1677 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1677 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C
		
	
	
	
/*
 | 
						|
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 | 
						|
 *
 | 
						|
 * Copyright (c) 2004-2007 Fabrice Bellard
 | 
						|
 * Copyright (c) 2007 Jocelyn Mayer
 | 
						|
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 | 
						|
 *
 | 
						|
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
						|
 * of this software and associated documentation files (the "Software"), to deal
 | 
						|
 * in the Software without restriction, including without limitation the rights
 | 
						|
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
						|
 * copies of the Software, and to permit persons to whom the Software is
 | 
						|
 * furnished to do so, subject to the following conditions:
 | 
						|
 *
 | 
						|
 * The above copyright notice and this permission notice shall be included in
 | 
						|
 * all copies or substantial portions of the Software.
 | 
						|
 *
 | 
						|
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | 
						|
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
						|
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | 
						|
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | 
						|
 * THE SOFTWARE.
 | 
						|
 *
 | 
						|
 */
 | 
						|
#include "sysemu/sysemu.h"
 | 
						|
#include "hw/hw.h"
 | 
						|
#include "hw/fw-path-provider.h"
 | 
						|
#include "elf.h"
 | 
						|
#include "net/net.h"
 | 
						|
#include "sysemu/blockdev.h"
 | 
						|
#include "sysemu/cpus.h"
 | 
						|
#include "sysemu/kvm.h"
 | 
						|
#include "kvm_ppc.h"
 | 
						|
#include "mmu-hash64.h"
 | 
						|
#include "qom/cpu.h"
 | 
						|
 | 
						|
#include "hw/boards.h"
 | 
						|
#include "hw/ppc/ppc.h"
 | 
						|
#include "hw/loader.h"
 | 
						|
 | 
						|
#include "hw/ppc/spapr.h"
 | 
						|
#include "hw/ppc/spapr_vio.h"
 | 
						|
#include "hw/pci-host/spapr.h"
 | 
						|
#include "hw/ppc/xics.h"
 | 
						|
#include "hw/pci/msi.h"
 | 
						|
 | 
						|
#include "hw/pci/pci.h"
 | 
						|
#include "hw/scsi/scsi.h"
 | 
						|
#include "hw/virtio/virtio-scsi.h"
 | 
						|
 | 
						|
#include "exec/address-spaces.h"
 | 
						|
#include "hw/usb.h"
 | 
						|
#include "qemu/config-file.h"
 | 
						|
#include "qemu/error-report.h"
 | 
						|
#include "trace.h"
 | 
						|
 | 
						|
#include <libfdt.h>
 | 
						|
 | 
						|
/* SLOF memory layout:
 | 
						|
 *
 | 
						|
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 | 
						|
 * device-tree, then position SLOF itself 31M below that
 | 
						|
 *
 | 
						|
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 | 
						|
 * and more
 | 
						|
 *
 | 
						|
 * We load our kernel at 4M, leaving space for SLOF initial image
 | 
						|
 */
 | 
						|
#define FDT_MAX_SIZE            0x40000
 | 
						|
#define RTAS_MAX_SIZE           0x10000
 | 
						|
#define FW_MAX_SIZE             0x400000
 | 
						|
#define FW_FILE_NAME            "slof.bin"
 | 
						|
#define FW_OVERHEAD             0x2800000
 | 
						|
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
 | 
						|
 | 
						|
#define MIN_RMA_SLOF            128UL
 | 
						|
 | 
						|
#define TIMEBASE_FREQ           512000000ULL
 | 
						|
 | 
						|
#define MAX_CPUS                256
 | 
						|
 | 
						|
#define PHANDLE_XICP            0x00001111
 | 
						|
 | 
						|
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
 | 
						|
 | 
						|
 | 
						|
typedef struct SPAPRMachine SPAPRMachine;
 | 
						|
#define TYPE_SPAPR_MACHINE      "spapr-machine"
 | 
						|
#define SPAPR_MACHINE(obj) \
 | 
						|
    OBJECT_CHECK(SPAPRMachine, (obj), TYPE_SPAPR_MACHINE)
 | 
						|
 | 
						|
/**
 | 
						|
 * SPAPRMachine:
 | 
						|
 */
 | 
						|
struct SPAPRMachine {
 | 
						|
    /*< private >*/
 | 
						|
    MachineState parent_obj;
 | 
						|
 | 
						|
    /*< public >*/
 | 
						|
    char *kvm_type;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
sPAPREnvironment *spapr;
 | 
						|
 | 
						|
int spapr_allocate_irq(int hint, bool lsi)
 | 
						|
{
 | 
						|
    int irq;
 | 
						|
 | 
						|
    if (hint) {
 | 
						|
        irq = hint;
 | 
						|
        if (hint >= spapr->next_irq) {
 | 
						|
            spapr->next_irq = hint + 1;
 | 
						|
        }
 | 
						|
        /* FIXME: we should probably check for collisions somehow */
 | 
						|
    } else {
 | 
						|
        irq = spapr->next_irq++;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Configure irq type */
 | 
						|
    if (!xics_get_qirq(spapr->icp, irq)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    xics_set_irq_type(spapr->icp, irq, lsi);
 | 
						|
 | 
						|
    return irq;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate block of consequtive IRQs, returns a number of the first.
 | 
						|
 * If msi==true, aligns the first IRQ number to num.
 | 
						|
 */
 | 
						|
int spapr_allocate_irq_block(int num, bool lsi, bool msi)
 | 
						|
{
 | 
						|
    int first = -1;
 | 
						|
    int i, hint = 0;
 | 
						|
 | 
						|
    /*
 | 
						|
     * MSIMesage::data is used for storing VIRQ so
 | 
						|
     * it has to be aligned to num to support multiple
 | 
						|
     * MSI vectors. MSI-X is not affected by this.
 | 
						|
     * The hint is used for the first IRQ, the rest should
 | 
						|
     * be allocated continuously.
 | 
						|
     */
 | 
						|
    if (msi) {
 | 
						|
        assert((num == 1) || (num == 2) || (num == 4) ||
 | 
						|
               (num == 8) || (num == 16) || (num == 32));
 | 
						|
        hint = (spapr->next_irq + num - 1) & ~(num - 1);
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < num; ++i) {
 | 
						|
        int irq;
 | 
						|
 | 
						|
        irq = spapr_allocate_irq(hint, lsi);
 | 
						|
        if (!irq) {
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        if (0 == i) {
 | 
						|
            first = irq;
 | 
						|
            hint = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        /* If the above doesn't create a consecutive block then that's
 | 
						|
         * an internal bug */
 | 
						|
        assert(irq == (first + i));
 | 
						|
    }
 | 
						|
 | 
						|
    return first;
 | 
						|
}
 | 
						|
 | 
						|
static XICSState *try_create_xics(const char *type, int nr_servers,
 | 
						|
                                  int nr_irqs)
 | 
						|
{
 | 
						|
    DeviceState *dev;
 | 
						|
 | 
						|
    dev = qdev_create(NULL, type);
 | 
						|
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
 | 
						|
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
 | 
						|
    if (qdev_init(dev) < 0) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    return XICS_COMMON(dev);
 | 
						|
}
 | 
						|
 | 
						|
static XICSState *xics_system_init(int nr_servers, int nr_irqs)
 | 
						|
{
 | 
						|
    XICSState *icp = NULL;
 | 
						|
 | 
						|
    if (kvm_enabled()) {
 | 
						|
        QemuOpts *machine_opts = qemu_get_machine_opts();
 | 
						|
        bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
 | 
						|
                                                "kernel_irqchip", true);
 | 
						|
        bool irqchip_required = qemu_opt_get_bool(machine_opts,
 | 
						|
                                                  "kernel_irqchip", false);
 | 
						|
        if (irqchip_allowed) {
 | 
						|
            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
 | 
						|
        }
 | 
						|
 | 
						|
        if (irqchip_required && !icp) {
 | 
						|
            perror("Failed to create in-kernel XICS\n");
 | 
						|
            abort();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!icp) {
 | 
						|
        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!icp) {
 | 
						|
        perror("Failed to create XICS\n");
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
 | 
						|
    return icp;
 | 
						|
}
 | 
						|
 | 
						|
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 | 
						|
                                  int smt_threads)
 | 
						|
{
 | 
						|
    int i, ret = 0;
 | 
						|
    uint32_t servers_prop[smt_threads];
 | 
						|
    uint32_t gservers_prop[smt_threads * 2];
 | 
						|
    int index = ppc_get_vcpu_dt_id(cpu);
 | 
						|
 | 
						|
    if (cpu->cpu_version) {
 | 
						|
        ret = fdt_setprop(fdt, offset, "cpu-version",
 | 
						|
                          &cpu->cpu_version, sizeof(cpu->cpu_version));
 | 
						|
        if (ret < 0) {
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Build interrupt servers and gservers properties */
 | 
						|
    for (i = 0; i < smt_threads; i++) {
 | 
						|
        servers_prop[i] = cpu_to_be32(index + i);
 | 
						|
        /* Hack, direct the group queues back to cpu 0 */
 | 
						|
        gservers_prop[i*2] = cpu_to_be32(index + i);
 | 
						|
        gservers_prop[i*2 + 1] = 0;
 | 
						|
    }
 | 
						|
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 | 
						|
                      servers_prop, sizeof(servers_prop));
 | 
						|
    if (ret < 0) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 | 
						|
                      gservers_prop, sizeof(gservers_prop));
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
 | 
						|
{
 | 
						|
    int ret = 0, offset, cpus_offset;
 | 
						|
    CPUState *cs;
 | 
						|
    char cpu_model[32];
 | 
						|
    int smt = kvmppc_smt_threads();
 | 
						|
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 | 
						|
 | 
						|
    CPU_FOREACH(cs) {
 | 
						|
        PowerPCCPU *cpu = POWERPC_CPU(cs);
 | 
						|
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 | 
						|
        int index = ppc_get_vcpu_dt_id(cpu);
 | 
						|
        uint32_t associativity[] = {cpu_to_be32(0x5),
 | 
						|
                                    cpu_to_be32(0x0),
 | 
						|
                                    cpu_to_be32(0x0),
 | 
						|
                                    cpu_to_be32(0x0),
 | 
						|
                                    cpu_to_be32(cs->numa_node),
 | 
						|
                                    cpu_to_be32(index)};
 | 
						|
 | 
						|
        if ((index % smt) != 0) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
 | 
						|
 | 
						|
        cpus_offset = fdt_path_offset(fdt, "/cpus");
 | 
						|
        if (cpus_offset < 0) {
 | 
						|
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
 | 
						|
                                          "cpus");
 | 
						|
            if (cpus_offset < 0) {
 | 
						|
                return cpus_offset;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
 | 
						|
        if (offset < 0) {
 | 
						|
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
 | 
						|
            if (offset < 0) {
 | 
						|
                return offset;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (nb_numa_nodes > 1) {
 | 
						|
            ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 | 
						|
                              sizeof(associativity));
 | 
						|
            if (ret < 0) {
 | 
						|
                return ret;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
 | 
						|
                          pft_size_prop, sizeof(pft_size_prop));
 | 
						|
        if (ret < 0) {
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
 | 
						|
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
 | 
						|
                                     ppc_get_compat_smt_threads(cpu));
 | 
						|
        if (ret < 0) {
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
 | 
						|
                                     size_t maxsize)
 | 
						|
{
 | 
						|
    size_t maxcells = maxsize / sizeof(uint32_t);
 | 
						|
    int i, j, count;
 | 
						|
    uint32_t *p = prop;
 | 
						|
 | 
						|
    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 | 
						|
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
 | 
						|
 | 
						|
        if (!sps->page_shift) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
 | 
						|
            if (sps->enc[count].page_shift == 0) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        *(p++) = cpu_to_be32(sps->page_shift);
 | 
						|
        *(p++) = cpu_to_be32(sps->slb_enc);
 | 
						|
        *(p++) = cpu_to_be32(count);
 | 
						|
        for (j = 0; j < count; j++) {
 | 
						|
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
 | 
						|
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return (p - prop) * sizeof(uint32_t);
 | 
						|
}
 | 
						|
 | 
						|
#define _FDT(exp) \
 | 
						|
    do { \
 | 
						|
        int ret = (exp);                                           \
 | 
						|
        if (ret < 0) {                                             \
 | 
						|
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
 | 
						|
                    #exp, fdt_strerror(ret));                      \
 | 
						|
            exit(1);                                               \
 | 
						|
        }                                                          \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
static void add_str(GString *s, const gchar *s1)
 | 
						|
{
 | 
						|
    g_string_append_len(s, s1, strlen(s1) + 1);
 | 
						|
}
 | 
						|
 | 
						|
static void *spapr_create_fdt_skel(hwaddr initrd_base,
 | 
						|
                                   hwaddr initrd_size,
 | 
						|
                                   hwaddr kernel_size,
 | 
						|
                                   bool little_endian,
 | 
						|
                                   const char *boot_device,
 | 
						|
                                   const char *kernel_cmdline,
 | 
						|
                                   uint32_t epow_irq)
 | 
						|
{
 | 
						|
    void *fdt;
 | 
						|
    CPUState *cs;
 | 
						|
    uint32_t start_prop = cpu_to_be32(initrd_base);
 | 
						|
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
 | 
						|
    GString *hypertas = g_string_sized_new(256);
 | 
						|
    GString *qemu_hypertas = g_string_sized_new(256);
 | 
						|
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
 | 
						|
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
 | 
						|
    int smt = kvmppc_smt_threads();
 | 
						|
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
 | 
						|
    QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
 | 
						|
    unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
 | 
						|
    uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
 | 
						|
 | 
						|
    add_str(hypertas, "hcall-pft");
 | 
						|
    add_str(hypertas, "hcall-term");
 | 
						|
    add_str(hypertas, "hcall-dabr");
 | 
						|
    add_str(hypertas, "hcall-interrupt");
 | 
						|
    add_str(hypertas, "hcall-tce");
 | 
						|
    add_str(hypertas, "hcall-vio");
 | 
						|
    add_str(hypertas, "hcall-splpar");
 | 
						|
    add_str(hypertas, "hcall-bulk");
 | 
						|
    add_str(hypertas, "hcall-set-mode");
 | 
						|
    add_str(qemu_hypertas, "hcall-memop1");
 | 
						|
 | 
						|
    fdt = g_malloc0(FDT_MAX_SIZE);
 | 
						|
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
 | 
						|
 | 
						|
    if (kernel_size) {
 | 
						|
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
 | 
						|
    }
 | 
						|
    if (initrd_size) {
 | 
						|
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
 | 
						|
    }
 | 
						|
    _FDT((fdt_finish_reservemap(fdt)));
 | 
						|
 | 
						|
    /* Root node */
 | 
						|
    _FDT((fdt_begin_node(fdt, "")));
 | 
						|
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
 | 
						|
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
 | 
						|
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
 | 
						|
 | 
						|
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
 | 
						|
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
 | 
						|
 | 
						|
    /* /chosen */
 | 
						|
    _FDT((fdt_begin_node(fdt, "chosen")));
 | 
						|
 | 
						|
    /* Set Form1_affinity */
 | 
						|
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
 | 
						|
 | 
						|
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
 | 
						|
    _FDT((fdt_property(fdt, "linux,initrd-start",
 | 
						|
                       &start_prop, sizeof(start_prop))));
 | 
						|
    _FDT((fdt_property(fdt, "linux,initrd-end",
 | 
						|
                       &end_prop, sizeof(end_prop))));
 | 
						|
    if (kernel_size) {
 | 
						|
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
 | 
						|
                              cpu_to_be64(kernel_size) };
 | 
						|
 | 
						|
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
 | 
						|
        if (little_endian) {
 | 
						|
            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (boot_device) {
 | 
						|
        _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
 | 
						|
    }
 | 
						|
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
 | 
						|
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
 | 
						|
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
 | 
						|
 | 
						|
    _FDT((fdt_end_node(fdt)));
 | 
						|
 | 
						|
    /* cpus */
 | 
						|
    _FDT((fdt_begin_node(fdt, "cpus")));
 | 
						|
 | 
						|
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
 | 
						|
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
 | 
						|
 | 
						|
    CPU_FOREACH(cs) {
 | 
						|
        PowerPCCPU *cpu = POWERPC_CPU(cs);
 | 
						|
        CPUPPCState *env = &cpu->env;
 | 
						|
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 | 
						|
        PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 | 
						|
        int index = ppc_get_vcpu_dt_id(cpu);
 | 
						|
        char *nodename;
 | 
						|
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 | 
						|
                           0xffffffff, 0xffffffff};
 | 
						|
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
 | 
						|
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 | 
						|
        uint32_t page_sizes_prop[64];
 | 
						|
        size_t page_sizes_prop_size;
 | 
						|
 | 
						|
        if ((index % smt) != 0) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 | 
						|
 | 
						|
        _FDT((fdt_begin_node(fdt, nodename)));
 | 
						|
 | 
						|
        g_free(nodename);
 | 
						|
 | 
						|
        _FDT((fdt_property_cell(fdt, "reg", index)));
 | 
						|
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
 | 
						|
 | 
						|
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
 | 
						|
        _FDT((fdt_property_cell(fdt, "d-cache-block-size",
 | 
						|
                                env->dcache_line_size)));
 | 
						|
        _FDT((fdt_property_cell(fdt, "d-cache-line-size",
 | 
						|
                                env->dcache_line_size)));
 | 
						|
        _FDT((fdt_property_cell(fdt, "i-cache-block-size",
 | 
						|
                                env->icache_line_size)));
 | 
						|
        _FDT((fdt_property_cell(fdt, "i-cache-line-size",
 | 
						|
                                env->icache_line_size)));
 | 
						|
 | 
						|
        if (pcc->l1_dcache_size) {
 | 
						|
            _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
 | 
						|
        } else {
 | 
						|
            fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
 | 
						|
        }
 | 
						|
        if (pcc->l1_icache_size) {
 | 
						|
            _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
 | 
						|
        } else {
 | 
						|
            fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
 | 
						|
        }
 | 
						|
 | 
						|
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
 | 
						|
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
 | 
						|
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
 | 
						|
        _FDT((fdt_property_string(fdt, "status", "okay")));
 | 
						|
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
 | 
						|
 | 
						|
        if (env->spr_cb[SPR_PURR].oea_read) {
 | 
						|
            _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
 | 
						|
        }
 | 
						|
 | 
						|
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
 | 
						|
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
 | 
						|
                               segs, sizeof(segs))));
 | 
						|
        }
 | 
						|
 | 
						|
        /* Advertise VMX/VSX (vector extensions) if available
 | 
						|
         *   0 / no property == no vector extensions
 | 
						|
         *   1               == VMX / Altivec available
 | 
						|
         *   2               == VSX available */
 | 
						|
        if (env->insns_flags & PPC_ALTIVEC) {
 | 
						|
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
 | 
						|
 | 
						|
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
 | 
						|
        }
 | 
						|
 | 
						|
        /* Advertise DFP (Decimal Floating Point) if available
 | 
						|
         *   0 / no property == no DFP
 | 
						|
         *   1               == DFP available */
 | 
						|
        if (env->insns_flags2 & PPC2_DFP) {
 | 
						|
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
 | 
						|
        }
 | 
						|
 | 
						|
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
 | 
						|
                                                      sizeof(page_sizes_prop));
 | 
						|
        if (page_sizes_prop_size) {
 | 
						|
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
 | 
						|
                               page_sizes_prop, page_sizes_prop_size)));
 | 
						|
        }
 | 
						|
 | 
						|
        _FDT((fdt_property_cell(fdt, "ibm,chip-id",
 | 
						|
                                cs->cpu_index / cpus_per_socket)));
 | 
						|
 | 
						|
        _FDT((fdt_end_node(fdt)));
 | 
						|
    }
 | 
						|
 | 
						|
    _FDT((fdt_end_node(fdt)));
 | 
						|
 | 
						|
    /* RTAS */
 | 
						|
    _FDT((fdt_begin_node(fdt, "rtas")));
 | 
						|
 | 
						|
    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
 | 
						|
        add_str(hypertas, "hcall-multi-tce");
 | 
						|
    }
 | 
						|
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
 | 
						|
                       hypertas->len)));
 | 
						|
    g_string_free(hypertas, TRUE);
 | 
						|
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
 | 
						|
                       qemu_hypertas->len)));
 | 
						|
    g_string_free(qemu_hypertas, TRUE);
 | 
						|
 | 
						|
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
 | 
						|
        refpoints, sizeof(refpoints))));
 | 
						|
 | 
						|
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
 | 
						|
 | 
						|
    _FDT((fdt_end_node(fdt)));
 | 
						|
 | 
						|
    /* interrupt controller */
 | 
						|
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
 | 
						|
 | 
						|
    _FDT((fdt_property_string(fdt, "device_type",
 | 
						|
                              "PowerPC-External-Interrupt-Presentation")));
 | 
						|
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
 | 
						|
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
 | 
						|
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
 | 
						|
                       interrupt_server_ranges_prop,
 | 
						|
                       sizeof(interrupt_server_ranges_prop))));
 | 
						|
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
 | 
						|
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
 | 
						|
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
 | 
						|
 | 
						|
    _FDT((fdt_end_node(fdt)));
 | 
						|
 | 
						|
    /* vdevice */
 | 
						|
    _FDT((fdt_begin_node(fdt, "vdevice")));
 | 
						|
 | 
						|
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
 | 
						|
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
 | 
						|
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
 | 
						|
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
 | 
						|
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
 | 
						|
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
 | 
						|
 | 
						|
    _FDT((fdt_end_node(fdt)));
 | 
						|
 | 
						|
    /* event-sources */
 | 
						|
    spapr_events_fdt_skel(fdt, epow_irq);
 | 
						|
 | 
						|
    /* /hypervisor node */
 | 
						|
    if (kvm_enabled()) {
 | 
						|
        uint8_t hypercall[16];
 | 
						|
 | 
						|
        /* indicate KVM hypercall interface */
 | 
						|
        _FDT((fdt_begin_node(fdt, "hypervisor")));
 | 
						|
        _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
 | 
						|
        if (kvmppc_has_cap_fixup_hcalls()) {
 | 
						|
            /*
 | 
						|
             * Older KVM versions with older guest kernels were broken with the
 | 
						|
             * magic page, don't allow the guest to map it.
 | 
						|
             */
 | 
						|
            kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
 | 
						|
                                 sizeof(hypercall));
 | 
						|
            _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
 | 
						|
                              sizeof(hypercall))));
 | 
						|
        }
 | 
						|
        _FDT((fdt_end_node(fdt)));
 | 
						|
    }
 | 
						|
 | 
						|
    _FDT((fdt_end_node(fdt))); /* close root node */
 | 
						|
    _FDT((fdt_finish(fdt)));
 | 
						|
 | 
						|
    return fdt;
 | 
						|
}
 | 
						|
 | 
						|
int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
 | 
						|
{
 | 
						|
    void *fdt, *fdt_skel;
 | 
						|
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
 | 
						|
 | 
						|
    size -= sizeof(hdr);
 | 
						|
 | 
						|
    /* Create sceleton */
 | 
						|
    fdt_skel = g_malloc0(size);
 | 
						|
    _FDT((fdt_create(fdt_skel, size)));
 | 
						|
    _FDT((fdt_begin_node(fdt_skel, "")));
 | 
						|
    _FDT((fdt_end_node(fdt_skel)));
 | 
						|
    _FDT((fdt_finish(fdt_skel)));
 | 
						|
    fdt = g_malloc0(size);
 | 
						|
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
 | 
						|
    g_free(fdt_skel);
 | 
						|
 | 
						|
    /* Fix skeleton up */
 | 
						|
    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
 | 
						|
 | 
						|
    /* Pack resulting tree */
 | 
						|
    _FDT((fdt_pack(fdt)));
 | 
						|
 | 
						|
    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
 | 
						|
        trace_spapr_cas_failed(size);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
 | 
						|
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
 | 
						|
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
 | 
						|
    g_free(fdt);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
 | 
						|
{
 | 
						|
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
 | 
						|
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
 | 
						|
                                cpu_to_be32(0x0)};
 | 
						|
    char mem_name[32];
 | 
						|
    hwaddr node0_size, mem_start, node_size;
 | 
						|
    uint64_t mem_reg_property[2];
 | 
						|
    int i, off;
 | 
						|
 | 
						|
    /* memory node(s) */
 | 
						|
    if (nb_numa_nodes > 1 && node_mem[0] < ram_size) {
 | 
						|
        node0_size = node_mem[0];
 | 
						|
    } else {
 | 
						|
        node0_size = ram_size;
 | 
						|
    }
 | 
						|
 | 
						|
    /* RMA */
 | 
						|
    mem_reg_property[0] = 0;
 | 
						|
    mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
 | 
						|
    off = fdt_add_subnode(fdt, 0, "memory@0");
 | 
						|
    _FDT(off);
 | 
						|
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 | 
						|
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 | 
						|
                      sizeof(mem_reg_property))));
 | 
						|
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 | 
						|
                      sizeof(associativity))));
 | 
						|
 | 
						|
    /* RAM: Node 0 */
 | 
						|
    if (node0_size > spapr->rma_size) {
 | 
						|
        mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
 | 
						|
        mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
 | 
						|
 | 
						|
        sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
 | 
						|
        off = fdt_add_subnode(fdt, 0, mem_name);
 | 
						|
        _FDT(off);
 | 
						|
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 | 
						|
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 | 
						|
                          sizeof(mem_reg_property))));
 | 
						|
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 | 
						|
                          sizeof(associativity))));
 | 
						|
    }
 | 
						|
 | 
						|
    /* RAM: Node 1 and beyond */
 | 
						|
    mem_start = node0_size;
 | 
						|
    for (i = 1; i < nb_numa_nodes; i++) {
 | 
						|
        mem_reg_property[0] = cpu_to_be64(mem_start);
 | 
						|
        if (mem_start >= ram_size) {
 | 
						|
            node_size = 0;
 | 
						|
        } else {
 | 
						|
            node_size = node_mem[i];
 | 
						|
            if (node_size > ram_size - mem_start) {
 | 
						|
                node_size = ram_size - mem_start;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        mem_reg_property[1] = cpu_to_be64(node_size);
 | 
						|
        associativity[3] = associativity[4] = cpu_to_be32(i);
 | 
						|
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
 | 
						|
        off = fdt_add_subnode(fdt, 0, mem_name);
 | 
						|
        _FDT(off);
 | 
						|
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 | 
						|
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 | 
						|
                          sizeof(mem_reg_property))));
 | 
						|
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 | 
						|
                          sizeof(associativity))));
 | 
						|
        mem_start += node_size;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
 | 
						|
                               hwaddr fdt_addr,
 | 
						|
                               hwaddr rtas_addr,
 | 
						|
                               hwaddr rtas_size)
 | 
						|
{
 | 
						|
    int ret, i;
 | 
						|
    size_t cb = 0;
 | 
						|
    char *bootlist;
 | 
						|
    void *fdt;
 | 
						|
    sPAPRPHBState *phb;
 | 
						|
 | 
						|
    fdt = g_malloc(FDT_MAX_SIZE);
 | 
						|
 | 
						|
    /* open out the base tree into a temp buffer for the final tweaks */
 | 
						|
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
 | 
						|
 | 
						|
    ret = spapr_populate_memory(spapr, fdt);
 | 
						|
    if (ret < 0) {
 | 
						|
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
 | 
						|
    if (ret < 0) {
 | 
						|
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    QLIST_FOREACH(phb, &spapr->phbs, list) {
 | 
						|
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ret < 0) {
 | 
						|
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    /* RTAS */
 | 
						|
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
 | 
						|
    if (ret < 0) {
 | 
						|
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
 | 
						|
    }
 | 
						|
 | 
						|
    /* Advertise NUMA via ibm,associativity */
 | 
						|
    ret = spapr_fixup_cpu_dt(fdt, spapr);
 | 
						|
    if (ret < 0) {
 | 
						|
        fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
 | 
						|
    }
 | 
						|
 | 
						|
    bootlist = get_boot_devices_list(&cb, true);
 | 
						|
    if (cb && bootlist) {
 | 
						|
        int offset = fdt_path_offset(fdt, "/chosen");
 | 
						|
        if (offset < 0) {
 | 
						|
            exit(1);
 | 
						|
        }
 | 
						|
        for (i = 0; i < cb; i++) {
 | 
						|
            if (bootlist[i] == '\n') {
 | 
						|
                bootlist[i] = ' ';
 | 
						|
            }
 | 
						|
 | 
						|
        }
 | 
						|
        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!spapr->has_graphics) {
 | 
						|
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
 | 
						|
    }
 | 
						|
 | 
						|
    _FDT((fdt_pack(fdt)));
 | 
						|
 | 
						|
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
 | 
						|
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
 | 
						|
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
 | 
						|
 | 
						|
    g_free(fdt);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
 | 
						|
{
 | 
						|
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
 | 
						|
}
 | 
						|
 | 
						|
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
 | 
						|
{
 | 
						|
    CPUPPCState *env = &cpu->env;
 | 
						|
 | 
						|
    if (msr_pr) {
 | 
						|
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
 | 
						|
        env->gpr[3] = H_PRIVILEGE;
 | 
						|
    } else {
 | 
						|
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void spapr_reset_htab(sPAPREnvironment *spapr)
 | 
						|
{
 | 
						|
    long shift;
 | 
						|
 | 
						|
    /* allocate hash page table.  For now we always make this 16mb,
 | 
						|
     * later we should probably make it scale to the size of guest
 | 
						|
     * RAM */
 | 
						|
 | 
						|
    shift = kvmppc_reset_htab(spapr->htab_shift);
 | 
						|
 | 
						|
    if (shift > 0) {
 | 
						|
        /* Kernel handles htab, we don't need to allocate one */
 | 
						|
        spapr->htab_shift = shift;
 | 
						|
        kvmppc_kern_htab = true;
 | 
						|
    } else {
 | 
						|
        if (!spapr->htab) {
 | 
						|
            /* Allocate an htab if we don't yet have one */
 | 
						|
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
 | 
						|
        }
 | 
						|
 | 
						|
        /* And clear it */
 | 
						|
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
 | 
						|
    }
 | 
						|
 | 
						|
    /* Update the RMA size if necessary */
 | 
						|
    if (spapr->vrma_adjust) {
 | 
						|
        hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
 | 
						|
        spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ppc_spapr_reset(void)
 | 
						|
{
 | 
						|
    PowerPCCPU *first_ppc_cpu;
 | 
						|
 | 
						|
    /* Reset the hash table & recalc the RMA */
 | 
						|
    spapr_reset_htab(spapr);
 | 
						|
 | 
						|
    qemu_devices_reset();
 | 
						|
 | 
						|
    /* Load the fdt */
 | 
						|
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
 | 
						|
                       spapr->rtas_size);
 | 
						|
 | 
						|
    /* Set up the entry state */
 | 
						|
    first_ppc_cpu = POWERPC_CPU(first_cpu);
 | 
						|
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
 | 
						|
    first_ppc_cpu->env.gpr[5] = 0;
 | 
						|
    first_cpu->halted = 0;
 | 
						|
    first_ppc_cpu->env.nip = spapr->entry_point;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static void spapr_cpu_reset(void *opaque)
 | 
						|
{
 | 
						|
    PowerPCCPU *cpu = opaque;
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
    CPUPPCState *env = &cpu->env;
 | 
						|
 | 
						|
    cpu_reset(cs);
 | 
						|
 | 
						|
    /* All CPUs start halted.  CPU0 is unhalted from the machine level
 | 
						|
     * reset code and the rest are explicitly started up by the guest
 | 
						|
     * using an RTAS call */
 | 
						|
    cs->halted = 1;
 | 
						|
 | 
						|
    env->spr[SPR_HIOR] = 0;
 | 
						|
 | 
						|
    env->external_htab = (uint8_t *)spapr->htab;
 | 
						|
    if (kvm_enabled() && !env->external_htab) {
 | 
						|
        /*
 | 
						|
         * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
 | 
						|
         * functions do the right thing.
 | 
						|
         */
 | 
						|
        env->external_htab = (void *)1;
 | 
						|
    }
 | 
						|
    env->htab_base = -1;
 | 
						|
    /*
 | 
						|
     * htab_mask is the mask used to normalize hash value to PTEG index.
 | 
						|
     * htab_shift is log2 of hash table size.
 | 
						|
     * We have 8 hpte per group, and each hpte is 16 bytes.
 | 
						|
     * ie have 128 bytes per hpte entry.
 | 
						|
     */
 | 
						|
    env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
 | 
						|
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
 | 
						|
        (spapr->htab_shift - 18);
 | 
						|
}
 | 
						|
 | 
						|
static void spapr_create_nvram(sPAPREnvironment *spapr)
 | 
						|
{
 | 
						|
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
 | 
						|
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
 | 
						|
 | 
						|
    if (dinfo) {
 | 
						|
        qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
 | 
						|
    }
 | 
						|
 | 
						|
    qdev_init_nofail(dev);
 | 
						|
 | 
						|
    spapr->nvram = (struct sPAPRNVRAM *)dev;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns whether we want to use VGA or not */
 | 
						|
static int spapr_vga_init(PCIBus *pci_bus)
 | 
						|
{
 | 
						|
    switch (vga_interface_type) {
 | 
						|
    case VGA_NONE:
 | 
						|
        return false;
 | 
						|
    case VGA_DEVICE:
 | 
						|
        return true;
 | 
						|
    case VGA_STD:
 | 
						|
        return pci_vga_init(pci_bus) != NULL;
 | 
						|
    default:
 | 
						|
        fprintf(stderr, "This vga model is not supported,"
 | 
						|
                "currently it only supports -vga std\n");
 | 
						|
        exit(0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static const VMStateDescription vmstate_spapr = {
 | 
						|
    .name = "spapr",
 | 
						|
    .version_id = 2,
 | 
						|
    .minimum_version_id = 1,
 | 
						|
    .fields = (VMStateField[]) {
 | 
						|
        VMSTATE_UINT32(next_irq, sPAPREnvironment),
 | 
						|
 | 
						|
        /* RTC offset */
 | 
						|
        VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
 | 
						|
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
 | 
						|
        VMSTATE_END_OF_LIST()
 | 
						|
    },
 | 
						|
};
 | 
						|
 | 
						|
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
 | 
						|
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
 | 
						|
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
 | 
						|
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
 | 
						|
 | 
						|
static int htab_save_setup(QEMUFile *f, void *opaque)
 | 
						|
{
 | 
						|
    sPAPREnvironment *spapr = opaque;
 | 
						|
 | 
						|
    /* "Iteration" header */
 | 
						|
    qemu_put_be32(f, spapr->htab_shift);
 | 
						|
 | 
						|
    if (spapr->htab) {
 | 
						|
        spapr->htab_save_index = 0;
 | 
						|
        spapr->htab_first_pass = true;
 | 
						|
    } else {
 | 
						|
        assert(kvm_enabled());
 | 
						|
 | 
						|
        spapr->htab_fd = kvmppc_get_htab_fd(false);
 | 
						|
        if (spapr->htab_fd < 0) {
 | 
						|
            fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
 | 
						|
                    strerror(errno));
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
 | 
						|
                                 int64_t max_ns)
 | 
						|
{
 | 
						|
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
 | 
						|
    int index = spapr->htab_save_index;
 | 
						|
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 | 
						|
 | 
						|
    assert(spapr->htab_first_pass);
 | 
						|
 | 
						|
    do {
 | 
						|
        int chunkstart;
 | 
						|
 | 
						|
        /* Consume invalid HPTEs */
 | 
						|
        while ((index < htabslots)
 | 
						|
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
 | 
						|
            index++;
 | 
						|
            CLEAN_HPTE(HPTE(spapr->htab, index));
 | 
						|
        }
 | 
						|
 | 
						|
        /* Consume valid HPTEs */
 | 
						|
        chunkstart = index;
 | 
						|
        while ((index < htabslots)
 | 
						|
               && HPTE_VALID(HPTE(spapr->htab, index))) {
 | 
						|
            index++;
 | 
						|
            CLEAN_HPTE(HPTE(spapr->htab, index));
 | 
						|
        }
 | 
						|
 | 
						|
        if (index > chunkstart) {
 | 
						|
            int n_valid = index - chunkstart;
 | 
						|
 | 
						|
            qemu_put_be32(f, chunkstart);
 | 
						|
            qemu_put_be16(f, n_valid);
 | 
						|
            qemu_put_be16(f, 0);
 | 
						|
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
 | 
						|
                            HASH_PTE_SIZE_64 * n_valid);
 | 
						|
 | 
						|
            if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } while ((index < htabslots) && !qemu_file_rate_limit(f));
 | 
						|
 | 
						|
    if (index >= htabslots) {
 | 
						|
        assert(index == htabslots);
 | 
						|
        index = 0;
 | 
						|
        spapr->htab_first_pass = false;
 | 
						|
    }
 | 
						|
    spapr->htab_save_index = index;
 | 
						|
}
 | 
						|
 | 
						|
static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
 | 
						|
                                int64_t max_ns)
 | 
						|
{
 | 
						|
    bool final = max_ns < 0;
 | 
						|
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
 | 
						|
    int examined = 0, sent = 0;
 | 
						|
    int index = spapr->htab_save_index;
 | 
						|
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 | 
						|
 | 
						|
    assert(!spapr->htab_first_pass);
 | 
						|
 | 
						|
    do {
 | 
						|
        int chunkstart, invalidstart;
 | 
						|
 | 
						|
        /* Consume non-dirty HPTEs */
 | 
						|
        while ((index < htabslots)
 | 
						|
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
 | 
						|
            index++;
 | 
						|
            examined++;
 | 
						|
        }
 | 
						|
 | 
						|
        chunkstart = index;
 | 
						|
        /* Consume valid dirty HPTEs */
 | 
						|
        while ((index < htabslots)
 | 
						|
               && HPTE_DIRTY(HPTE(spapr->htab, index))
 | 
						|
               && HPTE_VALID(HPTE(spapr->htab, index))) {
 | 
						|
            CLEAN_HPTE(HPTE(spapr->htab, index));
 | 
						|
            index++;
 | 
						|
            examined++;
 | 
						|
        }
 | 
						|
 | 
						|
        invalidstart = index;
 | 
						|
        /* Consume invalid dirty HPTEs */
 | 
						|
        while ((index < htabslots)
 | 
						|
               && HPTE_DIRTY(HPTE(spapr->htab, index))
 | 
						|
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
 | 
						|
            CLEAN_HPTE(HPTE(spapr->htab, index));
 | 
						|
            index++;
 | 
						|
            examined++;
 | 
						|
        }
 | 
						|
 | 
						|
        if (index > chunkstart) {
 | 
						|
            int n_valid = invalidstart - chunkstart;
 | 
						|
            int n_invalid = index - invalidstart;
 | 
						|
 | 
						|
            qemu_put_be32(f, chunkstart);
 | 
						|
            qemu_put_be16(f, n_valid);
 | 
						|
            qemu_put_be16(f, n_invalid);
 | 
						|
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
 | 
						|
                            HASH_PTE_SIZE_64 * n_valid);
 | 
						|
            sent += index - chunkstart;
 | 
						|
 | 
						|
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (examined >= htabslots) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (index >= htabslots) {
 | 
						|
            assert(index == htabslots);
 | 
						|
            index = 0;
 | 
						|
        }
 | 
						|
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
 | 
						|
 | 
						|
    if (index >= htabslots) {
 | 
						|
        assert(index == htabslots);
 | 
						|
        index = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    spapr->htab_save_index = index;
 | 
						|
 | 
						|
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
#define MAX_ITERATION_NS    5000000 /* 5 ms */
 | 
						|
#define MAX_KVM_BUF_SIZE    2048
 | 
						|
 | 
						|
static int htab_save_iterate(QEMUFile *f, void *opaque)
 | 
						|
{
 | 
						|
    sPAPREnvironment *spapr = opaque;
 | 
						|
    int rc = 0;
 | 
						|
 | 
						|
    /* Iteration header */
 | 
						|
    qemu_put_be32(f, 0);
 | 
						|
 | 
						|
    if (!spapr->htab) {
 | 
						|
        assert(kvm_enabled());
 | 
						|
 | 
						|
        rc = kvmppc_save_htab(f, spapr->htab_fd,
 | 
						|
                              MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
 | 
						|
        if (rc < 0) {
 | 
						|
            return rc;
 | 
						|
        }
 | 
						|
    } else  if (spapr->htab_first_pass) {
 | 
						|
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
 | 
						|
    } else {
 | 
						|
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
 | 
						|
    }
 | 
						|
 | 
						|
    /* End marker */
 | 
						|
    qemu_put_be32(f, 0);
 | 
						|
    qemu_put_be16(f, 0);
 | 
						|
    qemu_put_be16(f, 0);
 | 
						|
 | 
						|
    return rc;
 | 
						|
}
 | 
						|
 | 
						|
static int htab_save_complete(QEMUFile *f, void *opaque)
 | 
						|
{
 | 
						|
    sPAPREnvironment *spapr = opaque;
 | 
						|
 | 
						|
    /* Iteration header */
 | 
						|
    qemu_put_be32(f, 0);
 | 
						|
 | 
						|
    if (!spapr->htab) {
 | 
						|
        int rc;
 | 
						|
 | 
						|
        assert(kvm_enabled());
 | 
						|
 | 
						|
        rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
 | 
						|
        if (rc < 0) {
 | 
						|
            return rc;
 | 
						|
        }
 | 
						|
        close(spapr->htab_fd);
 | 
						|
        spapr->htab_fd = -1;
 | 
						|
    } else {
 | 
						|
        htab_save_later_pass(f, spapr, -1);
 | 
						|
    }
 | 
						|
 | 
						|
    /* End marker */
 | 
						|
    qemu_put_be32(f, 0);
 | 
						|
    qemu_put_be16(f, 0);
 | 
						|
    qemu_put_be16(f, 0);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int htab_load(QEMUFile *f, void *opaque, int version_id)
 | 
						|
{
 | 
						|
    sPAPREnvironment *spapr = opaque;
 | 
						|
    uint32_t section_hdr;
 | 
						|
    int fd = -1;
 | 
						|
 | 
						|
    if (version_id < 1 || version_id > 1) {
 | 
						|
        fprintf(stderr, "htab_load() bad version\n");
 | 
						|
        return -EINVAL;
 | 
						|
    }
 | 
						|
 | 
						|
    section_hdr = qemu_get_be32(f);
 | 
						|
 | 
						|
    if (section_hdr) {
 | 
						|
        /* First section, just the hash shift */
 | 
						|
        if (spapr->htab_shift != section_hdr) {
 | 
						|
            return -EINVAL;
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!spapr->htab) {
 | 
						|
        assert(kvm_enabled());
 | 
						|
 | 
						|
        fd = kvmppc_get_htab_fd(true);
 | 
						|
        if (fd < 0) {
 | 
						|
            fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
 | 
						|
                    strerror(errno));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    while (true) {
 | 
						|
        uint32_t index;
 | 
						|
        uint16_t n_valid, n_invalid;
 | 
						|
 | 
						|
        index = qemu_get_be32(f);
 | 
						|
        n_valid = qemu_get_be16(f);
 | 
						|
        n_invalid = qemu_get_be16(f);
 | 
						|
 | 
						|
        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
 | 
						|
            /* End of Stream */
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        if ((index + n_valid + n_invalid) >
 | 
						|
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
 | 
						|
            /* Bad index in stream */
 | 
						|
            fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
 | 
						|
                    "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
 | 
						|
                    spapr->htab_shift);
 | 
						|
            return -EINVAL;
 | 
						|
        }
 | 
						|
 | 
						|
        if (spapr->htab) {
 | 
						|
            if (n_valid) {
 | 
						|
                qemu_get_buffer(f, HPTE(spapr->htab, index),
 | 
						|
                                HASH_PTE_SIZE_64 * n_valid);
 | 
						|
            }
 | 
						|
            if (n_invalid) {
 | 
						|
                memset(HPTE(spapr->htab, index + n_valid), 0,
 | 
						|
                       HASH_PTE_SIZE_64 * n_invalid);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            int rc;
 | 
						|
 | 
						|
            assert(fd >= 0);
 | 
						|
 | 
						|
            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
 | 
						|
            if (rc < 0) {
 | 
						|
                return rc;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!spapr->htab) {
 | 
						|
        assert(fd >= 0);
 | 
						|
        close(fd);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static SaveVMHandlers savevm_htab_handlers = {
 | 
						|
    .save_live_setup = htab_save_setup,
 | 
						|
    .save_live_iterate = htab_save_iterate,
 | 
						|
    .save_live_complete = htab_save_complete,
 | 
						|
    .load_state = htab_load,
 | 
						|
};
 | 
						|
 | 
						|
/* pSeries LPAR / sPAPR hardware init */
 | 
						|
static void ppc_spapr_init(MachineState *machine)
 | 
						|
{
 | 
						|
    ram_addr_t ram_size = machine->ram_size;
 | 
						|
    const char *cpu_model = machine->cpu_model;
 | 
						|
    const char *kernel_filename = machine->kernel_filename;
 | 
						|
    const char *kernel_cmdline = machine->kernel_cmdline;
 | 
						|
    const char *initrd_filename = machine->initrd_filename;
 | 
						|
    const char *boot_device = machine->boot_order;
 | 
						|
    PowerPCCPU *cpu;
 | 
						|
    CPUPPCState *env;
 | 
						|
    PCIHostState *phb;
 | 
						|
    int i;
 | 
						|
    MemoryRegion *sysmem = get_system_memory();
 | 
						|
    MemoryRegion *ram = g_new(MemoryRegion, 1);
 | 
						|
    hwaddr rma_alloc_size;
 | 
						|
    hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
 | 
						|
    uint32_t initrd_base = 0;
 | 
						|
    long kernel_size = 0, initrd_size = 0;
 | 
						|
    long load_limit, rtas_limit, fw_size;
 | 
						|
    bool kernel_le = false;
 | 
						|
    char *filename;
 | 
						|
 | 
						|
    msi_supported = true;
 | 
						|
 | 
						|
    spapr = g_malloc0(sizeof(*spapr));
 | 
						|
    QLIST_INIT(&spapr->phbs);
 | 
						|
 | 
						|
    cpu_ppc_hypercall = emulate_spapr_hypercall;
 | 
						|
 | 
						|
    /* Allocate RMA if necessary */
 | 
						|
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
 | 
						|
 | 
						|
    if (rma_alloc_size == -1) {
 | 
						|
        hw_error("qemu: Unable to create RMA\n");
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
 | 
						|
        spapr->rma_size = rma_alloc_size;
 | 
						|
    } else {
 | 
						|
        spapr->rma_size = node0_size;
 | 
						|
 | 
						|
        /* With KVM, we don't actually know whether KVM supports an
 | 
						|
         * unbounded RMA (PR KVM) or is limited by the hash table size
 | 
						|
         * (HV KVM using VRMA), so we always assume the latter
 | 
						|
         *
 | 
						|
         * In that case, we also limit the initial allocations for RTAS
 | 
						|
         * etc... to 256M since we have no way to know what the VRMA size
 | 
						|
         * is going to be as it depends on the size of the hash table
 | 
						|
         * isn't determined yet.
 | 
						|
         */
 | 
						|
        if (kvm_enabled()) {
 | 
						|
            spapr->vrma_adjust = 1;
 | 
						|
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (spapr->rma_size > node0_size) {
 | 
						|
        fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
 | 
						|
                spapr->rma_size);
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    /* We place the device tree and RTAS just below either the top of the RMA,
 | 
						|
     * or just below 2GB, whichever is lowere, so that it can be
 | 
						|
     * processed with 32-bit real mode code if necessary */
 | 
						|
    rtas_limit = MIN(spapr->rma_size, 0x80000000);
 | 
						|
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
 | 
						|
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
 | 
						|
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
 | 
						|
 | 
						|
    /* We aim for a hash table of size 1/128 the size of RAM.  The
 | 
						|
     * normal rule of thumb is 1/64 the size of RAM, but that's much
 | 
						|
     * more than needed for the Linux guests we support. */
 | 
						|
    spapr->htab_shift = 18; /* Minimum architected size */
 | 
						|
    while (spapr->htab_shift <= 46) {
 | 
						|
        if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        spapr->htab_shift++;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Set up Interrupt Controller before we create the VCPUs */
 | 
						|
    spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
 | 
						|
                                  XICS_IRQS);
 | 
						|
    spapr->next_irq = XICS_IRQ_BASE;
 | 
						|
 | 
						|
    /* init CPUs */
 | 
						|
    if (cpu_model == NULL) {
 | 
						|
        cpu_model = kvm_enabled() ? "host" : "POWER7";
 | 
						|
    }
 | 
						|
    for (i = 0; i < smp_cpus; i++) {
 | 
						|
        cpu = cpu_ppc_init(cpu_model);
 | 
						|
        if (cpu == NULL) {
 | 
						|
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
 | 
						|
            exit(1);
 | 
						|
        }
 | 
						|
        env = &cpu->env;
 | 
						|
 | 
						|
        /* Set time-base frequency to 512 MHz */
 | 
						|
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
 | 
						|
 | 
						|
        /* PAPR always has exception vectors in RAM not ROM. To ensure this,
 | 
						|
         * MSR[IP] should never be set.
 | 
						|
         */
 | 
						|
        env->msr_mask &= ~(1 << 6);
 | 
						|
 | 
						|
        /* Tell KVM that we're in PAPR mode */
 | 
						|
        if (kvm_enabled()) {
 | 
						|
            kvmppc_set_papr(cpu);
 | 
						|
        }
 | 
						|
 | 
						|
        if (cpu->max_compat) {
 | 
						|
            if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
 | 
						|
                exit(1);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        xics_cpu_setup(spapr->icp, cpu);
 | 
						|
 | 
						|
        qemu_register_reset(spapr_cpu_reset, cpu);
 | 
						|
    }
 | 
						|
 | 
						|
    /* allocate RAM */
 | 
						|
    spapr->ram_limit = ram_size;
 | 
						|
    if (spapr->ram_limit > rma_alloc_size) {
 | 
						|
        ram_addr_t nonrma_base = rma_alloc_size;
 | 
						|
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
 | 
						|
 | 
						|
        memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
 | 
						|
        vmstate_register_ram_global(ram);
 | 
						|
        memory_region_add_subregion(sysmem, nonrma_base, ram);
 | 
						|
    }
 | 
						|
 | 
						|
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
 | 
						|
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
 | 
						|
                                           rtas_limit - spapr->rtas_addr);
 | 
						|
    if (spapr->rtas_size < 0) {
 | 
						|
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
 | 
						|
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
 | 
						|
                 spapr->rtas_size, RTAS_MAX_SIZE);
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
    g_free(filename);
 | 
						|
 | 
						|
    /* Set up EPOW events infrastructure */
 | 
						|
    spapr_events_init(spapr);
 | 
						|
 | 
						|
    /* Set up VIO bus */
 | 
						|
    spapr->vio_bus = spapr_vio_bus_init();
 | 
						|
 | 
						|
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
 | 
						|
        if (serial_hds[i]) {
 | 
						|
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* We always have at least the nvram device on VIO */
 | 
						|
    spapr_create_nvram(spapr);
 | 
						|
 | 
						|
    /* Set up PCI */
 | 
						|
    spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
 | 
						|
    spapr_pci_rtas_init();
 | 
						|
 | 
						|
    phb = spapr_create_phb(spapr, 0);
 | 
						|
 | 
						|
    for (i = 0; i < nb_nics; i++) {
 | 
						|
        NICInfo *nd = &nd_table[i];
 | 
						|
 | 
						|
        if (!nd->model) {
 | 
						|
            nd->model = g_strdup("ibmveth");
 | 
						|
        }
 | 
						|
 | 
						|
        if (strcmp(nd->model, "ibmveth") == 0) {
 | 
						|
            spapr_vlan_create(spapr->vio_bus, nd);
 | 
						|
        } else {
 | 
						|
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
 | 
						|
        spapr_vscsi_create(spapr->vio_bus);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Graphics */
 | 
						|
    if (spapr_vga_init(phb->bus)) {
 | 
						|
        spapr->has_graphics = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (usb_enabled(spapr->has_graphics)) {
 | 
						|
        pci_create_simple(phb->bus, -1, "pci-ohci");
 | 
						|
        if (spapr->has_graphics) {
 | 
						|
            usbdevice_create("keyboard");
 | 
						|
            usbdevice_create("mouse");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
 | 
						|
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
 | 
						|
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    if (kernel_filename) {
 | 
						|
        uint64_t lowaddr = 0;
 | 
						|
 | 
						|
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
 | 
						|
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
 | 
						|
        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
 | 
						|
            kernel_size = load_elf(kernel_filename,
 | 
						|
                                   translate_kernel_address, NULL,
 | 
						|
                                   NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
 | 
						|
            kernel_le = kernel_size > 0;
 | 
						|
        }
 | 
						|
        if (kernel_size < 0) {
 | 
						|
            fprintf(stderr, "qemu: error loading %s: %s\n",
 | 
						|
                    kernel_filename, load_elf_strerror(kernel_size));
 | 
						|
            exit(1);
 | 
						|
        }
 | 
						|
 | 
						|
        /* load initrd */
 | 
						|
        if (initrd_filename) {
 | 
						|
            /* Try to locate the initrd in the gap between the kernel
 | 
						|
             * and the firmware. Add a bit of space just in case
 | 
						|
             */
 | 
						|
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
 | 
						|
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
 | 
						|
                                              load_limit - initrd_base);
 | 
						|
            if (initrd_size < 0) {
 | 
						|
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
 | 
						|
                        initrd_filename);
 | 
						|
                exit(1);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            initrd_base = 0;
 | 
						|
            initrd_size = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (bios_name == NULL) {
 | 
						|
        bios_name = FW_FILE_NAME;
 | 
						|
    }
 | 
						|
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
 | 
						|
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
 | 
						|
    if (fw_size < 0) {
 | 
						|
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
    g_free(filename);
 | 
						|
 | 
						|
    spapr->entry_point = 0x100;
 | 
						|
 | 
						|
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
 | 
						|
    register_savevm_live(NULL, "spapr/htab", -1, 1,
 | 
						|
                         &savevm_htab_handlers, spapr);
 | 
						|
 | 
						|
    /* Prepare the device tree */
 | 
						|
    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
 | 
						|
                                            kernel_size, kernel_le,
 | 
						|
                                            boot_device, kernel_cmdline,
 | 
						|
                                            spapr->epow_irq);
 | 
						|
    assert(spapr->fdt_skel != NULL);
 | 
						|
}
 | 
						|
 | 
						|
static int spapr_kvm_type(const char *vm_type)
 | 
						|
{
 | 
						|
    if (!vm_type) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!strcmp(vm_type, "HV")) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!strcmp(vm_type, "PR")) {
 | 
						|
        return 2;
 | 
						|
    }
 | 
						|
 | 
						|
    error_report("Unknown kvm-type specified '%s'", vm_type);
 | 
						|
    exit(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Implementation of an interface to adjust firmware patch
 | 
						|
 * for the bootindex property handling.
 | 
						|
 */
 | 
						|
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
 | 
						|
                                   DeviceState *dev)
 | 
						|
{
 | 
						|
#define CAST(type, obj, name) \
 | 
						|
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
 | 
						|
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
 | 
						|
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
 | 
						|
 | 
						|
    if (d) {
 | 
						|
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
 | 
						|
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
 | 
						|
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
 | 
						|
 | 
						|
        if (spapr) {
 | 
						|
            /*
 | 
						|
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
 | 
						|
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
 | 
						|
             * in the top 16 bits of the 64-bit LUN
 | 
						|
             */
 | 
						|
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
 | 
						|
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
 | 
						|
                                   (uint64_t)id << 48);
 | 
						|
        } else if (virtio) {
 | 
						|
            /*
 | 
						|
             * We use SRP luns of the form 01000000 | (target << 8) | lun
 | 
						|
             * in the top 32 bits of the 64-bit LUN
 | 
						|
             * Note: the quote above is from SLOF and it is wrong,
 | 
						|
             * the actual binding is:
 | 
						|
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
 | 
						|
             */
 | 
						|
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
 | 
						|
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
 | 
						|
                                   (uint64_t)id << 32);
 | 
						|
        } else if (usb) {
 | 
						|
            /*
 | 
						|
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
 | 
						|
             * in the top 32 bits of the 64-bit LUN
 | 
						|
             */
 | 
						|
            unsigned usb_port = atoi(usb->port->path);
 | 
						|
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
 | 
						|
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
 | 
						|
                                   (uint64_t)id << 32);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (phb) {
 | 
						|
        /* Replace "pci" with "pci@800000020000000" */
 | 
						|
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
 | 
						|
    }
 | 
						|
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static char *spapr_get_kvm_type(Object *obj, Error **errp)
 | 
						|
{
 | 
						|
    SPAPRMachine *sm = SPAPR_MACHINE(obj);
 | 
						|
 | 
						|
    return g_strdup(sm->kvm_type);
 | 
						|
}
 | 
						|
 | 
						|
static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
 | 
						|
{
 | 
						|
    SPAPRMachine *sm = SPAPR_MACHINE(obj);
 | 
						|
 | 
						|
    g_free(sm->kvm_type);
 | 
						|
    sm->kvm_type = g_strdup(value);
 | 
						|
}
 | 
						|
 | 
						|
static void spapr_machine_initfn(Object *obj)
 | 
						|
{
 | 
						|
    object_property_add_str(obj, "kvm-type",
 | 
						|
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static void spapr_machine_class_init(ObjectClass *oc, void *data)
 | 
						|
{
 | 
						|
    MachineClass *mc = MACHINE_CLASS(oc);
 | 
						|
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
 | 
						|
 | 
						|
    mc->name = "pseries";
 | 
						|
    mc->desc = "pSeries Logical Partition (PAPR compliant)";
 | 
						|
    mc->is_default = 1;
 | 
						|
    mc->init = ppc_spapr_init;
 | 
						|
    mc->reset = ppc_spapr_reset;
 | 
						|
    mc->block_default_type = IF_SCSI;
 | 
						|
    mc->max_cpus = MAX_CPUS;
 | 
						|
    mc->no_parallel = 1;
 | 
						|
    mc->default_boot_order = NULL;
 | 
						|
    mc->kvm_type = spapr_kvm_type;
 | 
						|
 | 
						|
    fwc->get_dev_path = spapr_get_fw_dev_path;
 | 
						|
}
 | 
						|
 | 
						|
static const TypeInfo spapr_machine_info = {
 | 
						|
    .name          = TYPE_SPAPR_MACHINE,
 | 
						|
    .parent        = TYPE_MACHINE,
 | 
						|
    .instance_size = sizeof(SPAPRMachine),
 | 
						|
    .instance_init = spapr_machine_initfn,
 | 
						|
    .class_init    = spapr_machine_class_init,
 | 
						|
    .interfaces = (InterfaceInfo[]) {
 | 
						|
        { TYPE_FW_PATH_PROVIDER },
 | 
						|
        { }
 | 
						|
    },
 | 
						|
};
 | 
						|
 | 
						|
static void spapr_machine_register_types(void)
 | 
						|
{
 | 
						|
    type_register_static(&spapr_machine_info);
 | 
						|
}
 | 
						|
 | 
						|
type_init(spapr_machine_register_types)
 |