823 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			823 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  *  Helpers for floating point instructions.
 | |
|  *
 | |
|  *  Copyright (c) 2007 Jocelyn Mayer
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "cpu.h"
 | |
| #include "helper.h"
 | |
| #include "fpu/softfloat.h"
 | |
| 
 | |
| #define FP_STATUS (env->fp_status)
 | |
| 
 | |
| 
 | |
| void helper_setroundmode(CPUAlphaState *env, uint32_t val)
 | |
| {
 | |
|     set_float_rounding_mode(val, &FP_STATUS);
 | |
| }
 | |
| 
 | |
| void helper_setflushzero(CPUAlphaState *env, uint32_t val)
 | |
| {
 | |
|     set_flush_to_zero(val, &FP_STATUS);
 | |
| }
 | |
| 
 | |
| void helper_fp_exc_clear(CPUAlphaState *env)
 | |
| {
 | |
|     set_float_exception_flags(0, &FP_STATUS);
 | |
| }
 | |
| 
 | |
| uint32_t helper_fp_exc_get(CPUAlphaState *env)
 | |
| {
 | |
|     return get_float_exception_flags(&FP_STATUS);
 | |
| }
 | |
| 
 | |
| static inline void inline_fp_exc_raise(CPUAlphaState *env, uintptr_t retaddr,
 | |
|                                        uint32_t exc, uint32_t regno)
 | |
| {
 | |
|     if (exc) {
 | |
|         uint32_t hw_exc = 0;
 | |
| 
 | |
|         if (exc & float_flag_invalid) {
 | |
|             hw_exc |= EXC_M_INV;
 | |
|         }
 | |
|         if (exc & float_flag_divbyzero) {
 | |
|             hw_exc |= EXC_M_DZE;
 | |
|         }
 | |
|         if (exc & float_flag_overflow) {
 | |
|             hw_exc |= EXC_M_FOV;
 | |
|         }
 | |
|         if (exc & float_flag_underflow) {
 | |
|             hw_exc |= EXC_M_UNF;
 | |
|         }
 | |
|         if (exc & float_flag_inexact) {
 | |
|             hw_exc |= EXC_M_INE;
 | |
|         }
 | |
| 
 | |
|         arith_excp(env, retaddr, hw_exc, 1ull << regno);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Raise exceptions for ieee fp insns without software completion.
 | |
|    In that case there are no exceptions that don't trap; the mask
 | |
|    doesn't apply.  */
 | |
| void helper_fp_exc_raise(CPUAlphaState *env, uint32_t exc, uint32_t regno)
 | |
| {
 | |
|     inline_fp_exc_raise(env, GETPC(), exc, regno);
 | |
| }
 | |
| 
 | |
| /* Raise exceptions for ieee fp insns with software completion.  */
 | |
| void helper_fp_exc_raise_s(CPUAlphaState *env, uint32_t exc, uint32_t regno)
 | |
| {
 | |
|     if (exc) {
 | |
|         env->fpcr_exc_status |= exc;
 | |
|         exc &= ~env->fpcr_exc_mask;
 | |
|         inline_fp_exc_raise(env, GETPC(), exc, regno);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Input handing without software completion.  Trap for all
 | |
|    non-finite numbers.  */
 | |
| void helper_ieee_input(CPUAlphaState *env, uint64_t val)
 | |
| {
 | |
|     uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
 | |
|     uint64_t frac = val & 0xfffffffffffffull;
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         /* Denormals without DNZ set raise an exception.  */
 | |
|         if (frac != 0 && !env->fp_status.flush_inputs_to_zero) {
 | |
|             arith_excp(env, GETPC(), EXC_M_UNF, 0);
 | |
|         }
 | |
|     } else if (exp == 0x7ff) {
 | |
|         /* Infinity or NaN.  */
 | |
|         /* ??? I'm not sure these exception bit flags are correct.  I do
 | |
|            know that the Linux kernel, at least, doesn't rely on them and
 | |
|            just emulates the insn to figure out what exception to use.  */
 | |
|         arith_excp(env, GETPC(), frac ? EXC_M_INV : EXC_M_FOV, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Similar, but does not trap for infinities.  Used for comparisons.  */
 | |
| void helper_ieee_input_cmp(CPUAlphaState *env, uint64_t val)
 | |
| {
 | |
|     uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
 | |
|     uint64_t frac = val & 0xfffffffffffffull;
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         /* Denormals without DNZ set raise an exception.  */
 | |
|         if (frac != 0 && !env->fp_status.flush_inputs_to_zero) {
 | |
|             arith_excp(env, GETPC(), EXC_M_UNF, 0);
 | |
|         }
 | |
|     } else if (exp == 0x7ff && frac) {
 | |
|         /* NaN.  */
 | |
|         arith_excp(env, GETPC(), EXC_M_INV, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* F floating (VAX) */
 | |
| static uint64_t float32_to_f(float32 fa)
 | |
| {
 | |
|     uint64_t r, exp, mant, sig;
 | |
|     CPU_FloatU a;
 | |
| 
 | |
|     a.f = fa;
 | |
|     sig = ((uint64_t)a.l & 0x80000000) << 32;
 | |
|     exp = (a.l >> 23) & 0xff;
 | |
|     mant = ((uint64_t)a.l & 0x007fffff) << 29;
 | |
| 
 | |
|     if (exp == 255) {
 | |
|         /* NaN or infinity */
 | |
|         r = 1; /* VAX dirty zero */
 | |
|     } else if (exp == 0) {
 | |
|         if (mant == 0) {
 | |
|             /* Zero */
 | |
|             r = 0;
 | |
|         } else {
 | |
|             /* Denormalized */
 | |
|             r = sig | ((exp + 1) << 52) | mant;
 | |
|         }
 | |
|     } else {
 | |
|         if (exp >= 253) {
 | |
|             /* Overflow */
 | |
|             r = 1; /* VAX dirty zero */
 | |
|         } else {
 | |
|             r = sig | ((exp + 2) << 52);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static float32 f_to_float32(CPUAlphaState *env, uintptr_t retaddr, uint64_t a)
 | |
| {
 | |
|     uint32_t exp, mant_sig;
 | |
|     CPU_FloatU r;
 | |
| 
 | |
|     exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
 | |
|     mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
 | |
| 
 | |
|     if (unlikely(!exp && mant_sig)) {
 | |
|         /* Reserved operands / Dirty zero */
 | |
|         dynamic_excp(env, retaddr, EXCP_OPCDEC, 0);
 | |
|     }
 | |
| 
 | |
|     if (exp < 3) {
 | |
|         /* Underflow */
 | |
|         r.l = 0;
 | |
|     } else {
 | |
|         r.l = ((exp - 2) << 23) | mant_sig;
 | |
|     }
 | |
| 
 | |
|     return r.f;
 | |
| }
 | |
| 
 | |
| uint32_t helper_f_to_memory(uint64_t a)
 | |
| {
 | |
|     uint32_t r;
 | |
|     r =  (a & 0x00001fffe0000000ull) >> 13;
 | |
|     r |= (a & 0x07ffe00000000000ull) >> 45;
 | |
|     r |= (a & 0xc000000000000000ull) >> 48;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint64_t helper_memory_to_f(uint32_t a)
 | |
| {
 | |
|     uint64_t r;
 | |
|     r =  ((uint64_t)(a & 0x0000c000)) << 48;
 | |
|     r |= ((uint64_t)(a & 0x003fffff)) << 45;
 | |
|     r |= ((uint64_t)(a & 0xffff0000)) << 13;
 | |
|     if (!(a & 0x00004000)) {
 | |
|         r |= 0x7ll << 59;
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong.  We should
 | |
|    either implement VAX arithmetic properly or just signal invalid opcode.  */
 | |
| 
 | |
| uint64_t helper_addf(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(env, GETPC(), a);
 | |
|     fb = f_to_float32(env, GETPC(), b);
 | |
|     fr = float32_add(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subf(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(env, GETPC(), a);
 | |
|     fb = f_to_float32(env, GETPC(), b);
 | |
|     fr = float32_sub(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_mulf(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(env, GETPC(), a);
 | |
|     fb = f_to_float32(env, GETPC(), b);
 | |
|     fr = float32_mul(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divf(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(env, GETPC(), a);
 | |
|     fb = f_to_float32(env, GETPC(), b);
 | |
|     fr = float32_div(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrtf(CPUAlphaState *env, uint64_t t)
 | |
| {
 | |
|     float32 ft, fr;
 | |
| 
 | |
|     ft = f_to_float32(env, GETPC(), t);
 | |
|     fr = float32_sqrt(ft, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* G floating (VAX) */
 | |
| static uint64_t float64_to_g(float64 fa)
 | |
| {
 | |
|     uint64_t r, exp, mant, sig;
 | |
|     CPU_DoubleU a;
 | |
| 
 | |
|     a.d = fa;
 | |
|     sig = a.ll & 0x8000000000000000ull;
 | |
|     exp = (a.ll >> 52) & 0x7ff;
 | |
|     mant = a.ll & 0x000fffffffffffffull;
 | |
| 
 | |
|     if (exp == 2047) {
 | |
|         /* NaN or infinity */
 | |
|         r = 1; /* VAX dirty zero */
 | |
|     } else if (exp == 0) {
 | |
|         if (mant == 0) {
 | |
|             /* Zero */
 | |
|             r = 0;
 | |
|         } else {
 | |
|             /* Denormalized */
 | |
|             r = sig | ((exp + 1) << 52) | mant;
 | |
|         }
 | |
|     } else {
 | |
|         if (exp >= 2045) {
 | |
|             /* Overflow */
 | |
|             r = 1; /* VAX dirty zero */
 | |
|         } else {
 | |
|             r = sig | ((exp + 2) << 52);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static float64 g_to_float64(CPUAlphaState *env, uintptr_t retaddr, uint64_t a)
 | |
| {
 | |
|     uint64_t exp, mant_sig;
 | |
|     CPU_DoubleU r;
 | |
| 
 | |
|     exp = (a >> 52) & 0x7ff;
 | |
|     mant_sig = a & 0x800fffffffffffffull;
 | |
| 
 | |
|     if (!exp && mant_sig) {
 | |
|         /* Reserved operands / Dirty zero */
 | |
|         dynamic_excp(env, retaddr, EXCP_OPCDEC, 0);
 | |
|     }
 | |
| 
 | |
|     if (exp < 3) {
 | |
|         /* Underflow */
 | |
|         r.ll = 0;
 | |
|     } else {
 | |
|         r.ll = ((exp - 2) << 52) | mant_sig;
 | |
|     }
 | |
| 
 | |
|     return r.d;
 | |
| }
 | |
| 
 | |
| uint64_t helper_g_to_memory(uint64_t a)
 | |
| {
 | |
|     uint64_t r;
 | |
|     r =  (a & 0x000000000000ffffull) << 48;
 | |
|     r |= (a & 0x00000000ffff0000ull) << 16;
 | |
|     r |= (a & 0x0000ffff00000000ull) >> 16;
 | |
|     r |= (a & 0xffff000000000000ull) >> 48;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint64_t helper_memory_to_g(uint64_t a)
 | |
| {
 | |
|     uint64_t r;
 | |
|     r =  (a & 0x000000000000ffffull) << 48;
 | |
|     r |= (a & 0x00000000ffff0000ull) << 16;
 | |
|     r |= (a & 0x0000ffff00000000ull) >> 16;
 | |
|     r |= (a & 0xffff000000000000ull) >> 48;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint64_t helper_addg(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fb = g_to_float64(env, GETPC(), b);
 | |
|     fr = float64_add(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subg(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fb = g_to_float64(env, GETPC(), b);
 | |
|     fr = float64_sub(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_mulg(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fb = g_to_float64(env, GETPC(), b);
 | |
|     fr = float64_mul(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divg(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fb = g_to_float64(env, GETPC(), b);
 | |
|     fr = float64_div(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrtg(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float64 fa, fr;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fr = float64_sqrt(fa, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* S floating (single) */
 | |
| 
 | |
| /* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg.  */
 | |
| static inline uint64_t float32_to_s_int(uint32_t fi)
 | |
| {
 | |
|     uint32_t frac = fi & 0x7fffff;
 | |
|     uint32_t sign = fi >> 31;
 | |
|     uint32_t exp_msb = (fi >> 30) & 1;
 | |
|     uint32_t exp_low = (fi >> 23) & 0x7f;
 | |
|     uint32_t exp;
 | |
| 
 | |
|     exp = (exp_msb << 10) | exp_low;
 | |
|     if (exp_msb) {
 | |
|         if (exp_low == 0x7f) {
 | |
|             exp = 0x7ff;
 | |
|         }
 | |
|     } else {
 | |
|         if (exp_low != 0x00) {
 | |
|             exp |= 0x380;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return (((uint64_t)sign << 63)
 | |
|             | ((uint64_t)exp << 52)
 | |
|             | ((uint64_t)frac << 29));
 | |
| }
 | |
| 
 | |
| static inline uint64_t float32_to_s(float32 fa)
 | |
| {
 | |
|     CPU_FloatU a;
 | |
|     a.f = fa;
 | |
|     return float32_to_s_int(a.l);
 | |
| }
 | |
| 
 | |
| static inline uint32_t s_to_float32_int(uint64_t a)
 | |
| {
 | |
|     return ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
 | |
| }
 | |
| 
 | |
| static inline float32 s_to_float32(uint64_t a)
 | |
| {
 | |
|     CPU_FloatU r;
 | |
|     r.l = s_to_float32_int(a);
 | |
|     return r.f;
 | |
| }
 | |
| 
 | |
| uint32_t helper_s_to_memory(uint64_t a)
 | |
| {
 | |
|     return s_to_float32_int(a);
 | |
| }
 | |
| 
 | |
| uint64_t helper_memory_to_s(uint32_t a)
 | |
| {
 | |
|     return float32_to_s_int(a);
 | |
| }
 | |
| 
 | |
| uint64_t helper_adds(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_add(fa, fb, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subs(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_sub(fa, fb, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_muls(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_mul(fa, fb, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divs(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_div(fa, fb, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrts(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float32 fa, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fr = float32_sqrt(fa, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* T floating (double) */
 | |
| static inline float64 t_to_float64(uint64_t a)
 | |
| {
 | |
|     /* Memory format is the same as float64 */
 | |
|     CPU_DoubleU r;
 | |
|     r.ll = a;
 | |
|     return r.d;
 | |
| }
 | |
| 
 | |
| static inline uint64_t float64_to_t(float64 fa)
 | |
| {
 | |
|     /* Memory format is the same as float64 */
 | |
|     CPU_DoubleU r;
 | |
|     r.d = fa;
 | |
|     return r.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_addt(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_add(fa, fb, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subt(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_sub(fa, fb, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_mult(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_mul(fa, fb, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divt(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_div(fa, fb, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrtt(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float64 fa, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fr = float64_sqrt(fa, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| /* Comparisons */
 | |
| uint64_t helper_cmptun(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_unordered_quiet(fa, fb, &FP_STATUS)) {
 | |
|         return 0x4000000000000000ULL;
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpteq(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_eq_quiet(fa, fb, &FP_STATUS)) {
 | |
|         return 0x4000000000000000ULL;
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmptle(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_le(fa, fb, &FP_STATUS)) {
 | |
|         return 0x4000000000000000ULL;
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmptlt(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_lt(fa, fb, &FP_STATUS)) {
 | |
|         return 0x4000000000000000ULL;
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpgeq(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fb = g_to_float64(env, GETPC(), b);
 | |
| 
 | |
|     if (float64_eq_quiet(fa, fb, &FP_STATUS)) {
 | |
|         return 0x4000000000000000ULL;
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpgle(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fb = g_to_float64(env, GETPC(), b);
 | |
| 
 | |
|     if (float64_le(fa, fb, &FP_STATUS)) {
 | |
|         return 0x4000000000000000ULL;
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpglt(CPUAlphaState *env, uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fb = g_to_float64(env, GETPC(), b);
 | |
| 
 | |
|     if (float64_lt(fa, fb, &FP_STATUS)) {
 | |
|         return 0x4000000000000000ULL;
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Floating point format conversion */
 | |
| uint64_t helper_cvtts(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float64 fa;
 | |
|     float32 fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fr = float64_to_float32(fa, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtst(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float32 fa;
 | |
|     float64 fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fr = float32_to_float64(fa, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqs(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float32 fr = int64_to_float32(a, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| /* Implement float64 to uint64 conversion without saturation -- we must
 | |
|    supply the truncated result.  This behaviour is used by the compiler
 | |
|    to get unsigned conversion for free with the same instruction.
 | |
| 
 | |
|    The VI flag is set when overflow or inexact exceptions should be raised.  */
 | |
| 
 | |
| static inline uint64_t inline_cvttq(CPUAlphaState *env, uint64_t a,
 | |
|                                     int roundmode, int VI)
 | |
| {
 | |
|     uint64_t frac, ret = 0;
 | |
|     uint32_t exp, sign, exc = 0;
 | |
|     int shift;
 | |
| 
 | |
|     sign = (a >> 63);
 | |
|     exp = (uint32_t)(a >> 52) & 0x7ff;
 | |
|     frac = a & 0xfffffffffffffull;
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         if (unlikely(frac != 0)) {
 | |
|             goto do_underflow;
 | |
|         }
 | |
|     } else if (exp == 0x7ff) {
 | |
|         exc = (frac ? float_flag_invalid : VI ? float_flag_overflow : 0);
 | |
|     } else {
 | |
|         /* Restore implicit bit.  */
 | |
|         frac |= 0x10000000000000ull;
 | |
| 
 | |
|         shift = exp - 1023 - 52;
 | |
|         if (shift >= 0) {
 | |
|             /* In this case the number is so large that we must shift
 | |
|                the fraction left.  There is no rounding to do.  */
 | |
|             if (shift < 63) {
 | |
|                 ret = frac << shift;
 | |
|                 if (VI && (ret >> shift) != frac) {
 | |
|                     exc = float_flag_overflow;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             uint64_t round;
 | |
| 
 | |
|             /* In this case the number is smaller than the fraction as
 | |
|                represented by the 52 bit number.  Here we must think
 | |
|                about rounding the result.  Handle this by shifting the
 | |
|                fractional part of the number into the high bits of ROUND.
 | |
|                This will let us efficiently handle round-to-nearest.  */
 | |
|             shift = -shift;
 | |
|             if (shift < 63) {
 | |
|                 ret = frac >> shift;
 | |
|                 round = frac << (64 - shift);
 | |
|             } else {
 | |
|                 /* The exponent is so small we shift out everything.
 | |
|                    Leave a sticky bit for proper rounding below.  */
 | |
|             do_underflow:
 | |
|                 round = 1;
 | |
|             }
 | |
| 
 | |
|             if (round) {
 | |
|                 exc = (VI ? float_flag_inexact : 0);
 | |
|                 switch (roundmode) {
 | |
|                 case float_round_nearest_even:
 | |
|                     if (round == (1ull << 63)) {
 | |
|                         /* Fraction is exactly 0.5; round to even.  */
 | |
|                         ret += (ret & 1);
 | |
|                     } else if (round > (1ull << 63)) {
 | |
|                         ret += 1;
 | |
|                     }
 | |
|                     break;
 | |
|                 case float_round_to_zero:
 | |
|                     break;
 | |
|                 case float_round_up:
 | |
|                     ret += 1 - sign;
 | |
|                     break;
 | |
|                 case float_round_down:
 | |
|                     ret += sign;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (sign) {
 | |
|             ret = -ret;
 | |
|         }
 | |
|     }
 | |
|     if (unlikely(exc)) {
 | |
|         float_raise(exc, &FP_STATUS);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvttq(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     return inline_cvttq(env, a, FP_STATUS.float_rounding_mode, 1);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvttq_c(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     return inline_cvttq(env, a, float_round_to_zero, 0);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvttq_svic(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     return inline_cvttq(env, a, float_round_to_zero, 1);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqt(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float64 fr = int64_to_float64(a, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqf(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float32 fr = int64_to_float32(a, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtgf(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float64 fa;
 | |
|     float32 fr;
 | |
| 
 | |
|     fa = g_to_float64(env, GETPC(), a);
 | |
|     fr = float64_to_float32(fa, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtgq(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float64 fa = g_to_float64(env, GETPC(), a);
 | |
|     return float64_to_int64_round_to_zero(fa, &FP_STATUS);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqg(CPUAlphaState *env, uint64_t a)
 | |
| {
 | |
|     float64 fr;
 | |
|     fr = int64_to_float64(a, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 |