990 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			990 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 | |
|  *
 | |
|  * Copyright (c) 2004-2007 Fabrice Bellard
 | |
|  * Copyright (c) 2007 Jocelyn Mayer
 | |
|  * Copyright (c) 2010 David Gibson, IBM Corporation.
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "hw/hw.h"
 | |
| #include "elf.h"
 | |
| #include "net/net.h"
 | |
| #include "sysemu/blockdev.h"
 | |
| #include "sysemu/cpus.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "kvm_ppc.h"
 | |
| 
 | |
| #include "hw/boards.h"
 | |
| #include "hw/ppc/ppc.h"
 | |
| #include "hw/loader.h"
 | |
| 
 | |
| #include "hw/ppc/spapr.h"
 | |
| #include "hw/ppc/spapr_vio.h"
 | |
| #include "hw/pci-host/spapr.h"
 | |
| #include "hw/ppc/xics.h"
 | |
| #include "hw/pci/msi.h"
 | |
| 
 | |
| #include "sysemu/kvm.h"
 | |
| #include "kvm_ppc.h"
 | |
| #include "hw/pci/pci.h"
 | |
| 
 | |
| #include "exec/address-spaces.h"
 | |
| #include "hw/usb.h"
 | |
| #include "qemu/config-file.h"
 | |
| 
 | |
| #include <libfdt.h>
 | |
| 
 | |
| /* SLOF memory layout:
 | |
|  *
 | |
|  * SLOF raw image loaded at 0, copies its romfs right below the flat
 | |
|  * device-tree, then position SLOF itself 31M below that
 | |
|  *
 | |
|  * So we set FW_OVERHEAD to 40MB which should account for all of that
 | |
|  * and more
 | |
|  *
 | |
|  * We load our kernel at 4M, leaving space for SLOF initial image
 | |
|  */
 | |
| #define FDT_MAX_SIZE            0x10000
 | |
| #define RTAS_MAX_SIZE           0x10000
 | |
| #define FW_MAX_SIZE             0x400000
 | |
| #define FW_FILE_NAME            "slof.bin"
 | |
| #define FW_OVERHEAD             0x2800000
 | |
| #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
 | |
| 
 | |
| #define MIN_RMA_SLOF            128UL
 | |
| 
 | |
| #define TIMEBASE_FREQ           512000000ULL
 | |
| 
 | |
| #define MAX_CPUS                256
 | |
| #define XICS_IRQS               1024
 | |
| 
 | |
| #define PHANDLE_XICP            0x00001111
 | |
| 
 | |
| #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
 | |
| 
 | |
| sPAPREnvironment *spapr;
 | |
| 
 | |
| int spapr_allocate_irq(int hint, bool lsi)
 | |
| {
 | |
|     int irq;
 | |
| 
 | |
|     if (hint) {
 | |
|         irq = hint;
 | |
|         /* FIXME: we should probably check for collisions somehow */
 | |
|     } else {
 | |
|         irq = spapr->next_irq++;
 | |
|     }
 | |
| 
 | |
|     /* Configure irq type */
 | |
|     if (!xics_get_qirq(spapr->icp, irq)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     xics_set_irq_type(spapr->icp, irq, lsi);
 | |
| 
 | |
|     return irq;
 | |
| }
 | |
| 
 | |
| /* Allocate block of consequtive IRQs, returns a number of the first */
 | |
| int spapr_allocate_irq_block(int num, bool lsi)
 | |
| {
 | |
|     int first = -1;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < num; ++i) {
 | |
|         int irq;
 | |
| 
 | |
|         irq = spapr_allocate_irq(0, lsi);
 | |
|         if (!irq) {
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         if (0 == i) {
 | |
|             first = irq;
 | |
|         }
 | |
| 
 | |
|         /* If the above doesn't create a consecutive block then that's
 | |
|          * an internal bug */
 | |
|         assert(irq == (first + i));
 | |
|     }
 | |
| 
 | |
|     return first;
 | |
| }
 | |
| 
 | |
| static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
 | |
| {
 | |
|     int ret = 0, offset;
 | |
|     CPUPPCState *env;
 | |
|     CPUState *cpu;
 | |
|     char cpu_model[32];
 | |
|     int smt = kvmppc_smt_threads();
 | |
|     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 | |
| 
 | |
|     assert(spapr->cpu_model);
 | |
| 
 | |
|     for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         cpu = CPU(ppc_env_get_cpu(env));
 | |
|         uint32_t associativity[] = {cpu_to_be32(0x5),
 | |
|                                     cpu_to_be32(0x0),
 | |
|                                     cpu_to_be32(0x0),
 | |
|                                     cpu_to_be32(0x0),
 | |
|                                     cpu_to_be32(cpu->numa_node),
 | |
|                                     cpu_to_be32(cpu->cpu_index)};
 | |
| 
 | |
|         if ((cpu->cpu_index % smt) != 0) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
 | |
|                  cpu->cpu_index);
 | |
| 
 | |
|         offset = fdt_path_offset(fdt, cpu_model);
 | |
|         if (offset < 0) {
 | |
|             return offset;
 | |
|         }
 | |
| 
 | |
|         if (nb_numa_nodes > 1) {
 | |
|             ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 | |
|                               sizeof(associativity));
 | |
|             if (ret < 0) {
 | |
|                 return ret;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
 | |
|                           pft_size_prop, sizeof(pft_size_prop));
 | |
|         if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
 | |
|                                      size_t maxsize)
 | |
| {
 | |
|     size_t maxcells = maxsize / sizeof(uint32_t);
 | |
|     int i, j, count;
 | |
|     uint32_t *p = prop;
 | |
| 
 | |
|     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 | |
|         struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
 | |
| 
 | |
|         if (!sps->page_shift) {
 | |
|             break;
 | |
|         }
 | |
|         for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
 | |
|             if (sps->enc[count].page_shift == 0) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if ((p - prop) >= (maxcells - 3 - count * 2)) {
 | |
|             break;
 | |
|         }
 | |
|         *(p++) = cpu_to_be32(sps->page_shift);
 | |
|         *(p++) = cpu_to_be32(sps->slb_enc);
 | |
|         *(p++) = cpu_to_be32(count);
 | |
|         for (j = 0; j < count; j++) {
 | |
|             *(p++) = cpu_to_be32(sps->enc[j].page_shift);
 | |
|             *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return (p - prop) * sizeof(uint32_t);
 | |
| }
 | |
| 
 | |
| #define _FDT(exp) \
 | |
|     do { \
 | |
|         int ret = (exp);                                           \
 | |
|         if (ret < 0) {                                             \
 | |
|             fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
 | |
|                     #exp, fdt_strerror(ret));                      \
 | |
|             exit(1);                                               \
 | |
|         }                                                          \
 | |
|     } while (0)
 | |
| 
 | |
| 
 | |
| static void *spapr_create_fdt_skel(const char *cpu_model,
 | |
|                                    hwaddr initrd_base,
 | |
|                                    hwaddr initrd_size,
 | |
|                                    hwaddr kernel_size,
 | |
|                                    const char *boot_device,
 | |
|                                    const char *kernel_cmdline,
 | |
|                                    uint32_t epow_irq)
 | |
| {
 | |
|     void *fdt;
 | |
|     CPUPPCState *env;
 | |
|     uint32_t start_prop = cpu_to_be32(initrd_base);
 | |
|     uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
 | |
|     char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
 | |
|         "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
 | |
|     char qemu_hypertas_prop[] = "hcall-memop1";
 | |
|     uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
 | |
|     uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
 | |
|     char *modelname;
 | |
|     int i, smt = kvmppc_smt_threads();
 | |
|     unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
 | |
| 
 | |
|     fdt = g_malloc0(FDT_MAX_SIZE);
 | |
|     _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
 | |
| 
 | |
|     if (kernel_size) {
 | |
|         _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
 | |
|     }
 | |
|     if (initrd_size) {
 | |
|         _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
 | |
|     }
 | |
|     _FDT((fdt_finish_reservemap(fdt)));
 | |
| 
 | |
|     /* Root node */
 | |
|     _FDT((fdt_begin_node(fdt, "")));
 | |
|     _FDT((fdt_property_string(fdt, "device_type", "chrp")));
 | |
|     _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
 | |
|     _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
 | |
| 
 | |
|     _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
 | |
|     _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
 | |
| 
 | |
|     /* /chosen */
 | |
|     _FDT((fdt_begin_node(fdt, "chosen")));
 | |
| 
 | |
|     /* Set Form1_affinity */
 | |
|     _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
 | |
| 
 | |
|     _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
 | |
|     _FDT((fdt_property(fdt, "linux,initrd-start",
 | |
|                        &start_prop, sizeof(start_prop))));
 | |
|     _FDT((fdt_property(fdt, "linux,initrd-end",
 | |
|                        &end_prop, sizeof(end_prop))));
 | |
|     if (kernel_size) {
 | |
|         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
 | |
|                               cpu_to_be64(kernel_size) };
 | |
| 
 | |
|         _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
 | |
|     }
 | |
|     if (boot_device) {
 | |
|         _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
 | |
|     }
 | |
|     _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
 | |
|     _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
 | |
|     _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
 | |
| 
 | |
|     _FDT((fdt_end_node(fdt)));
 | |
| 
 | |
|     /* cpus */
 | |
|     _FDT((fdt_begin_node(fdt, "cpus")));
 | |
| 
 | |
|     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
 | |
|     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
 | |
| 
 | |
|     modelname = g_strdup(cpu_model);
 | |
| 
 | |
|     for (i = 0; i < strlen(modelname); i++) {
 | |
|         modelname[i] = toupper(modelname[i]);
 | |
|     }
 | |
| 
 | |
|     /* This is needed during FDT finalization */
 | |
|     spapr->cpu_model = g_strdup(modelname);
 | |
| 
 | |
|     for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         CPUState *cpu = CPU(ppc_env_get_cpu(env));
 | |
|         PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
 | |
|         int index = cpu->cpu_index;
 | |
|         uint32_t servers_prop[smp_threads];
 | |
|         uint32_t gservers_prop[smp_threads * 2];
 | |
|         char *nodename;
 | |
|         uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 | |
|                            0xffffffff, 0xffffffff};
 | |
|         uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
 | |
|         uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 | |
|         uint32_t page_sizes_prop[64];
 | |
|         size_t page_sizes_prop_size;
 | |
| 
 | |
|         if ((index % smt) != 0) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         nodename = g_strdup_printf("%s@%x", modelname, index);
 | |
| 
 | |
|         _FDT((fdt_begin_node(fdt, nodename)));
 | |
| 
 | |
|         g_free(nodename);
 | |
| 
 | |
|         _FDT((fdt_property_cell(fdt, "reg", index)));
 | |
|         _FDT((fdt_property_string(fdt, "device_type", "cpu")));
 | |
| 
 | |
|         _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
 | |
|         _FDT((fdt_property_cell(fdt, "d-cache-block-size",
 | |
|                                 env->dcache_line_size)));
 | |
|         _FDT((fdt_property_cell(fdt, "d-cache-line-size",
 | |
|                                 env->dcache_line_size)));
 | |
|         _FDT((fdt_property_cell(fdt, "i-cache-block-size",
 | |
|                                 env->icache_line_size)));
 | |
|         _FDT((fdt_property_cell(fdt, "i-cache-line-size",
 | |
|                                 env->icache_line_size)));
 | |
| 
 | |
|         if (pcc->l1_dcache_size) {
 | |
|             _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
 | |
|         } else {
 | |
|             fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
 | |
|         }
 | |
|         if (pcc->l1_icache_size) {
 | |
|             _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
 | |
|         } else {
 | |
|             fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
 | |
|         }
 | |
| 
 | |
|         _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
 | |
|         _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
 | |
|         _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
 | |
|         _FDT((fdt_property_string(fdt, "status", "okay")));
 | |
|         _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
 | |
| 
 | |
|         /* Build interrupt servers and gservers properties */
 | |
|         for (i = 0; i < smp_threads; i++) {
 | |
|             servers_prop[i] = cpu_to_be32(index + i);
 | |
|             /* Hack, direct the group queues back to cpu 0 */
 | |
|             gservers_prop[i*2] = cpu_to_be32(index + i);
 | |
|             gservers_prop[i*2 + 1] = 0;
 | |
|         }
 | |
|         _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
 | |
|                            servers_prop, sizeof(servers_prop))));
 | |
|         _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
 | |
|                            gservers_prop, sizeof(gservers_prop))));
 | |
| 
 | |
|         if (env->mmu_model & POWERPC_MMU_1TSEG) {
 | |
|             _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
 | |
|                                segs, sizeof(segs))));
 | |
|         }
 | |
| 
 | |
|         /* Advertise VMX/VSX (vector extensions) if available
 | |
|          *   0 / no property == no vector extensions
 | |
|          *   1               == VMX / Altivec available
 | |
|          *   2               == VSX available */
 | |
|         if (env->insns_flags & PPC_ALTIVEC) {
 | |
|             uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
 | |
| 
 | |
|             _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
 | |
|         }
 | |
| 
 | |
|         /* Advertise DFP (Decimal Floating Point) if available
 | |
|          *   0 / no property == no DFP
 | |
|          *   1               == DFP available */
 | |
|         if (env->insns_flags2 & PPC2_DFP) {
 | |
|             _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
 | |
|         }
 | |
| 
 | |
|         page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
 | |
|                                                       sizeof(page_sizes_prop));
 | |
|         if (page_sizes_prop_size) {
 | |
|             _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
 | |
|                                page_sizes_prop, page_sizes_prop_size)));
 | |
|         }
 | |
| 
 | |
|         _FDT((fdt_end_node(fdt)));
 | |
|     }
 | |
| 
 | |
|     g_free(modelname);
 | |
| 
 | |
|     _FDT((fdt_end_node(fdt)));
 | |
| 
 | |
|     /* RTAS */
 | |
|     _FDT((fdt_begin_node(fdt, "rtas")));
 | |
| 
 | |
|     _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
 | |
|                        sizeof(hypertas_prop))));
 | |
|     _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
 | |
|                        sizeof(qemu_hypertas_prop))));
 | |
| 
 | |
|     _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
 | |
|         refpoints, sizeof(refpoints))));
 | |
| 
 | |
|     _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
 | |
| 
 | |
|     _FDT((fdt_end_node(fdt)));
 | |
| 
 | |
|     /* interrupt controller */
 | |
|     _FDT((fdt_begin_node(fdt, "interrupt-controller")));
 | |
| 
 | |
|     _FDT((fdt_property_string(fdt, "device_type",
 | |
|                               "PowerPC-External-Interrupt-Presentation")));
 | |
|     _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
 | |
|     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
 | |
|     _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
 | |
|                        interrupt_server_ranges_prop,
 | |
|                        sizeof(interrupt_server_ranges_prop))));
 | |
|     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
 | |
|     _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
 | |
|     _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
 | |
| 
 | |
|     _FDT((fdt_end_node(fdt)));
 | |
| 
 | |
|     /* vdevice */
 | |
|     _FDT((fdt_begin_node(fdt, "vdevice")));
 | |
| 
 | |
|     _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
 | |
|     _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
 | |
|     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
 | |
|     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
 | |
|     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
 | |
|     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
 | |
| 
 | |
|     _FDT((fdt_end_node(fdt)));
 | |
| 
 | |
|     /* event-sources */
 | |
|     spapr_events_fdt_skel(fdt, epow_irq);
 | |
| 
 | |
|     _FDT((fdt_end_node(fdt))); /* close root node */
 | |
|     _FDT((fdt_finish(fdt)));
 | |
| 
 | |
|     return fdt;
 | |
| }
 | |
| 
 | |
| static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
 | |
| {
 | |
|     uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
 | |
|                                 cpu_to_be32(0x0), cpu_to_be32(0x0),
 | |
|                                 cpu_to_be32(0x0)};
 | |
|     char mem_name[32];
 | |
|     hwaddr node0_size, mem_start;
 | |
|     uint64_t mem_reg_property[2];
 | |
|     int i, off;
 | |
| 
 | |
|     /* memory node(s) */
 | |
|     node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
 | |
|     if (spapr->rma_size > node0_size) {
 | |
|         spapr->rma_size = node0_size;
 | |
|     }
 | |
| 
 | |
|     /* RMA */
 | |
|     mem_reg_property[0] = 0;
 | |
|     mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
 | |
|     off = fdt_add_subnode(fdt, 0, "memory@0");
 | |
|     _FDT(off);
 | |
|     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 | |
|     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 | |
|                       sizeof(mem_reg_property))));
 | |
|     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 | |
|                       sizeof(associativity))));
 | |
| 
 | |
|     /* RAM: Node 0 */
 | |
|     if (node0_size > spapr->rma_size) {
 | |
|         mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
 | |
|         mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
 | |
| 
 | |
|         sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
 | |
|         off = fdt_add_subnode(fdt, 0, mem_name);
 | |
|         _FDT(off);
 | |
|         _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 | |
|         _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 | |
|                           sizeof(mem_reg_property))));
 | |
|         _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 | |
|                           sizeof(associativity))));
 | |
|     }
 | |
| 
 | |
|     /* RAM: Node 1 and beyond */
 | |
|     mem_start = node0_size;
 | |
|     for (i = 1; i < nb_numa_nodes; i++) {
 | |
|         mem_reg_property[0] = cpu_to_be64(mem_start);
 | |
|         mem_reg_property[1] = cpu_to_be64(node_mem[i]);
 | |
|         associativity[3] = associativity[4] = cpu_to_be32(i);
 | |
|         sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
 | |
|         off = fdt_add_subnode(fdt, 0, mem_name);
 | |
|         _FDT(off);
 | |
|         _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 | |
|         _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 | |
|                           sizeof(mem_reg_property))));
 | |
|         _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 | |
|                           sizeof(associativity))));
 | |
|         mem_start += node_mem[i];
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void spapr_finalize_fdt(sPAPREnvironment *spapr,
 | |
|                                hwaddr fdt_addr,
 | |
|                                hwaddr rtas_addr,
 | |
|                                hwaddr rtas_size)
 | |
| {
 | |
|     int ret;
 | |
|     void *fdt;
 | |
|     sPAPRPHBState *phb;
 | |
| 
 | |
|     fdt = g_malloc(FDT_MAX_SIZE);
 | |
| 
 | |
|     /* open out the base tree into a temp buffer for the final tweaks */
 | |
|     _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
 | |
| 
 | |
|     ret = spapr_populate_memory(spapr, fdt);
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "couldn't setup memory nodes in fdt\n");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "couldn't setup vio devices in fdt\n");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     QLIST_FOREACH(phb, &spapr->phbs, list) {
 | |
|         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
 | |
|     }
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "couldn't setup PCI devices in fdt\n");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     /* RTAS */
 | |
|     ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
 | |
|     }
 | |
| 
 | |
|     /* Advertise NUMA via ibm,associativity */
 | |
|     ret = spapr_fixup_cpu_dt(fdt, spapr);
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
 | |
|     }
 | |
| 
 | |
|     if (!spapr->has_graphics) {
 | |
|         spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
 | |
|     }
 | |
| 
 | |
|     _FDT((fdt_pack(fdt)));
 | |
| 
 | |
|     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
 | |
|         hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
 | |
|                  fdt_totalsize(fdt), FDT_MAX_SIZE);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
 | |
| 
 | |
|     g_free(fdt);
 | |
| }
 | |
| 
 | |
| static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
 | |
| {
 | |
|     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
 | |
| }
 | |
| 
 | |
| static void emulate_spapr_hypercall(PowerPCCPU *cpu)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
| 
 | |
|     if (msr_pr) {
 | |
|         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
 | |
|         env->gpr[3] = H_PRIVILEGE;
 | |
|     } else {
 | |
|         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_reset_htab(sPAPREnvironment *spapr)
 | |
| {
 | |
|     long shift;
 | |
| 
 | |
|     /* allocate hash page table.  For now we always make this 16mb,
 | |
|      * later we should probably make it scale to the size of guest
 | |
|      * RAM */
 | |
| 
 | |
|     shift = kvmppc_reset_htab(spapr->htab_shift);
 | |
| 
 | |
|     if (shift > 0) {
 | |
|         /* Kernel handles htab, we don't need to allocate one */
 | |
|         spapr->htab_shift = shift;
 | |
|     } else {
 | |
|         if (!spapr->htab) {
 | |
|             /* Allocate an htab if we don't yet have one */
 | |
|             spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
 | |
|         }
 | |
| 
 | |
|         /* And clear it */
 | |
|         memset(spapr->htab, 0, HTAB_SIZE(spapr));
 | |
|     }
 | |
| 
 | |
|     /* Update the RMA size if necessary */
 | |
|     if (spapr->vrma_adjust) {
 | |
|         spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ppc_spapr_reset(void)
 | |
| {
 | |
|     CPUState *first_cpu_cpu;
 | |
| 
 | |
|     /* Reset the hash table & recalc the RMA */
 | |
|     spapr_reset_htab(spapr);
 | |
| 
 | |
|     qemu_devices_reset();
 | |
| 
 | |
|     /* Load the fdt */
 | |
|     spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
 | |
|                        spapr->rtas_size);
 | |
| 
 | |
|     /* Set up the entry state */
 | |
|     first_cpu_cpu = ENV_GET_CPU(first_cpu);
 | |
|     first_cpu->gpr[3] = spapr->fdt_addr;
 | |
|     first_cpu->gpr[5] = 0;
 | |
|     first_cpu_cpu->halted = 0;
 | |
|     first_cpu->nip = spapr->entry_point;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void spapr_cpu_reset(void *opaque)
 | |
| {
 | |
|     PowerPCCPU *cpu = opaque;
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
| 
 | |
|     cpu_reset(cs);
 | |
| 
 | |
|     /* All CPUs start halted.  CPU0 is unhalted from the machine level
 | |
|      * reset code and the rest are explicitly started up by the guest
 | |
|      * using an RTAS call */
 | |
|     cs->halted = 1;
 | |
| 
 | |
|     env->spr[SPR_HIOR] = 0;
 | |
| 
 | |
|     env->external_htab = spapr->htab;
 | |
|     env->htab_base = -1;
 | |
|     env->htab_mask = HTAB_SIZE(spapr) - 1;
 | |
|     env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
 | |
|         (spapr->htab_shift - 18);
 | |
| }
 | |
| 
 | |
| static void spapr_create_nvram(sPAPREnvironment *spapr)
 | |
| {
 | |
|     QemuOpts *machine_opts;
 | |
|     DeviceState *dev;
 | |
| 
 | |
|     dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
 | |
| 
 | |
|     machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
 | |
|     if (machine_opts) {
 | |
|         const char *drivename;
 | |
| 
 | |
|         drivename = qemu_opt_get(machine_opts, "nvram");
 | |
|         if (drivename) {
 | |
|             BlockDriverState *bs;
 | |
| 
 | |
|             bs = bdrv_find(drivename);
 | |
|             if (!bs) {
 | |
|                 fprintf(stderr, "No such block device \"%s\" for nvram\n",
 | |
|                         drivename);
 | |
|                 exit(1);
 | |
|             }
 | |
|             qdev_prop_set_drive_nofail(dev, "drive", bs);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qdev_init_nofail(dev);
 | |
| 
 | |
|     spapr->nvram = (struct sPAPRNVRAM *)dev;
 | |
| }
 | |
| 
 | |
| /* Returns whether we want to use VGA or not */
 | |
| static int spapr_vga_init(PCIBus *pci_bus)
 | |
| {
 | |
|     switch (vga_interface_type) {
 | |
|     case VGA_NONE:
 | |
|     case VGA_STD:
 | |
|         return pci_vga_init(pci_bus) != NULL;
 | |
|     default:
 | |
|         fprintf(stderr, "This vga model is not supported,"
 | |
|                 "currently it only supports -vga std\n");
 | |
|         exit(0);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* pSeries LPAR / sPAPR hardware init */
 | |
| static void ppc_spapr_init(QEMUMachineInitArgs *args)
 | |
| {
 | |
|     ram_addr_t ram_size = args->ram_size;
 | |
|     const char *cpu_model = args->cpu_model;
 | |
|     const char *kernel_filename = args->kernel_filename;
 | |
|     const char *kernel_cmdline = args->kernel_cmdline;
 | |
|     const char *initrd_filename = args->initrd_filename;
 | |
|     const char *boot_device = args->boot_device;
 | |
|     PowerPCCPU *cpu;
 | |
|     CPUPPCState *env;
 | |
|     PCIHostState *phb;
 | |
|     int i;
 | |
|     MemoryRegion *sysmem = get_system_memory();
 | |
|     MemoryRegion *ram = g_new(MemoryRegion, 1);
 | |
|     hwaddr rma_alloc_size;
 | |
|     uint32_t initrd_base = 0;
 | |
|     long kernel_size = 0, initrd_size = 0;
 | |
|     long load_limit, rtas_limit, fw_size;
 | |
|     char *filename;
 | |
| 
 | |
|     msi_supported = true;
 | |
| 
 | |
|     spapr = g_malloc0(sizeof(*spapr));
 | |
|     QLIST_INIT(&spapr->phbs);
 | |
| 
 | |
|     cpu_ppc_hypercall = emulate_spapr_hypercall;
 | |
| 
 | |
|     /* Allocate RMA if necessary */
 | |
|     rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
 | |
| 
 | |
|     if (rma_alloc_size == -1) {
 | |
|         hw_error("qemu: Unable to create RMA\n");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     if (rma_alloc_size && (rma_alloc_size < ram_size)) {
 | |
|         spapr->rma_size = rma_alloc_size;
 | |
|     } else {
 | |
|         spapr->rma_size = ram_size;
 | |
| 
 | |
|         /* With KVM, we don't actually know whether KVM supports an
 | |
|          * unbounded RMA (PR KVM) or is limited by the hash table size
 | |
|          * (HV KVM using VRMA), so we always assume the latter
 | |
|          *
 | |
|          * In that case, we also limit the initial allocations for RTAS
 | |
|          * etc... to 256M since we have no way to know what the VRMA size
 | |
|          * is going to be as it depends on the size of the hash table
 | |
|          * isn't determined yet.
 | |
|          */
 | |
|         if (kvm_enabled()) {
 | |
|             spapr->vrma_adjust = 1;
 | |
|             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* We place the device tree and RTAS just below either the top of the RMA,
 | |
|      * or just below 2GB, whichever is lowere, so that it can be
 | |
|      * processed with 32-bit real mode code if necessary */
 | |
|     rtas_limit = MIN(spapr->rma_size, 0x80000000);
 | |
|     spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
 | |
|     spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
 | |
|     load_limit = spapr->fdt_addr - FW_OVERHEAD;
 | |
| 
 | |
|     /* We aim for a hash table of size 1/128 the size of RAM.  The
 | |
|      * normal rule of thumb is 1/64 the size of RAM, but that's much
 | |
|      * more than needed for the Linux guests we support. */
 | |
|     spapr->htab_shift = 18; /* Minimum architected size */
 | |
|     while (spapr->htab_shift <= 46) {
 | |
|         if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
 | |
|             break;
 | |
|         }
 | |
|         spapr->htab_shift++;
 | |
|     }
 | |
| 
 | |
|     /* Set up Interrupt Controller before we create the VCPUs */
 | |
|     spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
 | |
|                                   XICS_IRQS);
 | |
|     spapr->next_irq = XICS_IRQ_BASE;
 | |
| 
 | |
|     /* init CPUs */
 | |
|     if (cpu_model == NULL) {
 | |
|         cpu_model = kvm_enabled() ? "host" : "POWER7";
 | |
|     }
 | |
|     for (i = 0; i < smp_cpus; i++) {
 | |
|         cpu = cpu_ppc_init(cpu_model);
 | |
|         if (cpu == NULL) {
 | |
|             fprintf(stderr, "Unable to find PowerPC CPU definition\n");
 | |
|             exit(1);
 | |
|         }
 | |
|         env = &cpu->env;
 | |
| 
 | |
|         xics_cpu_setup(spapr->icp, cpu);
 | |
| 
 | |
|         /* Set time-base frequency to 512 MHz */
 | |
|         cpu_ppc_tb_init(env, TIMEBASE_FREQ);
 | |
| 
 | |
|         /* PAPR always has exception vectors in RAM not ROM. To ensure this,
 | |
|          * MSR[IP] should never be set.
 | |
|          */
 | |
|         env->msr_mask &= ~(1 << 6);
 | |
| 
 | |
|         /* Tell KVM that we're in PAPR mode */
 | |
|         if (kvm_enabled()) {
 | |
|             kvmppc_set_papr(cpu);
 | |
|         }
 | |
| 
 | |
|         qemu_register_reset(spapr_cpu_reset, cpu);
 | |
|     }
 | |
| 
 | |
|     /* allocate RAM */
 | |
|     spapr->ram_limit = ram_size;
 | |
|     if (spapr->ram_limit > rma_alloc_size) {
 | |
|         ram_addr_t nonrma_base = rma_alloc_size;
 | |
|         ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
 | |
| 
 | |
|         memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
 | |
|         vmstate_register_ram_global(ram);
 | |
|         memory_region_add_subregion(sysmem, nonrma_base, ram);
 | |
|     }
 | |
| 
 | |
|     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
 | |
|     spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
 | |
|                                            rtas_limit - spapr->rtas_addr);
 | |
|     if (spapr->rtas_size < 0) {
 | |
|         hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
 | |
|         exit(1);
 | |
|     }
 | |
|     if (spapr->rtas_size > RTAS_MAX_SIZE) {
 | |
|         hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
 | |
|                  spapr->rtas_size, RTAS_MAX_SIZE);
 | |
|         exit(1);
 | |
|     }
 | |
|     g_free(filename);
 | |
| 
 | |
|     /* Set up EPOW events infrastructure */
 | |
|     spapr_events_init(spapr);
 | |
| 
 | |
|     /* Set up IOMMU */
 | |
|     spapr_iommu_init();
 | |
| 
 | |
|     /* Set up VIO bus */
 | |
|     spapr->vio_bus = spapr_vio_bus_init();
 | |
| 
 | |
|     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
 | |
|         if (serial_hds[i]) {
 | |
|             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* We always have at least the nvram device on VIO */
 | |
|     spapr_create_nvram(spapr);
 | |
| 
 | |
|     /* Set up PCI */
 | |
|     spapr_pci_rtas_init();
 | |
| 
 | |
|     phb = spapr_create_phb(spapr, 0);
 | |
| 
 | |
|     for (i = 0; i < nb_nics; i++) {
 | |
|         NICInfo *nd = &nd_table[i];
 | |
| 
 | |
|         if (!nd->model) {
 | |
|             nd->model = g_strdup("ibmveth");
 | |
|         }
 | |
| 
 | |
|         if (strcmp(nd->model, "ibmveth") == 0) {
 | |
|             spapr_vlan_create(spapr->vio_bus, nd);
 | |
|         } else {
 | |
|             pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
 | |
|         spapr_vscsi_create(spapr->vio_bus);
 | |
|     }
 | |
| 
 | |
|     /* Graphics */
 | |
|     if (spapr_vga_init(phb->bus)) {
 | |
|         spapr->has_graphics = true;
 | |
|     }
 | |
| 
 | |
|     if (usb_enabled(spapr->has_graphics)) {
 | |
|         pci_create_simple(phb->bus, -1, "pci-ohci");
 | |
|         if (spapr->has_graphics) {
 | |
|             usbdevice_create("keyboard");
 | |
|             usbdevice_create("mouse");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
 | |
|         fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
 | |
|                 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     if (kernel_filename) {
 | |
|         uint64_t lowaddr = 0;
 | |
| 
 | |
|         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
 | |
|                                NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
 | |
|         if (kernel_size < 0) {
 | |
|             kernel_size = load_image_targphys(kernel_filename,
 | |
|                                               KERNEL_LOAD_ADDR,
 | |
|                                               load_limit - KERNEL_LOAD_ADDR);
 | |
|         }
 | |
|         if (kernel_size < 0) {
 | |
|             fprintf(stderr, "qemu: could not load kernel '%s'\n",
 | |
|                     kernel_filename);
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         /* load initrd */
 | |
|         if (initrd_filename) {
 | |
|             /* Try to locate the initrd in the gap between the kernel
 | |
|              * and the firmware. Add a bit of space just in case
 | |
|              */
 | |
|             initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
 | |
|             initrd_size = load_image_targphys(initrd_filename, initrd_base,
 | |
|                                               load_limit - initrd_base);
 | |
|             if (initrd_size < 0) {
 | |
|                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
 | |
|                         initrd_filename);
 | |
|                 exit(1);
 | |
|             }
 | |
|         } else {
 | |
|             initrd_base = 0;
 | |
|             initrd_size = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
 | |
|     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
 | |
|     if (fw_size < 0) {
 | |
|         hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
 | |
|         exit(1);
 | |
|     }
 | |
|     g_free(filename);
 | |
| 
 | |
|     spapr->entry_point = 0x100;
 | |
| 
 | |
|     /* Prepare the device tree */
 | |
|     spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
 | |
|                                             initrd_base, initrd_size,
 | |
|                                             kernel_size,
 | |
|                                             boot_device, kernel_cmdline,
 | |
|                                             spapr->epow_irq);
 | |
|     assert(spapr->fdt_skel != NULL);
 | |
| }
 | |
| 
 | |
| static QEMUMachine spapr_machine = {
 | |
|     .name = "pseries",
 | |
|     .desc = "pSeries Logical Partition (PAPR compliant)",
 | |
|     .init = ppc_spapr_init,
 | |
|     .reset = ppc_spapr_reset,
 | |
|     .block_default_type = IF_SCSI,
 | |
|     .max_cpus = MAX_CPUS,
 | |
|     .no_parallel = 1,
 | |
|     .boot_order = NULL,
 | |
| };
 | |
| 
 | |
| static void spapr_machine_init(void)
 | |
| {
 | |
|     qemu_register_machine(&spapr_machine);
 | |
| }
 | |
| 
 | |
| machine_init(spapr_machine_init);
 |