         j = (j + 1) & 7;
 | |
|     }
 | |
|     if (env->cpuid_features & CPUID_SSE) {
 | |
|         env->mxcsr = fp->mxcsr;
 | |
|         memcpy(env->xmm_regs, fp->xmm_regs, CPU_NB_REGS * 16);
 | |
|     }
 | |
| 
 | |
|     /* we must restore the default rounding state */
 | |
|     asm volatile ("fninit");
 | |
|     fpuc = 0x037f | (env->fpuc & (3 << 10));
 | |
|     asm volatile("fldcw %0" : : "m" (fpuc));
 | |
| }
 | |
| 
 | |
| static int do_syscall(CPUState *env,
 | |
|                       struct kqemu_cpu_state *kenv)
 | |
| {
 | |
|     int selector;
 | |
| 
 | |
|     selector = (env->star >> 32) & 0xffff;
 | |
| #ifdef __x86_64__
 | |
|     if (env->hflags & HF_LMA_MASK) {
 | |
|         int code64;
 | |
| 
 | |
|         env->regs[R_ECX] = kenv->next_eip;
 | |
|         env->regs[11] = env->eflags;
 | |
| 
 | |
|         code64 = env->hflags & HF_CS64_MASK;
 | |
| 
 | |
|         cpu_x86_set_cpl(env, 0);
 | |
|         cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
 | |
|                                0, 0xffffffff,
 | |
|                                DESC_G_MASK | DESC_P_MASK |
 | |
|                                DESC_S_MASK |
 | |
|                                DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
 | |
|         cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
 | |
|                                0, 0xffffffff,
 | |
|                                DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
 | |
|                                DESC_S_MASK |
 | |
|                                DESC_W_MASK | DESC_A_MASK);
 | |
|         env->eflags &= ~env->fmask;
 | |
|         if (code64)
 | |
|             env->eip = env->lstar;
 | |
|         else
 | |
|             env->eip = env->cstar;
 | |
|     } else
 | |
| #endif
 | |
|     {
 | |
|         env->regs[R_ECX] = (uint32_t)kenv->next_eip;
 | |
| 
 | |
|         cpu_x86_set_cpl(env, 0);
 | |
|         cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
 | |
|                            0, 0xffffffff,
 | |
|                                DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
 | |
|                                DESC_S_MASK |
 | |
|                                DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
 | |
|         cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
 | |
|                                0, 0xffffffff,
 | |
|                                DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
 | |
|                                DESC_S_MASK |
 | |
|                                DESC_W_MASK | DESC_A_MASK);
 | |
|         env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
 | |
|         env->eip = (uint32_t)env->star;
 | |
|     }
 | |
|     return 2;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROFILER
 | |
| 
 | |
| #define PC_REC_SIZE 1
 | |
| #define PC_REC_HASH_BITS 16
 | |
| #define PC_REC_HASH_SIZE (1 << PC_REC_HASH_BITS)
 | |
| 
 | |
| typedef struct PCRecord {
 | |
|     unsigned long pc;
 | |
|     int64_t count;
 | |
|     struct PCRecord *next;
 | |
| } PCRecord;
 | |
| 
 | |
| static PCRecord *pc_rec_hash[PC_REC_HASH_SIZE];
 | |
| static int nb_pc_records;
 | |
| 
 | |
| static void kqemu_record_pc(unsigned long pc)
 | |
| {
 | |
|     unsigned long h;
 | |
|     PCRecord **pr, *r;
 | |
| 
 | |
|     h = pc / PC_REC_SIZE;
 | |
|     h = h ^ (h >> PC_REC_HASH_BITS);
 | |
|     h &= (PC_REC_HASH_SIZE - 1);
 | |
|     pr = &pc_rec_hash[h];
 | |
|     for(;;) {
 | |
|         r = *pr;
 | |
|         if (r == NULL)
 | |
|             break;
 | |
|         if (r->pc == pc) {
 | |
|             r->count++;
 | |
|             return;
 | |
|         }
 | |
|         pr = &r->next;
 | |
|     }
 | |
|     r = malloc(sizeof(PCRecord));
 | |
|     r->count = 1;
 | |
|     r->pc = pc;
 | |
|     r->next = NULL;
 | |
|     *pr = r;
 | |
|     nb_pc_records++;
 | |
| }
 | |
| 
 | |
| static int pc_rec_cmp(const void *p1, const void *p2)
 | |
| {
 | |
|     PCRecord *r1 = *(PCRecord **)p1;
 | |
|     PCRecord *r2 = *(PCRecord **)p2;
 | |
|     if (r1->count < r2->count)
 | |
|         return 1;
 | |
|     else if (r1->count == r2->count)
 | |
|         return 0;
 | |
|     else
 | |
|         return -1;
 | |
| }
 | |
| 
 | |
| static void kqemu_record_flush(void)
 | |
| {
 | |
|     PCRecord *r, *r_next;
 | |
|     int h;
 | |
| 
 | |
|     for(h = 0; h < PC_REC_HASH_SIZE; h++) {
 | |
|         for(r = pc_rec_hash[h]; r != NULL; r = r_next) {
 | |
|             r_next = r->next;
 | |
|             free(r);
 | |
|         }
 | |
|         pc_rec_hash[h] = NULL;
 | |
|     }
 | |
|     nb_pc_records = 0;
 | |
| }
 | |
| 
 | |
| void kqemu_record_dump(void)
 | |
| {
 | |
|     PCRecord **pr, *r;
 | |
|     int i, h;
 | |
|     FILE *f;
 | |
|     int64_t total, sum;
 | |
| 
 | |
|     pr = malloc(sizeof(PCRecord *) * nb_pc_records);
 | |
|     i = 0;
 | |
|     total = 0;
 | |
|     for(h = 0; h < PC_REC_HASH_SIZE; h++) {
 | |
|         for(r = pc_rec_hash[h]; r != NULL; r = r->next) {
 | |
|             pr[i++] = r;
 | |
|             total += r->count;
 | |
|         }
 | |
|     }
 | |
|     qsort(pr, nb_pc_records, sizeof(PCRecord *), pc_rec_cmp);
 | |
| 
 | |
|     f = fopen("/tmp/kqemu.stats", "w");
 | |
|     if (!f) {
 | |
|         perror("/tmp/kqemu.stats");
 | |
|         exit(1);
 | |
|     }
 | |
|     fprintf(f, "total: %" PRId64 "\n", total);
 | |
|     sum = 0;
 | |
|     for(i = 0; i < nb_pc_records; i++) {
 | |
|         r = pr[i];
 | |
|         sum += r->count;
 | |
|         fprintf(f, "%08lx: %" PRId64 " %0.2f%% %0.2f%%\n",
 | |
|                 r->pc,
 | |
|                 r->count,
 | |
|                 (double)r->count / (double)total * 100.0,
 | |
|                 (double)sum / (double)total * 100.0);
 | |
|     }
 | |
|     fclose(f);
 | |
|     free(pr);
 | |
| 
 | |
|     kqemu_record_flush();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int kqemu_cpu_exec(CPUState *env)
 | |
| {
 | |
|     struct kqemu_cpu_state kcpu_state, *kenv = &kcpu_state;
 | |
|     int ret, cpl, i;
 | |
| #ifdef CONFIG_PROFILER
 | |
|     int64_t ti;
 | |
| #endif
 | |
| 
 | |
| #ifdef _WIN32
 | |
|     DWORD temp;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PROFILER
 | |
|     ti = profile_getclock();
 | |
| #endif
 | |
| #ifdef DEBUG
 | |
|     if (loglevel & CPU_LOG_INT) {
 | |
|         fprintf(logfile, "kqemu: cpu_exec: enter\n");
 | |
|         cpu_dump_state(env, logfile, fprintf, 0);
 | |
|     }
 | |
| #endif
 | |
|     memcpy(kenv->regs, env->regs, sizeof(kenv->regs));
 | |
|     kenv->eip = env->eip;
 | |
|     kenv->eflags = env->eflags;
 | |
|     memcpy(&kenv->segs, &env->segs, sizeof(env->segs));
 | |
|     memcpy(&kenv->ldt, &env->ldt, sizeof(env->ldt));
 | |
|     memcpy(&kenv->tr, &env->tr, sizeof(env->tr));
 | |
|     memcpy(&kenv->gdt, &env->gdt, sizeof(env->gdt));
 | |
|     memcpy(&kenv->idt, &env->idt, sizeof(env->idt));
 | |
|     kenv->cr0 = env->cr[0];
 | |
|     kenv->cr2 = env->cr[2];
 | |
|     kenv->cr3 = env->cr[3];
 | |
|     kenv->cr4 = env->cr[4];
 | |
|     kenv->a20_mask = env->a20_mask;
 | |
| #if KQEMU_VERSION >= 0x010100
 | |
|     kenv->efer = env->efer;
 | |
| #endif
 | |
| #if KQEMU_VERSION >= 0x010300
 | |
|     kenv->tsc_offset = 0;
 | |
|     kenv->star = env->star;
 | |
|     kenv->sysenter_cs = env->sysenter_cs;
 | |
|     kenv->sysenter_esp = env->sysenter_esp;
 | |
|     kenv->sysenter_eip = env->sysenter_eip;
 | |
| #ifdef __x86_64__
 | |
|     kenv->lstar = env->lstar;
 | |
|     kenv->cstar = env->cstar;
 | |
|     kenv->fmask = env->fmask;
 | |
|     kenv->kernelgsbase = env->kernelgsbase;
 | |
| #endif
 | |
| #endif
 | |
|     if (env->dr[7] & 0xff) {
 | |
|         kenv->dr7 = env->dr[7];
 | |
|         kenv->dr0 = env->dr[0];
 | |
|         kenv->dr1 = env->dr[1];
 | |
|         kenv->dr2 = env->dr[2];
 | |
|         kenv->dr3 = env->dr[3];
 | |
|     } else {
 | |
|         kenv->dr7 = 0;
 | |
|     }
 | |
|     kenv->dr6 = env->dr[6];
 | |
|     cpl = (env->hflags & HF_CPL_MASK);
 | |
|     kenv->cpl = cpl;
 | |
|     kenv->nb_pages_to_flush = nb_pages_to_flush;
 | |
| #if KQEMU_VERSION >= 0x010200
 | |
|     kenv->user_only = (env->kqemu_enabled == 1);
 | |
|     kenv->nb_ram_pages_to_update = nb_ram_pages_to_update;
 | |
| #endif
 | |
|     nb_ram_pages_to_update = 0;
 | |
| 
 | |
| #if KQEMU_VERSION >= 0x010300
 | |
|     kenv->nb_modified_ram_pages = nb_modified_ram_pages;
 | |
| #endif
 | |
|     kqemu_reset_modified_ram_pages();
 | |
| 
 | |
|     if (env->cpuid_features & CPUID_FXSR)
 | |
|         restore_native_fp_fxrstor(env);
 | |
|     else
 | |
|         restore_native_fp_frstor(env);
 | |
| 
 | |
| #ifdef _WIN32
 | |
|     if (DeviceIoControl(kqemu_fd, KQEMU_EXEC,
 | |
|                         kenv, sizeof(struct kqemu_cpu_state),
 | |
|                         kenv, sizeof(struct kqemu_cpu_state),
 | |
|                         &temp, NULL)) {
 | |
|         ret = kenv->retval;
 | |
|     } else {
 | |
|         ret = -1;
 | |
|     }
 | |
| #else
 | |
| #if KQEMU_VERSION >= 0x010100
 | |
|     ioctl(kqemu_fd, KQEMU_EXEC, kenv);
 | |
|     ret = kenv->retval;
 | |
| #else
 | |
|     ret = ioctl(kqemu_fd, KQEMU_EXEC, kenv);
 | |
| #endif
 | |
| #endif
 | |
|     if (env->cpuid_features & CPUID_FXSR)
 | |
|         save_native_fp_fxsave(env);
 | |
|     else
 | |
|         save_native_fp_fsave(env);
 | |
| 
 | |
|     memcpy(env->regs, kenv->regs, sizeof(env->regs));
 | |
|     env->eip = kenv->eip;
 | |
|     env->eflags = kenv->eflags;
 | |
|     memcpy(env->segs, kenv->segs, sizeof(env->segs));
 | |
|     cpu_x86_set_cpl(env, kenv->cpl);
 | |
|     memcpy(&env->ldt, &kenv->ldt, sizeof(env->ldt));
 | |
| #if 0
 | |
|     /* no need to restore that */
 | |
|     memcpy(env->tr, kenv->tr, sizeof(env->tr));
 | |
|     memcpy(env->gdt, kenv->gdt, sizeof(env->gdt));
 | |
|     memcpy(env->idt, kenv->idt, sizeof(env->idt));
 | |
|     env->a20_mask = kenv->a20_mask;
 | |
| #endif
 | |
|     env->cr[0] = kenv->cr0;
 | |
|     env->cr[4] = kenv->cr4;
 | |
|     env->cr[3] = kenv->cr3;
 | |
|     env->cr[2] = kenv->cr2;
 | |
|     env->dr[6] = kenv->dr6;
 | |
| #if KQEMU_VERSION >= 0x010300
 | |
| #ifdef __x86_64__
 | |
|     env->kernelgsbase = kenv->kernelgsbase;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
|     /* flush pages as indicated by kqemu */
 | |
|     if (kenv->nb_pages_to_flush >= KQEMU_FLUSH_ALL) {
 | |
|         tlb_flush(env, 1);
 | |
|     } else {
 | |
|         for(i = 0; i < kenv->nb_pages_to_flush; i++) {
 | |
|             tlb_flush_page(env, pages_to_flush[i]);
 | |
|         }
 | |
|     }
 | |
|     nb_pages_to_flush = 0;
 | |
| 
 | |
| #ifdef CONFIG_PROFILER
 | |
|     kqemu_time += profile_getclock() - ti;
 | |
|     kqemu_exec_count++;
 | |
| #endif
 | |
| 
 | |
| #if KQEMU_VERSION >= 0x010200
 | |
|     if (kenv->nb_ram_pages_to_update > 0) {
 | |
|         cpu_tlb_update_dirty(env);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if KQEMU_VERSION >= 0x010300
 | |
|     if (kenv->nb_modified_ram_pages > 0) {
 | |
|         for(i = 0; i < kenv->nb_modified_ram_pages; i++) {
 | |
|             unsigned long addr;
 | |
|             addr = modified_ram_pages[i];
 | |
|             tb_invalidate_phys_page_range(addr, addr + TARGET_PAGE_SIZE, 0);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* restore the hidden flags */
 | |
|     {
 | |
|         unsigned int new_hflags;
 | |
| #ifdef TARGET_X86_64
 | |
|         if ((env->hflags & HF_LMA_MASK) &&
 | |
|             (env->segs[R_CS].flags & DESC_L_MASK)) {
 | |
|             /* long mode */
 | |
|             new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
 | |
|         } else
 | |
| #endif
 | |
|         {
 | |
|             /* legacy / compatibility case */
 | |
|             new_hflags = (env->segs[R_CS].flags & DESC_B_MASK)
 | |
|                 >> (DESC_B_SHIFT - HF_CS32_SHIFT);
 | |
|             new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK)
 | |
|                 >> (DESC_B_SHIFT - HF_SS32_SHIFT);
 | |
|             if (!(env->cr[0] & CR0_PE_MASK) ||
 | |
|                    (env->eflags & VM_MASK) ||
 | |
|                    !(env->hflags & HF_CS32_MASK)) {
 | |
|                 /* XXX: try to avoid this test. The problem comes from the
 | |
|                    fact that is real mode or vm86 mode we only modify the
 | |
|                    'base' and 'selector' fields of the segment cache to go
 | |
|                    faster. A solution may be to force addseg to one in
 | |
|                    translate-i386.c. */
 | |
|                 new_hflags |= HF_ADDSEG_MASK;
 | |
|             } else {
 | |
|                 new_hflags |= ((env->segs[R_DS].base |
 | |
|                                 env->segs[R_ES].base |
 | |
|                                 env->segs[R_SS].base) != 0) <<
 | |
|                     HF_ADDSEG_SHIFT;
 | |
|             }
 | |
|         }
 | |
|         env->hflags = (env->hflags &
 | |
|            ~(HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) |
 | |
|             new_hflags;
 | |
|     }
 | |
|     /* update FPU flags */
 | |
|     env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
 | |
|         ((env->cr[0] << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
 | |
|     if (env->cr[4] & CR4_OSFXSR_MASK)
 | |
|         env->hflags |= HF_OSFXSR_MASK;
 | |
|     else
 | |
|         env->hflags &= ~HF_OSFXSR_MASK;
 | |
| 
 | |
| #ifdef DEBUG
 | |
|     if (loglevel & CPU_LOG_INT) {
 | |
|         fprintf(logfile, "kqemu: kqemu_cpu_exec: ret=0x%x\n", ret);
 | |
|     }
 | |
| #endif
 | |
|     if (ret == KQEMU_RET_SYSCALL) {
 | |
|         /* syscall instruction */
 | |
|         return do_syscall(env, kenv);
 | |
|     } else
 | |
|     if ((ret & 0xff00) == KQEMU_RET_INT) {
 | |
|         env->exception_index = ret & 0xff;
 | |
|         env->error_code = 0;
 | |
|         env->exception_is_int = 1;
 | |
|         env->exception_next_eip = kenv->next_eip;
 | |
| #ifdef CONFIG_PROFILER
 | |
|         kqemu_ret_int_count++;
 | |
| #endif
 | |
| #ifdef DEBUG
 | |
|         if (loglevel & CPU_LOG_INT) {
 | |
|             fprintf(logfile, "kqemu: interrupt v=%02x:\n",
 | |
|                     env->exception_index);
 | |
|             cpu_dump_state(env, logfile, fprintf, 0);
 | |
|         }
 | |
| #endif
 | |
|         return 1;
 | |
|     } else if ((ret & 0xff00) == KQEMU_RET_EXCEPTION) {
 | |
|         env->exception_index = ret & 0xff;
 | |
|         env->error_code = kenv->error_code;
 | |
|         env->exception_is_int = 0;
 | |
|         env->exception_next_eip = 0;
 | |
| #ifdef CONFIG_PROFILER
 | |
|         kqemu_ret_excp_count++;
 | |
| #endif
 | |
| #ifdef DEBUG
 | |
|         if (loglevel & CPU_LOG_INT) {
 | |
|             fprintf(logfile, "kqemu: exception v=%02x e=%04x:\n",
 | |
|                     env->exception_index, env->error_code);
 | |
|             cpu_dump_state(env, logfile, fprintf, 0);
 | |
|         }
 | |
| #endif
 | |
|         return 1;
 | |
|     } else if (ret == KQEMU_RET_INTR) {
 | |
| #ifdef CONFIG_PROFILER
 | |
|         kqemu_ret_intr_count++;
 | |
| #endif
 | |
| #ifdef DEBUG
 | |
|         if (loglevel & CPU_LOG_INT) {
 | |
|             cpu_dump_state(env, logfile, fprintf, 0);
 | |
|         }
 | |
| #endif
 | |
|         return 0;
 | |
|     } else if (ret == KQEMU_RET_SOFTMMU) {
 | |
| #ifdef CONFIG_PROFILER
 | |
|         {
 | |
|             unsigned long pc = env->eip + env->segs[R_CS].base;
 | |
|             kqemu_record_pc(pc);
 | |
|         }
 | |
| #endif
 | |
| #ifdef DEBUG
 | |
|         if (loglevel & CPU_LOG_INT) {
 | |
|             cpu_dump_state(env, logfile, fprintf, 0);
 | |
|         }
 | |
| #endif
 | |
|         return 2;
 | |
|     } else {
 | |
|         cpu_dump_state(env, stderr, fprintf, 0);
 | |
|         fprintf(stderr, "Unsupported return value: 0x%x\n", ret);
 | |
|         exit(1);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void kqemu_cpu_interrupt(CPUState *env)
 | |
| {
 | |
| #if defined(_WIN32) && KQEMU_VERSION >= 0x010101
 | |
|     /* cancelling the I/O request causes KQEMU to finish executing the
 | |
|        current block and successfully returning. */
 | |
|     CancelIo(kqemu_fd);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif
 |