tp/libs/SSystem/SComponent/c_xyz.cpp

171 lines
4.7 KiB
C++

//
// Generated By: dol2asm
// Translation Unit: c_xyz
//
#include "SSystem/SComponent/c_xyz.h"
#include "SSystem/SComponent/c_math.h"
#include "dol2asm.h"
#include "global.h"
#include "msl_c/math.h"
//
// Declarations:
//
/* 80266AE4-80266B34 0050+00 s=0 e=103 z=300 None .text __pl__4cXyzCFRC3Vec */
cXyz cXyz::operator+(const Vec& vec) const {
Vec ret;
PSVECAdd(this, &vec, &ret);
return cXyz(ret);
}
/* 80266B34-80266B84 0050+00 s=0 e=196 z=1082 None .text __mi__4cXyzCFRC3Vec */
cXyz cXyz::operator-(const Vec& vec) const {
Vec ret;
PSVECSubtract(this, &vec, &ret);
return cXyz(ret);
}
/* 80266B84-80266BD0 004C+00 s=1 e=99 z=158 None .text __ml__4cXyzCFf */
cXyz cXyz::operator*(f32 scale) const {
Vec ret;
PSVECScale(this, &ret, scale);
return cXyz(ret);
}
inline void vecMul(const Vec* src1, const Vec* src2, Vec* dst) {
dst->x = src1->x * src2->x;
dst->y = src1->y * src2->y;
dst->z = src1->z * src2->z;
}
/* 80266BD0-80266C18 0048+00 s=0 e=7 z=0 None .text __ml__4cXyzCFRC3Vec */
cXyz cXyz::operator*(const Vec& vec) const {
cXyz ret;
vecMul(this, &vec, &ret);
return cXyz(ret);
}
/* 80266C18-80266C6C 0054+00 s=0 e=3 z=12 None .text __dv__4cXyzCFf */
cXyz cXyz::operator/(f32 scale) const {
Vec ret;
PSVECScale(this, &ret, 1.0f / scale);
return cXyz(ret);
}
/* 80266C6C-80266CBC 0050+00 s=1 e=0 z=0 None .text getCrossProduct__4cXyzCFRC3Vec */
cXyz cXyz::getCrossProduct(const Vec& vec) const {
Vec ret;
PSVECCrossProduct(this, &vec, &ret);
return cXyz(ret);
}
/* 80266CBC-80266CE4 0028+00 s=0 e=7 z=6 None .text outprod__4cXyzCFRC3Vec */
cXyz cXyz::outprod(const Vec& vec) const {
return this->getCrossProduct(vec);
}
/* 80266CE4-80266D30 004C+00 s=0 e=10 z=1 None .text norm__4cXyzCFv */
cXyz cXyz::norm(void) const {
Vec ret;
PSVECNormalize(this, &ret);
return cXyz(ret);
}
/* 80266D30-80266DC4 0094+00 s=1 e=4 z=0 None .text normZP__4cXyzCFv */
cXyz cXyz::normZP(void) const {
Vec vec;
if (this->isNearZeroSquare() == false) {
PSVECNormalize(this, &vec);
} else {
vec = cXyz::Zero;
}
return cXyz(vec);
}
inline void normToUpZIfNearZero(Vec& vec) {
if (cXyz(vec).isNearZeroSquare()) {
vec.x = 0.0f;
vec.y = 0.0f;
vec.z = 1.0f;
const Vec v = {0, 0, 1};
vec = v;
}
}
/* 80266DC4-80266EF4 0130+00 s=0 e=0 z=2 None .text normZC__4cXyzCFv */
cXyz cXyz::normZC(void) const {
Vec outVec;
if (this->isNearZeroSquare() == false) {
PSVECNormalize(this, &outVec);
} else {
outVec = (*this * 1.25f * 1000000.0f).normZP();
normToUpZIfNearZero(outVec);
}
return outVec;
}
/* 80266EF4-80266F48 0054+00 s=0 e=13 z=17 None .text normalize__4cXyzFv */
cXyz cXyz::normalize(void) {
PSVECNormalize(this, this);
return *this;
}
/* 80266F48-80266FDC 0094+00 s=0 e=19 z=59 None .text normalizeZP__4cXyzFv */
cXyz cXyz::normalizeZP(void) {
if (this->isNearZeroSquare() == false) {
PSVECNormalize(this, this);
} else {
*this = cXyz::Zero;
}
return *this;
}
/* 80266FDC-8026702C 0050+00 s=0 e=2 z=3 None .text normalizeRS__4cXyzFv */
bool cXyz::normalizeRS(void) {
if (this->isNearZeroSquare()) {
return false;
} else {
PSVECNormalize(this, this);
return true;
}
}
/* 8026702C-8026706C 0040+00 s=0 e=5 z=9 None .text __eq__4cXyzCFRC3Vec */
bool cXyz::operator==(const Vec& vec) const {
return this->x == vec.x && this->y == vec.y && this->z == vec.z;
}
/* 8026706C-802670AC 0040+00 s=0 e=6 z=6 None .text __ne__4cXyzCFRC3Vec */
bool cXyz::operator!=(const Vec& vec) const {
return !(this->x == vec.x && this->y == vec.y && this->z == vec.z);
}
/* 802670AC-80267128 007C+00 s=0 e=4 z=7 None .text isZero__4cXyzCFv */
bool cXyz::isZero(void) const {
return fabsf(this->x) < 32.0f * __float_epsilon[0] &&
fabsf(this->y) < 32.0f * __float_epsilon[0] &&
fabsf(this->z) < 32.0f * __float_epsilon[0];
}
/* 80267128-80267150 0028+00 s=0 e=81 z=85 None .text atan2sX_Z__4cXyzCFv */
s16 cXyz::atan2sX_Z(void) const {
return cM_atan2s(this->x, this->z);
}
/* 80267150-80267290 0140+00 s=0 e=21 z=33 None .text atan2sY_XZ__4cXyzCFv */
s16 cXyz::atan2sY_XZ(void) const {
f32 mag = this->getMagXZ();
return cM_atan2s(-this->y, sqrtf(mag));
}
const cXyz cXyz::Zero(0, 0, 0);
const cXyz cXyz::BaseX(1, 0, 0);
const cXyz cXyz::BaseY(0, 1, 0);
const cXyz cXyz::BaseZ(0, 0, 1);
const cXyz cXyz::BaseXY(1, 1, 0);
const cXyz cXyz::BaseXZ(1, 0, 1);
const cXyz cXyz::BaseYZ(0, 1, 1);
const cXyz cXyz::BaseXYZ(1, 1, 1);