mirror of https://github.com/zeldaret/tp.git
152 lines
4.0 KiB
C
152 lines
4.0 KiB
C
#ifndef C_XYZ_H
|
|
#define C_XYZ_H
|
|
|
|
#include "dolphin/mtx.h"
|
|
#include <math.h>
|
|
|
|
struct cXyz : Vec {
|
|
static const cXyz Zero;
|
|
static const cXyz BaseX;
|
|
static const cXyz BaseY;
|
|
static const cXyz BaseZ;
|
|
static const cXyz BaseXY;
|
|
static const cXyz BaseXZ;
|
|
static const cXyz BaseYZ;
|
|
static const cXyz BaseXYZ;
|
|
#ifdef __MWERKS__
|
|
cXyz() {}
|
|
~cXyz() {}
|
|
cXyz(const cXyz& vec) {
|
|
x = vec.x;
|
|
y = vec.y;
|
|
z = vec.z;
|
|
}
|
|
#else
|
|
cXyz() = default;
|
|
~cXyz() = default;
|
|
cXyz(const cXyz& vec) = default;
|
|
#endif
|
|
cXyz(f32 x, f32 y, f32 z) {
|
|
this->x = x;
|
|
this->y = y;
|
|
this->z = z;
|
|
}
|
|
cXyz(const Vec& vec) {
|
|
this->x = vec.x;
|
|
this->y = vec.y;
|
|
this->z = vec.z;
|
|
}
|
|
cXyz& operator=(const Vec& vec) {
|
|
this->x = vec.x;
|
|
this->y = vec.y;
|
|
this->z = vec.z;
|
|
return *this;
|
|
}
|
|
cXyz operator+(Vec const&) const;
|
|
cXyz operator-(Vec const&) const;
|
|
cXyz operator*(f32) const;
|
|
cXyz operator*(Vec const&) const;
|
|
cXyz operator/(f32) const;
|
|
|
|
void operator+=(f32 f) {
|
|
x += f;
|
|
y += f;
|
|
z += f;
|
|
}
|
|
void operator-=(f32 f) {
|
|
x -= f;
|
|
y -= f;
|
|
z -= f;
|
|
}
|
|
|
|
void operator*=(const Vec& other) {
|
|
x *= other.x;
|
|
y *= other.y;
|
|
z *= other.z;
|
|
}
|
|
|
|
cXyz* operator-=(const Vec& other) {
|
|
PSVECSubtract(this, &other, this);
|
|
return this;
|
|
}
|
|
cXyz* operator+=(const Vec& other) {
|
|
PSVECAdd(this, &other, this);
|
|
return this;
|
|
}
|
|
cXyz* operator*=(f32 scale) {
|
|
PSVECScale(this, this, scale);
|
|
return this;
|
|
}
|
|
cXyz* operator/=(f32 scale) {
|
|
PSVECScale(this, this, 1.0f / scale);
|
|
return this;
|
|
}
|
|
cXyz getCrossProduct(Vec const&) const;
|
|
cXyz outprod(Vec const&) const;
|
|
cXyz norm() const;
|
|
cXyz normZP() const;
|
|
cXyz normZC() const;
|
|
cXyz normalize();
|
|
cXyz normalizeZP();
|
|
bool normalizeRS();
|
|
bool operator==(Vec const&) const;
|
|
bool operator!=(Vec const&) const;
|
|
bool isZero() const;
|
|
s16 atan2sX_Z() const;
|
|
s16 atan2sY_XZ() const;
|
|
|
|
void set(f32 pX, f32 pY, f32 pZ) {
|
|
x = pX;
|
|
y = pY;
|
|
z = pZ;
|
|
}
|
|
|
|
void set(const Vec& other) {
|
|
x = other.x;
|
|
y = other.y;
|
|
z = other.z;
|
|
}
|
|
|
|
f32 getXDiff(const Vec* other) const { return x - other->x; }
|
|
f32 getYDiff(const Vec* other) const { return y - other->y; }
|
|
f32 getZDiff(const Vec* other) const { return z - other->z; }
|
|
|
|
void setall(f32 f) { set(f, f, f); }
|
|
|
|
void zero() { set(0.0f, 0.0f, 0.0f); }
|
|
|
|
f32 getSquareMag() const { return PSVECSquareMag(this); }
|
|
f32 getSquareDistance(const Vec& other) const { return PSVECSquareDistance(this, &other); }
|
|
|
|
static f32 getNearZeroValue() { return 8e-11f; }
|
|
|
|
bool isNearZeroSquare() const { return (this->getSquareMag() < getNearZeroValue()); }
|
|
bool isNearZeroSquare(const cXyz& other) const { return (PSVECSquareMag(&other) < getNearZeroValue()); }
|
|
|
|
f32 abs2() const { return this->getSquareMag(); }
|
|
f32 abs2(const Vec& other) const { return this->getSquareDistance(other); }
|
|
f32 abs2XZ() const {
|
|
cXyz tmp(this->x, 0, this->z);
|
|
return tmp.abs2();
|
|
}
|
|
f32 abs2XZ(const Vec& other) const {
|
|
cXyz tmp(this->x, 0, this->z);
|
|
cXyz tmp2(other.x, 0, other.z);
|
|
return tmp.abs2(tmp2);
|
|
}
|
|
|
|
f32 abs() const { return sqrtf(this->abs2()); }
|
|
f32 abs(const Vec& other) const { return sqrtf(this->abs2(other)); }
|
|
f32 absXZ() const { return sqrtf(this->abs2XZ()); }
|
|
f32 absXZ(const Vec& other) const { return sqrtf(this->abs2XZ(other)); }
|
|
|
|
f32 getMagXZ() const { return cXyz(this->x, 0, this->z).getSquareMag(); }
|
|
|
|
f32 getDotProduct(const Vec& other) const { return PSVECDotProduct(this, &other); }
|
|
|
|
f32 inprod(const Vec& other) const { return getDotProduct(other); }
|
|
f32 inprodXZ(const Vec& other) const { return x * other.x + z * other.z; }
|
|
};
|
|
|
|
#endif /* C_XYZ_H */
|