519 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			519 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  *  Alpha emulation cpu definitions for qemu.
 | |
|  *
 | |
|  *  Copyright (c) 2007 Jocelyn Mayer
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #if !defined (__CPU_ALPHA_H__)
 | |
| #define __CPU_ALPHA_H__
 | |
| 
 | |
| #include "config.h"
 | |
| #include "qemu-common.h"
 | |
| 
 | |
| #define TARGET_LONG_BITS 64
 | |
| 
 | |
| #define CPUArchState struct CPUAlphaState
 | |
| 
 | |
| #include "exec/cpu-defs.h"
 | |
| 
 | |
| #include "fpu/softfloat.h"
 | |
| 
 | |
| #define TARGET_HAS_ICE 1
 | |
| 
 | |
| #define ELF_MACHINE     EM_ALPHA
 | |
| 
 | |
| #define ICACHE_LINE_SIZE 32
 | |
| #define DCACHE_LINE_SIZE 32
 | |
| 
 | |
| #define TARGET_PAGE_BITS 13
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| /* ??? The kernel likes to give addresses in high memory.  If the host has
 | |
|    more virtual address space than the guest, this can lead to impossible
 | |
|    allocations.  Honor the long-standing assumption that only kernel addrs
 | |
|    are negative, but otherwise allow allocations anywhere.  This could lead
 | |
|    to tricky emulation problems for programs doing tagged addressing, but
 | |
|    that's far fewer than encounter the impossible allocation problem.  */
 | |
| #define TARGET_PHYS_ADDR_SPACE_BITS  63
 | |
| #define TARGET_VIRT_ADDR_SPACE_BITS  63
 | |
| #else
 | |
| /* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44.  */
 | |
| #define TARGET_PHYS_ADDR_SPACE_BITS  44
 | |
| #define TARGET_VIRT_ADDR_SPACE_BITS  (30 + TARGET_PAGE_BITS)
 | |
| #endif
 | |
| 
 | |
| /* Alpha major type */
 | |
| enum {
 | |
|     ALPHA_EV3  = 1,
 | |
|     ALPHA_EV4  = 2,
 | |
|     ALPHA_SIM  = 3,
 | |
|     ALPHA_LCA  = 4,
 | |
|     ALPHA_EV5  = 5, /* 21164 */
 | |
|     ALPHA_EV45 = 6, /* 21064A */
 | |
|     ALPHA_EV56 = 7, /* 21164A */
 | |
| };
 | |
| 
 | |
| /* EV4 minor type */
 | |
| enum {
 | |
|     ALPHA_EV4_2 = 0,
 | |
|     ALPHA_EV4_3 = 1,
 | |
| };
 | |
| 
 | |
| /* LCA minor type */
 | |
| enum {
 | |
|     ALPHA_LCA_1 = 1, /* 21066 */
 | |
|     ALPHA_LCA_2 = 2, /* 20166 */
 | |
|     ALPHA_LCA_3 = 3, /* 21068 */
 | |
|     ALPHA_LCA_4 = 4, /* 21068 */
 | |
|     ALPHA_LCA_5 = 5, /* 21066A */
 | |
|     ALPHA_LCA_6 = 6, /* 21068A */
 | |
| };
 | |
| 
 | |
| /* EV5 minor type */
 | |
| enum {
 | |
|     ALPHA_EV5_1 = 1, /* Rev BA, CA */
 | |
|     ALPHA_EV5_2 = 2, /* Rev DA, EA */
 | |
|     ALPHA_EV5_3 = 3, /* Pass 3 */
 | |
|     ALPHA_EV5_4 = 4, /* Pass 3.2 */
 | |
|     ALPHA_EV5_5 = 5, /* Pass 4 */
 | |
| };
 | |
| 
 | |
| /* EV45 minor type */
 | |
| enum {
 | |
|     ALPHA_EV45_1 = 1, /* Pass 1 */
 | |
|     ALPHA_EV45_2 = 2, /* Pass 1.1 */
 | |
|     ALPHA_EV45_3 = 3, /* Pass 2 */
 | |
| };
 | |
| 
 | |
| /* EV56 minor type */
 | |
| enum {
 | |
|     ALPHA_EV56_1 = 1, /* Pass 1 */
 | |
|     ALPHA_EV56_2 = 2, /* Pass 2 */
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     IMPLVER_2106x = 0, /* EV4, EV45 & LCA45 */
 | |
|     IMPLVER_21164 = 1, /* EV5, EV56 & PCA45 */
 | |
|     IMPLVER_21264 = 2, /* EV6, EV67 & EV68x */
 | |
|     IMPLVER_21364 = 3, /* EV7 & EV79 */
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     AMASK_BWX      = 0x00000001,
 | |
|     AMASK_FIX      = 0x00000002,
 | |
|     AMASK_CIX      = 0x00000004,
 | |
|     AMASK_MVI      = 0x00000100,
 | |
|     AMASK_TRAP     = 0x00000200,
 | |
|     AMASK_PREFETCH = 0x00001000,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     VAX_ROUND_NORMAL = 0,
 | |
|     VAX_ROUND_CHOPPED,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     IEEE_ROUND_NORMAL = 0,
 | |
|     IEEE_ROUND_DYNAMIC,
 | |
|     IEEE_ROUND_PLUS,
 | |
|     IEEE_ROUND_MINUS,
 | |
|     IEEE_ROUND_CHOPPED,
 | |
| };
 | |
| 
 | |
| /* IEEE floating-point operations encoding */
 | |
| /* Trap mode */
 | |
| enum {
 | |
|     FP_TRAP_I   = 0x0,
 | |
|     FP_TRAP_U   = 0x1,
 | |
|     FP_TRAP_S  = 0x4,
 | |
|     FP_TRAP_SU  = 0x5,
 | |
|     FP_TRAP_SUI = 0x7,
 | |
| };
 | |
| 
 | |
| /* Rounding mode */
 | |
| enum {
 | |
|     FP_ROUND_CHOPPED = 0x0,
 | |
|     FP_ROUND_MINUS   = 0x1,
 | |
|     FP_ROUND_NORMAL  = 0x2,
 | |
|     FP_ROUND_DYNAMIC = 0x3,
 | |
| };
 | |
| 
 | |
| /* FPCR bits */
 | |
| #define FPCR_SUM		(1ULL << 63)
 | |
| #define FPCR_INED		(1ULL << 62)
 | |
| #define FPCR_UNFD		(1ULL << 61)
 | |
| #define FPCR_UNDZ		(1ULL << 60)
 | |
| #define FPCR_DYN_SHIFT		58
 | |
| #define FPCR_DYN_CHOPPED	(0ULL << FPCR_DYN_SHIFT)
 | |
| #define FPCR_DYN_MINUS		(1ULL << FPCR_DYN_SHIFT)
 | |
| #define FPCR_DYN_NORMAL		(2ULL << FPCR_DYN_SHIFT)
 | |
| #define FPCR_DYN_PLUS		(3ULL << FPCR_DYN_SHIFT)
 | |
| #define FPCR_DYN_MASK		(3ULL << FPCR_DYN_SHIFT)
 | |
| #define FPCR_IOV		(1ULL << 57)
 | |
| #define FPCR_INE		(1ULL << 56)
 | |
| #define FPCR_UNF		(1ULL << 55)
 | |
| #define FPCR_OVF		(1ULL << 54)
 | |
| #define FPCR_DZE		(1ULL << 53)
 | |
| #define FPCR_INV		(1ULL << 52)
 | |
| #define FPCR_OVFD		(1ULL << 51)
 | |
| #define FPCR_DZED		(1ULL << 50)
 | |
| #define FPCR_INVD		(1ULL << 49)
 | |
| #define FPCR_DNZ		(1ULL << 48)
 | |
| #define FPCR_DNOD		(1ULL << 47)
 | |
| #define FPCR_STATUS_MASK	(FPCR_IOV | FPCR_INE | FPCR_UNF \
 | |
| 				 | FPCR_OVF | FPCR_DZE | FPCR_INV)
 | |
| 
 | |
| /* The silly software trap enables implemented by the kernel emulation.
 | |
|    These are more or less architecturally required, since the real hardware
 | |
|    has read-as-zero bits in the FPCR when the features aren't implemented.
 | |
|    For the purposes of QEMU, we pretend the FPCR can hold everything.  */
 | |
| #define SWCR_TRAP_ENABLE_INV	(1ULL << 1)
 | |
| #define SWCR_TRAP_ENABLE_DZE	(1ULL << 2)
 | |
| #define SWCR_TRAP_ENABLE_OVF	(1ULL << 3)
 | |
| #define SWCR_TRAP_ENABLE_UNF	(1ULL << 4)
 | |
| #define SWCR_TRAP_ENABLE_INE	(1ULL << 5)
 | |
| #define SWCR_TRAP_ENABLE_DNO	(1ULL << 6)
 | |
| #define SWCR_TRAP_ENABLE_MASK	((1ULL << 7) - (1ULL << 1))
 | |
| 
 | |
| #define SWCR_MAP_DMZ		(1ULL << 12)
 | |
| #define SWCR_MAP_UMZ		(1ULL << 13)
 | |
| #define SWCR_MAP_MASK		(SWCR_MAP_DMZ | SWCR_MAP_UMZ)
 | |
| 
 | |
| #define SWCR_STATUS_INV		(1ULL << 17)
 | |
| #define SWCR_STATUS_DZE		(1ULL << 18)
 | |
| #define SWCR_STATUS_OVF		(1ULL << 19)
 | |
| #define SWCR_STATUS_UNF		(1ULL << 20)
 | |
| #define SWCR_STATUS_INE		(1ULL << 21)
 | |
| #define SWCR_STATUS_DNO		(1ULL << 22)
 | |
| #define SWCR_STATUS_MASK	((1ULL << 23) - (1ULL << 17))
 | |
| 
 | |
| #define SWCR_MASK  (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
 | |
| 
 | |
| /* MMU modes definitions */
 | |
| 
 | |
| /* Alpha has 5 MMU modes: PALcode, kernel, executive, supervisor, and user.
 | |
|    The Unix PALcode only exposes the kernel and user modes; presumably
 | |
|    executive and supervisor are used by VMS.
 | |
| 
 | |
|    PALcode itself uses physical mode for code and kernel mode for data;
 | |
|    there are PALmode instructions that can access data via physical mode
 | |
|    or via an os-installed "alternate mode", which is one of the 4 above.
 | |
| 
 | |
|    QEMU does not currently properly distinguish between code/data when
 | |
|    looking up addresses.  To avoid having to address this issue, our
 | |
|    emulated PALcode will cheat and use the KSEG mapping for its code+data
 | |
|    rather than physical addresses.
 | |
| 
 | |
|    Moreover, we're only emulating Unix PALcode, and not attempting VMS.
 | |
| 
 | |
|    All of which allows us to drop all but kernel and user modes.
 | |
|    Elide the unused MMU modes to save space.  */
 | |
| 
 | |
| #define NB_MMU_MODES 2
 | |
| 
 | |
| #define MMU_MODE0_SUFFIX _kernel
 | |
| #define MMU_MODE1_SUFFIX _user
 | |
| #define MMU_KERNEL_IDX   0
 | |
| #define MMU_USER_IDX     1
 | |
| 
 | |
| typedef struct CPUAlphaState CPUAlphaState;
 | |
| 
 | |
| struct CPUAlphaState {
 | |
|     uint64_t ir[31];
 | |
|     float64 fir[31];
 | |
|     uint64_t pc;
 | |
|     uint64_t unique;
 | |
|     uint64_t lock_addr;
 | |
|     uint64_t lock_st_addr;
 | |
|     uint64_t lock_value;
 | |
|     float_status fp_status;
 | |
|     /* The following fields make up the FPCR, but in FP_STATUS format.  */
 | |
|     uint8_t fpcr_exc_status;
 | |
|     uint8_t fpcr_exc_mask;
 | |
|     uint8_t fpcr_dyn_round;
 | |
|     uint8_t fpcr_flush_to_zero;
 | |
|     uint8_t fpcr_dnod;
 | |
|     uint8_t fpcr_undz;
 | |
| 
 | |
|     /* The Internal Processor Registers.  Some of these we assume always
 | |
|        exist for use in user-mode.  */
 | |
|     uint8_t ps;
 | |
|     uint8_t intr_flag;
 | |
|     uint8_t pal_mode;
 | |
|     uint8_t fen;
 | |
| 
 | |
|     uint32_t pcc_ofs;
 | |
| 
 | |
|     /* These pass data from the exception logic in the translator and
 | |
|        helpers to the OS entry point.  This is used for both system
 | |
|        emulation and user-mode.  */
 | |
|     uint64_t trap_arg0;
 | |
|     uint64_t trap_arg1;
 | |
|     uint64_t trap_arg2;
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     /* The internal data required by our emulation of the Unix PALcode.  */
 | |
|     uint64_t exc_addr;
 | |
|     uint64_t palbr;
 | |
|     uint64_t ptbr;
 | |
|     uint64_t vptptr;
 | |
|     uint64_t sysval;
 | |
|     uint64_t usp;
 | |
|     uint64_t shadow[8];
 | |
|     uint64_t scratch[24];
 | |
| #endif
 | |
| 
 | |
|     /* This alarm doesn't exist in real hardware; we wish it did.  */
 | |
|     uint64_t alarm_expire;
 | |
| 
 | |
|     /* Those resources are used only in QEMU core */
 | |
|     CPU_COMMON
 | |
| 
 | |
|     int error_code;
 | |
| 
 | |
|     uint32_t features;
 | |
|     uint32_t amask;
 | |
|     int implver;
 | |
| };
 | |
| 
 | |
| #define cpu_list alpha_cpu_list
 | |
| #define cpu_exec cpu_alpha_exec
 | |
| #define cpu_gen_code cpu_alpha_gen_code
 | |
| #define cpu_signal_handler cpu_alpha_signal_handler
 | |
| 
 | |
| #include "exec/cpu-all.h"
 | |
| #include "cpu-qom.h"
 | |
| 
 | |
| enum {
 | |
|     FEATURE_ASN    = 0x00000001,
 | |
|     FEATURE_SPS    = 0x00000002,
 | |
|     FEATURE_VIRBND = 0x00000004,
 | |
|     FEATURE_TBCHK  = 0x00000008,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     EXCP_RESET,
 | |
|     EXCP_MCHK,
 | |
|     EXCP_SMP_INTERRUPT,
 | |
|     EXCP_CLK_INTERRUPT,
 | |
|     EXCP_DEV_INTERRUPT,
 | |
|     EXCP_MMFAULT,
 | |
|     EXCP_UNALIGN,
 | |
|     EXCP_OPCDEC,
 | |
|     EXCP_ARITH,
 | |
|     EXCP_FEN,
 | |
|     EXCP_CALL_PAL,
 | |
|     /* For Usermode emulation.  */
 | |
|     EXCP_STL_C,
 | |
|     EXCP_STQ_C,
 | |
| };
 | |
| 
 | |
| /* Alpha-specific interrupt pending bits.  */
 | |
| #define CPU_INTERRUPT_TIMER	CPU_INTERRUPT_TGT_EXT_0
 | |
| #define CPU_INTERRUPT_SMP	CPU_INTERRUPT_TGT_EXT_1
 | |
| #define CPU_INTERRUPT_MCHK	CPU_INTERRUPT_TGT_EXT_2
 | |
| 
 | |
| /* OSF/1 Page table bits.  */
 | |
| enum {
 | |
|     PTE_VALID = 0x0001,
 | |
|     PTE_FOR   = 0x0002,  /* used for page protection (fault on read) */
 | |
|     PTE_FOW   = 0x0004,  /* used for page protection (fault on write) */
 | |
|     PTE_FOE   = 0x0008,  /* used for page protection (fault on exec) */
 | |
|     PTE_ASM   = 0x0010,
 | |
|     PTE_KRE   = 0x0100,
 | |
|     PTE_URE   = 0x0200,
 | |
|     PTE_KWE   = 0x1000,
 | |
|     PTE_UWE   = 0x2000
 | |
| };
 | |
| 
 | |
| /* Hardware interrupt (entInt) constants.  */
 | |
| enum {
 | |
|     INT_K_IP,
 | |
|     INT_K_CLK,
 | |
|     INT_K_MCHK,
 | |
|     INT_K_DEV,
 | |
|     INT_K_PERF,
 | |
| };
 | |
| 
 | |
| /* Memory management (entMM) constants.  */
 | |
| enum {
 | |
|     MM_K_TNV,
 | |
|     MM_K_ACV,
 | |
|     MM_K_FOR,
 | |
|     MM_K_FOE,
 | |
|     MM_K_FOW
 | |
| };
 | |
| 
 | |
| /* Arithmetic exception (entArith) constants.  */
 | |
| enum {
 | |
|     EXC_M_SWC = 1,      /* Software completion */
 | |
|     EXC_M_INV = 2,      /* Invalid operation */
 | |
|     EXC_M_DZE = 4,      /* Division by zero */
 | |
|     EXC_M_FOV = 8,      /* Overflow */
 | |
|     EXC_M_UNF = 16,     /* Underflow */
 | |
|     EXC_M_INE = 32,     /* Inexact result */
 | |
|     EXC_M_IOV = 64      /* Integer Overflow */
 | |
| };
 | |
| 
 | |
| /* Processor status constants.  */
 | |
| enum {
 | |
|     /* Low 3 bits are interrupt mask level.  */
 | |
|     PS_INT_MASK = 7,
 | |
| 
 | |
|     /* Bits 4 and 5 are the mmu mode.  The VMS PALcode uses all 4 modes;
 | |
|        The Unix PALcode only uses bit 4.  */
 | |
|     PS_USER_MODE = 8
 | |
| };
 | |
| 
 | |
| static inline int cpu_mmu_index(CPUAlphaState *env)
 | |
| {
 | |
|     if (env->pal_mode) {
 | |
|         return MMU_KERNEL_IDX;
 | |
|     } else if (env->ps & PS_USER_MODE) {
 | |
|         return MMU_USER_IDX;
 | |
|     } else {
 | |
|         return MMU_KERNEL_IDX;
 | |
|     }
 | |
| }
 | |
| 
 | |
| enum {
 | |
|     IR_V0   = 0,
 | |
|     IR_T0   = 1,
 | |
|     IR_T1   = 2,
 | |
|     IR_T2   = 3,
 | |
|     IR_T3   = 4,
 | |
|     IR_T4   = 5,
 | |
|     IR_T5   = 6,
 | |
|     IR_T6   = 7,
 | |
|     IR_T7   = 8,
 | |
|     IR_S0   = 9,
 | |
|     IR_S1   = 10,
 | |
|     IR_S2   = 11,
 | |
|     IR_S3   = 12,
 | |
|     IR_S4   = 13,
 | |
|     IR_S5   = 14,
 | |
|     IR_S6   = 15,
 | |
|     IR_FP   = IR_S6,
 | |
|     IR_A0   = 16,
 | |
|     IR_A1   = 17,
 | |
|     IR_A2   = 18,
 | |
|     IR_A3   = 19,
 | |
|     IR_A4   = 20,
 | |
|     IR_A5   = 21,
 | |
|     IR_T8   = 22,
 | |
|     IR_T9   = 23,
 | |
|     IR_T10  = 24,
 | |
|     IR_T11  = 25,
 | |
|     IR_RA   = 26,
 | |
|     IR_T12  = 27,
 | |
|     IR_PV   = IR_T12,
 | |
|     IR_AT   = 28,
 | |
|     IR_GP   = 29,
 | |
|     IR_SP   = 30,
 | |
|     IR_ZERO = 31,
 | |
| };
 | |
| 
 | |
| void alpha_translate_init(void);
 | |
| 
 | |
| AlphaCPU *cpu_alpha_init(const char *cpu_model);
 | |
| 
 | |
| static inline CPUAlphaState *cpu_init(const char *cpu_model)
 | |
| {
 | |
|     AlphaCPU *cpu = cpu_alpha_init(cpu_model);
 | |
|     if (cpu == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
|     return &cpu->env;
 | |
| }
 | |
| 
 | |
| void alpha_cpu_list(FILE *f, fprintf_function cpu_fprintf);
 | |
| int cpu_alpha_exec(CPUAlphaState *s);
 | |
| /* you can call this signal handler from your SIGBUS and SIGSEGV
 | |
|    signal handlers to inform the virtual CPU of exceptions. non zero
 | |
|    is returned if the signal was handled by the virtual CPU.  */
 | |
| int cpu_alpha_signal_handler(int host_signum, void *pinfo,
 | |
|                              void *puc);
 | |
| int cpu_alpha_handle_mmu_fault (CPUAlphaState *env, uint64_t address, int rw,
 | |
|                                 int mmu_idx);
 | |
| #define cpu_handle_mmu_fault cpu_alpha_handle_mmu_fault
 | |
| void do_restore_state(CPUAlphaState *, uintptr_t retaddr);
 | |
| void QEMU_NORETURN dynamic_excp(CPUAlphaState *, uintptr_t, int, int);
 | |
| void QEMU_NORETURN arith_excp(CPUAlphaState *, uintptr_t, int, uint64_t);
 | |
| 
 | |
| uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env);
 | |
| void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val);
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| void swap_shadow_regs(CPUAlphaState *env);
 | |
| QEMU_NORETURN void alpha_cpu_unassigned_access(CPUState *cpu, hwaddr addr,
 | |
|                                                bool is_write, bool is_exec,
 | |
|                                                int unused, unsigned size);
 | |
| #endif
 | |
| 
 | |
| /* Bits in TB->FLAGS that control how translation is processed.  */
 | |
| enum {
 | |
|     TB_FLAGS_PAL_MODE = 1,
 | |
|     TB_FLAGS_FEN = 2,
 | |
|     TB_FLAGS_USER_MODE = 8,
 | |
| 
 | |
|     TB_FLAGS_AMASK_SHIFT = 4,
 | |
|     TB_FLAGS_AMASK_BWX = AMASK_BWX << TB_FLAGS_AMASK_SHIFT,
 | |
|     TB_FLAGS_AMASK_FIX = AMASK_FIX << TB_FLAGS_AMASK_SHIFT,
 | |
|     TB_FLAGS_AMASK_CIX = AMASK_CIX << TB_FLAGS_AMASK_SHIFT,
 | |
|     TB_FLAGS_AMASK_MVI = AMASK_MVI << TB_FLAGS_AMASK_SHIFT,
 | |
|     TB_FLAGS_AMASK_TRAP = AMASK_TRAP << TB_FLAGS_AMASK_SHIFT,
 | |
|     TB_FLAGS_AMASK_PREFETCH = AMASK_PREFETCH << TB_FLAGS_AMASK_SHIFT,
 | |
| };
 | |
| 
 | |
| static inline void cpu_get_tb_cpu_state(CPUAlphaState *env, target_ulong *pc,
 | |
|                                         target_ulong *cs_base, int *pflags)
 | |
| {
 | |
|     int flags = 0;
 | |
| 
 | |
|     *pc = env->pc;
 | |
|     *cs_base = 0;
 | |
| 
 | |
|     if (env->pal_mode) {
 | |
|         flags = TB_FLAGS_PAL_MODE;
 | |
|     } else {
 | |
|         flags = env->ps & PS_USER_MODE;
 | |
|     }
 | |
|     if (env->fen) {
 | |
|         flags |= TB_FLAGS_FEN;
 | |
|     }
 | |
|     flags |= env->amask << TB_FLAGS_AMASK_SHIFT;
 | |
| 
 | |
|     *pflags = flags;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_work(CPUState *cpu)
 | |
| {
 | |
|     /* Here we are checking to see if the CPU should wake up from HALT.
 | |
|        We will have gotten into this state only for WTINT from PALmode.  */
 | |
|     /* ??? I'm not sure how the IPL state works with WTINT to keep a CPU
 | |
|        asleep even if (some) interrupts have been asserted.  For now,
 | |
|        assume that if a CPU really wants to stay asleep, it will mask
 | |
|        interrupts at the chipset level, which will prevent these bits
 | |
|        from being set in the first place.  */
 | |
|     return cpu->interrupt_request & (CPU_INTERRUPT_HARD
 | |
|                                      | CPU_INTERRUPT_TIMER
 | |
|                                      | CPU_INTERRUPT_SMP
 | |
|                                      | CPU_INTERRUPT_MCHK);
 | |
| }
 | |
| 
 | |
| #include "exec/exec-all.h"
 | |
| 
 | |
| #endif /* !defined (__CPU_ALPHA_H__) */
 |