mm/src/boot_O2/boot_80086760.c

211 lines
4.5 KiB
C

/**
* MathF library
* Contains tangent function, wrappers for a number of the handwritten functions in fp, and a suite of arctangents
*/
#include "global.h"
#include "fixed_point.h"
extern f32 func_80086C70(f32 x);
extern f32 func_80086CA8(f32 x);
extern f32 func_80086D50(f32 x);
extern f32 func_80086CE0(f32 x);
extern f32 func_80086D18(f32 x);
s32 gUseAtanContFrac;
/**
* Tangent function computed using libultra sinf and cosf
*/
// Math_FTanF
f32 func_80086760(f32 x) {
return sinf(x) / cosf(x);
}
// Unused
// Math_FFloorF
f32 func_80086794(f32 x) {
return func_80086C70(x);
}
// Unused
// Math_FCeilF
f32 func_800867B4(f32 x) {
return func_80086CA8(x);
}
// Unused
// Math_FRoundF
f32 func_800867D4(f32 x) {
return func_80086D50(x);
}
// Unused
// Math_FTruncF
f32 func_800867F4(f32 x) {
return func_80086CE0(x);
}
// Math_FNearbyIntF
f32 func_80086814(f32 x) {
return func_80086D18(x);
}
/**
* Arctangent approximation using a Maclaurin series [https://mathworld.wolfram.com/MaclaurinSeries.html]
* (one quadrant, i.e. |x| < 1)
*/
// Math_FAtanTaylorQF
f32 func_80086834(f32 x) {
// Coefficients of Maclaurin series of arctangent
static const f32 coeffs[] = {
-1.0f / 3, +1.0f / 5, -1.0f / 7, +1.0f / 9, -1.0f / 11, +1.0f / 13, -1.0f / 15, +1.0f / 17, 0.0f,
};
f32 poly = x;
f32 sq = SQ(x);
f32 exp = x * sq;
const f32* c = coeffs;
f32 term;
// Calculate the series until adding more terms does not change the float
while (true) {
term = *c++ * exp;
if (poly + term == poly) {
break;
}
poly += term;
exp *= sq;
}
return poly;
}
/**
* Extends previous arctangent function to the rest of the real numbers.
* Uses the formulae arctan(x) = pi/2 - arctan(1/x)
* and arctan(x) = pi/4 - arctan( (1-x)/(1+x) )
* to extend the range in which the series computed by func_80086834 is a good approximation
*/
// Math_FAtanTaylorF
f32 func_80086880(f32 x) {
f32 t;
f32 q;
if (x > 0.0f) {
t = x;
} else if (x < 0.0f) {
t = -x;
} else if (x == 0.0f) {
return 0.0f;
} else {
return qNaN0x10000;
}
if (t <= M_SQRT2 - 1.0f) {
return func_80086834(x);
}
if (t >= M_SQRT2 + 1.0f) {
q = M_PI / 2 - func_80086834(1.0f / t);
} else { // in the interval (\sqrt{2} - 1, \sqrt{2} + 1)
q = M_PI / 4 - func_80086834((1.0f - t) / (1.0f + t));
}
if (x > 0.0f) {
return q;
} else {
return -q;
}
}
/**
* Arctangent approximation using a continued fraction
* Cf. https://en.wikipedia.org/wiki/Gauss%27s_continued_fraction#The_series_2F1_2 ,
* https://dlmf.nist.gov/4.25#E4
*/
// Math_FAtanContFracF
f32 func_800869A4(f32 x) {
s32 sector;
f32 z;
f32 conv;
f32 sq;
s32 i;
if (x >= -1.0f && x <= 1.0f) {
sector = 0;
} else if (x > 1.0f) {
sector = 1;
x = 1.0f / x;
} else if (x < -1.0f) {
sector = -1;
x = 1.0f / x;
} else {
return qNaN0x10000;
}
// Builds the continued fraction from the innermost fraction out
sq = SQ(x);
conv = 0.0f;
z = 8.0f;
for (i = 8; i != 0; i--) {
conv = SQ(z) * sq / (2.0f * z + 1.0f + conv);
z -= 1.0f;
}
conv = x / (1.0f + conv);
if (sector == 0) {
return conv;
} else if (sector > 0) {
return M_PI / 2 - conv;
} else {
return -M_PI / 2 - conv;
}
}
// Math_FAtanF
/**
* Single-argument arctangent, only used by the two-argument function.
* Nothing else sets the bss variable gUseAtanContFrac, so the Maclaurin series is always used
*/
f32 func_80086AF0(f32 x) {
if (!gUseAtanContFrac) {
return func_80086880(x);
} else {
return func_800869A4(x);
}
}
// Math_FAtan2F
/**
* Main two-argument arctangent function
*/
f32 func_80086B30(f32 y, f32 x) {
if (x == 0.0f) {
if (y == 0.0f) {
return 0.0f;
} else if (y > 0.0f) {
return M_PI / 2;
} else if (y < 0.0f) {
return -M_PI / 2;
} else {
return qNaN0x10000;
}
} else if (x >= 0.0f) {
return func_80086AF0(y / x);
} else if (y < 0.0f) {
return func_80086AF0(y / x) - M_PI;
} else {
return M_PI - func_80086AF0(-(y / x));
}
}
// Math_FAsinF
f32 func_80086C18(f32 x) {
return func_80086B30(x, sqrtf(1.0f - SQ(x)));
}
// Math_FAcosF
f32 func_80086C48(f32 x) {
return M_PI / 2 - func_80086C18(x);
}